Skip to main content
Clarice Phelps

More than 70 years ago, United States Navy Captain Hyman Rickover learned the ins and outs of nuclear science and reactor technology at the Clinton Training School at what would eventually become the Department of Energy’s Oak Ridge National Laboratory. Rickover applied his knowl...

Leah Broussard leads a study of neutron decay to understand correlations between electrons and antineutrinos as well as subtle distortions in the electron energy spectrum.

Leah Broussard, a physicist at the Department of Energy’s Oak Ridge National Laboratory, has so much fun exploring the neutron that she alternates between calling it her “laboratory” and “playground” for understanding the universe. “The neutron is special,” she said of the sub...

From left, Amit Naskar, Ngoc Nguyen and Christopher Bowland in ORNL’s Carbon and Composites Group bring a new capability—structural health monitoring—to strong, lightweight materials promising for transportation applications.

Carbon fiber composites—lightweight and strong—are great structural materials for automobiles, aircraft and other transportation vehicles. They consist of a polymer matrix, such as epoxy, into which reinforcing carbon fibers have been embedded. Because of differences in the mecha...

Default image of ORNL entry sign

If you ask the staff and researchers at the Department of Energy’s Oak Ridge National Laboratory how they were first referred to the lab, you will get an extremely varied list of responses. Some may have come here as student interns, some grew up in the area and knew the lab by ...

ORNL cybersecurity researchers Jared Smith (left) and Elliot Greenlee (right) participate in a demonstration day event to showcase how Akatosh, a new security analysis tool, quickly sorts through data to identify potential threats.

As technology continues to evolve, cybersecurity threats do as well. To better safeguard digital information, a team of researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has developed Akatosh, a security analysis tool that works in conjunctio...

Ryan Kerekes is leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory. Photos by Genevieve Martin, ORNL.

As leader of the RF, Communications, and Cyber-Physical Security Group at Oak Ridge National Laboratory, Kerekes heads an accelerated lab-directed research program to build virtual models of critical infrastructure systems like the power grid that can be used to develop ways to detect and repel cyber-intrusion and to make the network resilient when disruption occurs.

Yu collaborates on the MAJORANA DEMONSTRATOR, which set the stage for a future experiment to search for the signal of neutrinoless double-beta decay. Single beta-decay—in which a proton becomes a neutron and emits an antineutrino and a fast-moving electro

Chang-Hong Yu of the Department of Energy’s Oak Ridge National Laboratory fell in love with running in 2008 and has since completed 38 marathons or longer-distance races. Her passion for long-distance races serves her well chasing neutrinos—electrically neutral subatomic particles th...

The electromagnetic isotope separator system operates by vaporizing an element such as ruthenium into the gas phase, converting the molecules into an ion beam, and then channeling the beam through magnets to separate out the different isotopes.

A tiny vial of gray powder produced at the Department of Energy’s Oak Ridge National Laboratory is the backbone of a new experiment to study the intense magnetic fields created in nuclear collisions.

Oak Ridge National Laboratory researcher Arnab Banerjee has charted several accomplishments in his neutron studies of quantum phenomena.

Raman. Heisenberg. Fermi. Wollan. From Kolkata to Göttingen, Chicago to Oak Ridge. Arnab Banerjee has literally walked in the footsteps of some of the greatest pioneers in physics history—and he’s forging his own trail along the way. Banerjee is a staff scientist working in the Neu...

From left, ORNL’s Rick Lowden, Chris Bryan and Jim Kiggans were troubled that target discs of a material needed to produce Mo-99 using an accelerator could deform after irradiation and get stuck in their holder.

“Made in the USA.” That can now be said of the radioactive isotope molybdenum-99 (Mo-99), last made in the United States in the late 1980s. Its short-lived decay product, technetium-99m (Tc-99m), is the most widely used radioisotope in medical diagnostic imaging. Tc-99m is best known ...