Skip to main content
Suman Debnath is using simulation algorithms to accelerate understanding of the modern power grid and enhance its reliability and resilience. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Planning for a digitized, sustainable smart power grid is a challenge to which Suman Debnath is using not only his own applied mathematics expertise, but also the wider communal knowledge made possible by his revival of a local chapter of the IEEE professional society.

U.S. Department of Energy Deputy Secretary Mark Menezes (right) tours the DemeTECH N95 filter material production area with Xin Sun, ORNL interim associate laboratory director (center) and Craig Blue, ORNL advanced manufacturing program manager. Credit: US Dept. of Energy

A collaboration between the ORNL and a Florida-based medical device manufacturer has led to the addition of 500 jobs in the Miami area to support the mass production of N95 respirator masks.

Jianlin Li employs ORNL’s world-class battery research facility to validate the innovative safety technology. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Soteria Battery Innovation Group has exclusively licensed and optioned a technology developed by Oak Ridge National Laboratory designed to eliminate thermal runaway in lithium ion batteries due to mechanical damage.

The hybrid inverter developed by ORNL is an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and interact efficiently with the utility power grid. Credit: Carlos Jones, ORNL/U.S. Dept of Energy.

ORNL researchers have developed an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and smoothly interact with the utility power grid.

Drawing of thin-film cathode technology

Oak Ridge National Laboratory scientists seeking the source of charge loss in lithium-ion batteries demonstrated that coupling a thin-film cathode with a solid electrolyte is a rapid way to determine the root cause.

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

Wireless charging – Special delivery for UPS

Researchers at Oak Ridge National Laboratory demonstrated a 20-kilowatt bi-directional wireless charging system on a UPS plug-in hybrid electric delivery truck, advancing the technology to a larger class of vehicles and enabling a new energy storage method for fleet owners and their facilities.

Oak Ridge National Laboratory researchers demonstrated on Feb. 27 a 20-kilowatt, bi-directional wireless charging system on a medium-class hybrid electric delivery truck. Credit: Brittany Cramer/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) in late February demonstrated a 20-kilowatt bi-directional wireless charging system installed on a UPS medium-duty, plug-in hybrid electric delivery truck.

ORNL researchers developed sodium-ion batteries by pairing a high-energy oxide or phosphate cathode with a hard carbon anode and achieved 100 usage cycles at a one-hour charge and discharge rate. Credit: Mengya Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers at ORNL demonstrated that sodium-ion batteries can serve as a low-cost, high performance substitute for rechargeable lithium-ion batteries commonly used in robotics, power tools, and grid-scale energy storage.

microscope lens and lithium battery prototype

The formation of lithium dendrites is still a mystery, but materials engineers study the conditions that enable dendrites and how to stop them.