Skip to main content
ORNL researchers in advanced manufacturing, materials science and engineering collaborated to produce face shields and reusable mask molds so that industry can quickly mass produce. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Dept. of Energy

The University of Texas at San Antonio (UTSA) has formally launched the Cybersecurity Manufacturing Innovation Institute (CyManII), a $111 million public-private partnership.

Suman Debnath is using simulation algorithms to accelerate understanding of the modern power grid and enhance its reliability and resilience. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Planning for a digitized, sustainable smart power grid is a challenge to which Suman Debnath is using not only his own applied mathematics expertise, but also the wider communal knowledge made possible by his revival of a local chapter of the IEEE professional society.

These fuel assembly brackets, manufactured by ORNL in partnership with Framatome and Tennessee Valley Authority, are the first 3D-printed safety-related components to be inserted into a nuclear power plant. Credit: Fred List/ORNL, U.S. Dept. of Energy

The Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new advanced technologies, could be operational by 2024.

An ORNL researcher holds a capsule of molten salt. Preliminary experiments seem to indicate that irradiation can slow corrosion of metal in liquid salt. Credit: ORNL, U.S. Dept. of Energy

Irradiation may slow corrosion of alloys in molten salt, a team of Oak Ridge National Laboratory scientists has found in preliminary tests.

Shown here is an on-chip carbonized electrode microstructure from a scanning electron microscope. Credit: ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory and the University of Tennessee designed and demonstrated a method to make carbon-based materials that can be used as electrodes compatible with a specific semiconductor circuitry.

Light moves through a fiber and stimulates the metal electrons in nanotip into collective oscillations called surface plasmons, assisting electrons to leave the tip. This simple electron nano-gun can be made more versatile via different forms of material composition and structuring. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Nebraska have developed an easier way to generate electrons for nanoscale imaging and sensing, providing a useful new tool for material science, bioimaging and fundamental quantum research.

Fuel pellets sometimes degrade to a sandlike consistency and can disperse into the reactor core if a rod’s cladding bursts. ORNL researchers are studying how often this happens and what impact it has, in order to let reactors operate as long as possible without increasing risk.

A developing method to gauge the occurrence of a nuclear reactor anomaly has the potential to save millions of dollars.

Quantum Science Center

The Department of Energy has selected Oak Ridge National Laboratory to lead a collaboration charged with developing quantum technologies that will usher in a new era of innovation.

VERA’s tools allow a virtual window inside the reactor core, down to a molecular level.

As CASL ends and transitions to VERA Users Group, ORNL looks at the history of the program and its impact on the nuclear industry.

ORNL’s Lab-on-a-crystal uses machine learning to correlate materials’ mechanical, optical and electrical responses to dynamic environments. Credit: Ilia Ivanov/ORNL, U.S. Dept. of Energy

An all-in-one experimental platform developed at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences accelerates research on promising materials for future technologies.