Skip to main content
Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, Oak Ridge National Laboratory/U.S. Dept. of Energy

Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, Oak Ridge National Laboratory/U.S. Dept. of Energy

Lightning strike test

Researchers at Oak Ridge National Laboratory demonstrated that an additively manufactured polymer layer, when applied to carbon fiber reinforced plastic, or CFRP, can serve as an effective protector against aircraft lightning strikes.

A pilot reactor, developed by Vertimass and located at TechnipFMC, can scale up the process that converts ethanol into fuels suitable for aviation, shipping and other heavy-duty applications. Credit: TechnipFMC.

A technology developed at the ORNL and scaled up by Vertimass LLC to convert ethanol into fuels suitable for aviation, shipping and other heavy-duty applications can be price-competitive with conventional fuels

Illustration of a nitrogen dioxide molecule (depicted in blue and purple) captured in a nano-size pore of an MFM-520 metal-organic framework material as observed using neutron vibrational spectroscopy at Oak Ridge National Laboratory. Image credit: ORNL/Jill Hemman

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material

SNS researchers

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Oak Ridge National Laboratory scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, Oak Ridge National Laboratory, U.S. Dept. of Energy

If humankind reaches Mars this century, an Oak Ridge National Laboratory-developed experiment testing advanced materials for spacecraft may play a key role. 

New wireless charging coil designs, created and tested by Oak Ridge National Laboratory, include a three-phase system that features rotating magnetic fields between layers of coils. The layered coils transfer power in a more uniform way, allowing for an increase in power density. Credit: Jason Pries/Oak Ridge National Laboratory, U.S. Dept. of Energy

ORNL researchers created and tested new wireless charging designs that may double the power density, resulting in a lighter weight system compared with existing technologies.

Shown here is a computer-aided design of the hot stamping die with visible cooling channels. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers demonstrated that an additively manufactured hot stamping die can withstand up to 25,000 usage cycles, proving that this technique is a viable solution for production.

CellSight allows for rapid mass spectrometry of individual cells. Credit: John Cahill, Oak Ridge National Laboratory/U.S. Dept of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/Oak Ridge National Laboratory, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.