

Similarity Assessment with TSUNAMI

B.J. Marshall

Introduction to SCALE Methodologies SCALE Users' Group Workshop July 27, 2010

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- BRIEF intro to sensitivity coefficients
- "Fundamental theorem of TSUNAMI"
- Uncertainty propagation and correlation coefficients
- Similarity assessment via integral index c_k
- Conclusion

Introduction to Sensitivity Coefficients

- Predict the expected change in a response (k) due to a change in some input parameter (Σ)
	- These responses can be k_{eff} (or ratios of reaction rates)
	- These input parameters are typically nuclear data
		- Cross sections, multiplicity (nubar: \bar{v}), fission spectrum (chi: x)
- The coefficients are dimensionless ratios
	- What would happen to the system k_{eff} if some piece of data were changed by some amount?
	- The coefficient is calculated *without* making the change

$$
S_{k,\Sigma} = \frac{\delta k/k}{\delta \Sigma/\Sigma}
$$

TSUNAMI Sensitivity Methods

- **1. TSUNAMI-1D Deterministic, Multigroup**
- **2. TSUNAMI-2D Deterministic, Multigroup**
- **3. TSUNAMI-3D**
	- **Multigroup TSUNAMI-3D Monte Carlo, Multigroup**
	- **Iterated Fission Probability (IFP) Method Monte Carlo, Continuous-Energy**
	- **CLUTCH Method Monte Carlo, Continuous-Energy**

• TSUNAMI offers several options for sensitivity calculations based on the transport code used for analysis. The accuracy and runtime of the approaches vary.

Sensitivities of *keff* for a Critical Experiment

LOAK RIDGE
National Laboratory

Use of uncertainty information to assess system similarity

- "Fundamental theorem of TSUNAMI": bias is caused by errors in cross section data, which are bounded by crosssection uncertainties
- Systems will have similar computational biases if they have similar sensitivities
	- Uncertainties act like a weighting function
- Comparison must examine nuclide-, reaction-, and energy-dependent data

Code validation with TSUNAMI

- Some questions TSUNAMI analysis is intended to answer:
	- Which experiments should I use to validate my application?
	- Is there a quantitative basis for generating a reactivity allowance for a validation weakness or gap?
	- Is there a basis for extracting relevant information from existing experiments to largely dissimilar applications?
- TSUNAMI-IP performs
	- Uncertainty analysis
	- Benchmark experiment selection (Similarity assessment)

Propagation of Cross Section Uncertainties

•Chain rule allows for propagation of cross section uncertainty (i.e. covariance) to quantify the datainduced uncertainty in k_{eff} (σ_k^2)

$$
\sigma_{k}^{2} = S C_{\alpha\alpha} S^{T}
$$

Where:

- •S is a matrix of all energy-dependent sensitivity data for all systems considered (S^T is transpose)
- $\cdot C_{\alpha\alpha}$ is a matrix containing energy-dependent covariance information evaluated for all nuclear data

Uncertainty Propagation

• Uncertainty in k_{eff} of a single system

 $=\sigma$

 nT elastic $1_{n,gamma}$ b-10 elastic 10 n,alpha $n-14$ elastic

 C_{kk}

 $\left(\frac{\Delta k}{k}\right)^2$ *k*

2

 \int

LOAK RIDGE

Uncertainties for Criticality Benchmarks

- Results from SCALE 6.2.2 Validation Report
- \cdot ~96.5% of C/E values within 1σ of unity

Uncertainty Propagation

• Suppose we have sensitivity information for multiple systems:

 $C_{\alpha\alpha}$

ST

Uncertainty Propagation

• Suppose we have sensitivity information for multiple systems:

Correlation Coefficient *ck* for System 1 and System 4

 $c_{kk} =$ $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \quad \sigma_{12}^2 \quad \sigma_{13}^2 \quad \sigma_{14}^2$ σ_{21}^2 σ_{22}^2 σ_{23}^2 σ_{24}^2 σ_{31}^2 σ_{32}^2 σ_{33}^2 σ_{34}^2 σ_{41}^2 σ_{42}^2 σ_{43}^2 σ_{44}^2 $\overline{\mathcal{C}}$ \sqrt{c} $\sqrt{2}$ \vert ($\overline{}$ $\overline{}$ $\overline{}$ \sum $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $c_k =$ σ_{41}^- 2 σ^-_{11} $\sqrt[2]{\mathcal{O}^2_{44}}$ 2

Integral Index *ck*

- \bullet c_k is an integral index used to assess similarity
	- Uncertainty weighted sensitivity profiles between two systems
		- Typically an application system and a critical experiment
	- What fraction of the data-induced uncertainty is shared by two systems?
	- Correlation coefficient, so normalized from -1.0 to +1.0
		- +1.0 is exactly the same system while 0 is completely uncorrelated
- Current guidance:
	- *ck* of 0.9 or higher indicates a highly similar system
	- *ck* between 0.8 and 0.9 are "marginally" similar

c_k calculation

- c_k calculated by TSUNAMI-IP
- Each application compared with each experiment

- Extended c_k edit from TSUNAMI-IP
- Contribution of each covariance matrix location (largely isotope-reaction) to c_k

Integral Indices for All Experiments in Relation to All Applications

Values colored Blue exceed cutoff value

Values colored Red are maximum for each application

Application #1 gbc-32 - buc w17x17, $1.0 - 6$

Application #1 gbc-32 - buc w17x17, 1.0 - 6 with **Experiment #111** lct049, case 18, maracas, h/

The c_k value is: 0.7455 ± 0.0009

Contributions to c_k by individual energy covariance matrices:

The c_k value is the sum of the individual contributions

Input covariance file: 56groupcov7.1

Working covariance file: tsunami-ip sample.wrk

Summary

- S/U-based parameters should be useful in identifying similar benchmark systems
	- Basis for similarity is both sensitivity information and nuclear data uncertainties
	- Use of c_k has been integrated into other validation approaches
- Similarity assessment can be used in trending analyses to determine subcritical limits
- ORNL recommends c_k values greater than 0.8 for inclusion in validation

