Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to

1 - 4 of 4 Results

Two neutron diffraction experiments (represented by pink and blue neutron beams) probed a salty solution to reveal its atomic structure. The only difference between the experiments was the identity of the oxygen isotope (O*) that labeled nitrate molecules

Scientists at the Department of Energy’s Oak Ridge National Laboratory used neutrons, isotopes and simulations to “see” the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come

After a monolayer MXene is heated, functional groups are removed from both surfaces. Titanium and carbon atoms migrate from one area to both surfaces, creating a pore and forming new structures. Credit: ORNL, USDOE; image by Xiahan Sang and Andy Sproles.

Scientists at the Department of Energy’s Oak Ridge National Laboratory induced a two-dimensional material to cannibalize itself for atomic “building blocks” from which stable structures formed. The findings, reported in Nature Communications, provide insights that ...

Radiochemical technicians David Denton and Karen Murphy use hot cell manipulators at Oak Ridge National Laboratory during the production of actinium-227.

The Department of Energy’s Oak Ridge National Laboratory is now producing actinium-227 (Ac-227) to meet projected demand for a highly effective cancer drug through a 10-year contract between the U.S. DOE Isotope Program and Bayer.

From left, Andrew Lupini and Juan Carlos Idrobo use ORNL’s new monochromated, aberration-corrected scanning transmission electron microscope, a Nion HERMES to take the temperatures of materials at the nanoscale. Image credit: Oak Ridge National Laboratory

A scientific team led by the Department of Energy’s Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair. This discove...