Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 145 Results

ORNL researchers led by Michael Garvin, left, and David Kainer discovered genetic mutations called structural variants and linked them to autism spectrum disorders, demonstrating an approach that could be used to develop better diagnostics and drug therapies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers discovered genetic mutations that underlie autism using a new approach that could lead to better diagnostics and drug therapies.

Michelle Kidder received the lab’s Director’s Award for Outstanding Individual Accomplishment in Science and Technology for her decades-long work mentoring students, teachers and early-career staff. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Laboratory Director Thomas Zacharia presented five Director’s Awards during Saturday night's annual Awards Night event hosted by UT-Battelle, which manages ORNL for the Department of Energy.

This image from Sept. 30, 2022, shows how the Federal Emergency Management Agency used ORNL's USA Structures data along with new satellite images to identify structures that were destroyed in Lee County, Florida, during Hurricane Ian. Credit: ORNL, U.S. Dept. of Energy

Over the past seven years, researchers in ORNL’s Geospatial Science and Human Security Division have mapped and characterized all structures within the United States and its territories to aid FEMA in its response to disasters. This dataset provides a consistent, nationwide accounting of the buildings where people reside and work.

A simulation of the planet from the DOE Energy Exascale Earth System Model, one of the large-scale models incorporated in the Earth System Grid Federation led by DOE’s Oak Ridge, Argonne and Lawrence Livermore national laboratories. Credit: LLNL, U.S. Dept. of Energy

The Earth System Grid Federation, a multi-agency initiative that gathers and distributes data for top-tier projections of the Earth’s climate, is preparing a series of upgrades.

Oak Ridge National Laboratory’s software suite AutoBEM is being used in the architecture, city planning, real estate and home efficiency industries. Users take advantage of the suite’s energy modeling of almost all U.S. buildings. Credit: ORNL, U.S. Dept. of Energy

Two years after ORNL provided a model of nearly every building in America, commercial partners are using the tool for tasks ranging from designing energy-efficient buildings and cities to linking energy efficiency to real estate value and risk.

Researchers used quantum Monte Carlo calculations to accurately render the structure and electronic properties of germanium selenide, a semiconducting nanomaterial. Credit: Paul Kent/ORNL, U.S. Dept. of Energy

A multi-lab research team led by ORNL's Paul Kent is developing a computer application called QMCPACK to enable precise and reliable predictions of the fundamental properties of materials critical in energy research.

Sophie Voisin, an ORNL software engineer, was part of a team that won a 2014 R&D 100 Award for work on Intelligent Software for a Personalized Modeling of Expert Opinions, Decisions and Errors in Visual Examination Tasks. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Cameras see the world differently than humans. Resolution, equipment, lighting, distance and atmospheric conditions can impact how a person interprets objects on a photo.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions. Credit: Getty Images

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions.

ORNL scientists created a geodemographic cluster for the Atlanta metro area that identifies risk factors related to climate impacts. Credit: ORNL/U.S. Dept. of Energy

A new capability to identify urban neighborhoods, down to the block and building level, that are most vulnerable to climate change could help ensure that mitigation and resilience programs reach the people who need them the most.