Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 30 Results

ORNL researchers determined lower heat exchange in lithium-ion batteries is caused by the strong non-harmonic forces among ions and weak interaction between layers, providing guidance for high-density battery design. Credit: Tianli Feng/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers proved that the heat transport ability of lithium-ion battery cathodes is much lower than previously determined, a finding that could help explain barriers to increasing energy storage capacity and boosting performance.

ORNL’s Ramesh Bhave poses in his lab in March 2019. Bhave developed the Membrane Solvent Extraction process, which can be used to recover cobalt and other metals from spent lithium-ion batteries. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Momentum Technologies Inc., a Dallas, Texas-based materials science company that is focused on extracting critical metals from electronic waste, has licensed an Oak Ridge National Laboratory process for recovering cobalt and other metals from spent lithium-ion batteries.

Jianlin Li employs ORNL’s world-class battery research facility to validate the innovative safety technology.

Soteria Battery Innovation Group has exclusively licensed and optioned a technology developed by Oak Ridge National Laboratory designed to eliminate thermal runaway in lithium ion batteries due to mechanical damage.

ORNL researchers and energy storage startup Sparkz have developed a cobalt-free cathode material for use in lithium-ion batteries Credit: Ilias Belharouak/Oak Ridge National Laboratory, U.S. Dept. of Energy

Four research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received 2020 R&D 100 Awards.

Cations between layers of MXene

A team led by Oak Ridge National Laboratory developed a novel, integrated approach to track energy-transporting ions within an ultra-thin material, which could unlock its energy storage potential leading toward faster charging, longer-lasting devices.

Joe Hagerman is expanding connected neighborhood research at ORNL and envisions buildings of the future as resources capable of managing the flow and exchange of energy based on economic and market signals – a concept known as transactive energy. Credit: Carlos Jones/Oak Ridge National Laboratory, U.S. Department of Energy

Joe Hagerman, ORNL research lead for buildings integration and controls, understands the impact building technology innovations can have during times of crisis. Over a decade ago, he found himself in the middle of one of the most devastating natural disasters of the century, Hurricane Katrina.

Battery materials at interface

Scientists seeking ways to improve a battery’s ability to hold a charge longer, using advanced materials that are safe, stable and efficient, have determined that the materials themselves are only part of the solution.

Drawing of thin-film cathode technology

Oak Ridge National Laboratory scientists seeking the source of charge loss in lithium-ion batteries demonstrated that coupling a thin-film cathode with a solid electrolyte is a rapid way to determine the root cause.

ORNL welcomes six new research fellows to Innovation Crossroads

ORNL welcomed six technology innovators to join the fourth cohort of Innovation Crossroads, the Southeast’s only entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

Batteries - The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.