Skip to main content
An Oak Ridge National Laboratory-led research team used a sophisticated X-ray scattering technique to visualize and quantify the movement of water molecules in space and time, which provides new insights that may open pathways for liquid-based electronics
A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.
An ORNL-led team developed a variable control mechanism to enable precision de-icing on urban roads, using roadway data from the City of Knoxville in Tennessee. Credit: Jason Richards/Oak Ridge National Laboratory, U.S. Dept. of Energy

A precision approach to treating snow- and ice-covered roads, developed by an Oak Ridge National Laboratory-led research team, aims to help cities effectively allocate resources and expand coverage on roadways. The combined software and hardware technology analyzes existing city data and uses high-resolution modeling to identify areas most vulnerable to drivers during hazardous weather conditions.

A bacterial species known as Desulfitobacterium hafniense uses unsubstituted purine to form purinyl-cobamide, a “helper molecule” required to enzymatically break down environmental toxins. Credit: Frank Löffler/Oak Ridge National Laboratory, U.S. Dept. of

An Oak Ridge National Laboratory-led team discovered a function of certain microbes that produces a new derivative of vitamin B12, which is crucial to a cell’s ability to perform life-sustaining metabolic activities. Their findings could ultimately open avenues for novel environmental and water clean-up strategies.

A research team, including scientists from Oak Ridge National Laboratory, Ames Laboratory and Lawrence Livermore National Laboratory, illuminated the mechanisms that create stability and strength in a new class of aluminum alloys. Credit: Orlando R. Rios,
A multi-laboratory research team led by Oak Ridge National Laboratory used neutrons, x-rays and computational modeling to “see” the atomic structures inside a new class of aluminum-cerium alloys created for automotive and aerospace applications.
ORNL’s Xiaohan Yang led a team who identified a common set of genes that enable different drought-resistant plants to survive in semi-arid conditions. This finding could play a significant role in bioengineering energy crops tolerant to water deficits. Cr

Scientists at the Department of Energy’s Oak Ridge National Laboratory have identified a common set of genes that enable different drought-resistant plants to survive in semi-arid conditions, which could play a significant role in bioengineering

Default image of ORNL entry sign

Five researchers at the Department of Energy’s Oak Ridge National Laboratory have been elected fellows of the American Association for the Advancement of Science (AAAS). AAAS, the world’s largest multidisciplinary scientific society 

David Womble has been slated to lead ORNL’s artificial intelligence effort.

The Department of Energy’s Oak Ridge National Laboratory has hired high-performance computing leader David Womble to direct its artificial intelligence (AI) efforts. Womble began as AI Program Director on October 30. His responsibilities include guiding ORNL’s AI a...

R&D 100 Award winning ACMZ Cast Aluminum Alloys, shown with lead developer Amit Shyam, were developed by a team of researchers from Oak Ridge National Laboratory with Fiat Chrysler Automobile U.S. and Nemak U.S.A.
Researchers at the Department of Energy’s Oak Ridge National Laboratory have received nine R&D 100 Awards in recognition of their significant advancements in science and technology. The honorees were recognized over the weekend at the 55th annual R&D 100 Confe...
The Department of Energy’s INCITE program promotes transformational advances in science and technology through large allocations of time on state-of-the-art supercomputers.

The U.S. Department of Energy’s Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The projects will share 5.95 billion core-hours on t...

Neutrons probed two mechanisms proposed to explain what happens when hydrogen gas flows over a cerium oxide (CeO2) catalyst that has been heated in an experimental chamber to different temperatures to change its oxidation state. The first mechanism sugges
Having the right tool for the job enabled scientists at the Department of Energy’s Oak Ridge National Laboratory and their collaborators to discover that a workhorse catalyst of vehicle exhaust systems—an “oxygen sponge” that can soak up oxygen from air and store it for later use in oxidation reactions—may also be a “hydrogen sponge.”