# On the Path to Exascale: Reactor Neutronics in ECP



#### **Tom Evans**

HPC Methods and Applications Team ECP Applications Development, Energy Portfolio

July 27, 2020





## Outline

- ECP Overview
  - DOE HPC Roadmap
- ECP ExaSMR Project
  - SMR Challenge Problem
  - Code products
  - Monte Carlo neutronics challenges
  - Intra-node performance
  - On-the-fly Doppler broadening
  - Inter-node domain decomposition strategies
  - Beyond ECP



# **ECP** Overview





# ECP by the Numbers



# The three technical areas in ECP have the necessary components to meet national goals

| $\langle -$                                                                                                                                                                                                              | Performant mission and science applications @ scale |                                                                                                                                                                                                                                                      |  |                                                                                                                                                                                                                                       |  |                           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------|--|--|--|
| N                                                                                                                                                                                                                        | Aggressive RD&D<br>Project i                        | Mission apps &<br>ntegrated S/W stack                                                                                                                                                                                                                |  | Deployment to DOE<br>HPC Facilities                                                                                                                                                                                                   |  | Hardware tech<br>advances |  |  |  |
|                                                                                                                                                                                                                          |                                                     |                                                                                                                                                                                                                                                      |  |                                                                                                                                                                                                                                       |  |                           |  |  |  |
| Application<br>Development (AD)                                                                                                                                                                                          |                                                     | Software<br>Technology (ST)                                                                                                                                                                                                                          |  | Hardware<br>and Integration (HI)                                                                                                                                                                                                      |  |                           |  |  |  |
| Develop and enhance the<br>predictive capability of<br>applications critical to the DOE<br><b>24 applications</b> including<br>national security, to energy, earth<br>systems, economic security,<br>materials, and data |                                                     | <ul> <li>Deliver expanded and vertically integrated software stack to achieve full potential of exascale computing</li> <li>70 unique software products spanning programming models and run times, math libraries, data and visualization</li> </ul> |  | Integrated delivery of ECP<br>products on targeted systems at<br>leading DOE HPC facilities<br>6 US HPC vendors focused on<br>exascale node and system<br>design; application integration<br>and software deployment to<br>facilities |  | on<br>n<br>on<br>to       |  |  |  |



# Department of Energy (DOE) Roadmap to Exascale Systems

An impressive, productive lineup of accelerated node systems supporting DOE's mission

#### **Pre-Exascale Systems**

**Future Exascale Systems** 





ExaSMR: Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular Reactors





## Partner institutions

| Institution                   | Site PI         | Investigation Areas           |
|-------------------------------|-----------------|-------------------------------|
| Oak Ridge National Laboratory | Steven Hamilton | Neutronics, Multiphysics      |
| Argonne National Laboratory   | Paul Romano     | Neutronics, Multiphysics, CFD |
| MIT                           | Kord Smith      | Reactor physics               |
| Penn State University         | Elia Merzari    | CFD                           |



EXASCALE COMPUTING







## ExaSMR: Modeling and Simulation of Small Modular Reactors

- Small modular nuclear reactors present significant simulation challenges
  - Small size invalidates existing low-order models
  - Natural circulation flow requires high-fidelity fluid flow simulation
- ExaSMR will couple most accurate available methods to perform "virtual experiment" simulations
  - Monte Carlo neutronics
  - CFD with turbulence models



Reproduced with permission from NuScale Power

© NuScale Power LLC All Rights Reserve



Fuel assembly mixing vane

ELOW MIXING NO77LE



# ExaSMR Exascale Challenge Problem

#### **Challenge Problem**

- Simulation of full NuScale SMR model core by coupling continuous-energy Monte Carlo neutronics with CFD
  - Complete in-vessel coolant loop
  - Hybrid LES/RANS turbulence model
  - Sub-pin resolution fission power
  - Isotopic depletion (quasi-static)



#### **Problem Parameters**

- Neutronics
  - Full core representative SMR model containing 37 assemblies with  $17 \times 17$  pins per assembly and 264 fuels pins per assembly
  - 10<sup>10</sup> particles per eigenvalue iteration
  - Pin-resolved reaction rate with 3 radial tally regions and 20 axial levels
  - O(150) nuclides and O(8) reactions per nuclide in each tally region
- CFD
  - Assembly bundle mesh models with momentum sources from a resolved CFD calculation on a representative spacer grid
  - Full core mesh  $40\times10^6$  elements and  $22\times10^9$  degrees-of-freedom

# NekRS – Nek5000 for advanced computing architectures

- Nek5000 is spectral finite element CFD solver
  - RANS and LES turbulence models
  - 1999 Gordon Bell Prize winner
- NekRS is revamped version of Nek5000
  - Achieved 4x performance improvement over "native" Nek5000 port using OpenACC
  - Developed in collaboration with ECP CEED codesign project
  - Supports diverse set of computing architectures via libParanumal library
- Full core reactor models currently in development/testing



Coolant flow through mixing vane



# Shift – MC transport for NVIDIA and AMD GPUs

- Continuous-energy MC radiation transport code in ORNL SCALE suite
  - Heavily used in DOE CASL project for pressure vessel fluence and dosimetry
  - Supports reactor physics and radiation shielding workloads



Total neutron interaction rate in SMR core



Shift vessel fluence calculation

- First production MC transport code to run on GPUs
  - Ported to NVIDIA GPUs using CUDA to utilize Summit
  - Support for AMD GPUs planned by converting CUDA kernels to HIP
  - Allows continued use of NVIDIA GPUs on Summit while developing for Frontier

# ENRICO – Simplified multiphysics driver

- ExaSMR has developed ENRICO as a targeted tool for multiphysics coupling
  - Manages program flow and parallel data transfer
  - Supports multiple physics implementations, including low-order models for testing
- Implements communication patterns scalable to very large node counts
- Scaled to full 3D assembly simulation
  - Excellent agreement between different code implementations







# Monte Carlo Neutron Transport Challenges

- MC neutronics is a stochastic method
  - Independent random walks are not readily amenable to SIMT algorithms on-node concurrency
  - Sampling data is randomly accessed
  - Sampling data is characterized by detailed structure
  - Large variability in transport distributions both within and between particle histories





# Developing GPU Continuous Energy Monte Carlo – Intra-Node

- Focus on high-level thread divergence
- Optimize for device occupancy
  - Separate geometry and physics kernels to increase occupancy
  - Boundary crossings (geometry)
  - Collision (physics)
- Smaller kernels help address variability in particle transport distributions latency
- Partition macro cross section calculations between fuel and non-fuel regions – separate kernels for each
- Use of hardware atomics for tallies and direct sort addressing
- Judicious use of *texture* memory
  - \_\_Idg on data interpolation bounds





# Summit performance results

- Summit system at ORNL has provided a valuable progress assessment
- CFD solver achieved a 7x speedup over Titan using only 15% of Summit
  - Expected 48x improvement at full machine
- MC solver achieved 23x performance increase on nearly 90% of Summit
- Both codes are outpacing increases in machine theoretical peak
  - Algorithmic improvements enable more efficient use of new machines

Hamilton, S.P., Evans, T.M., 2019. Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code. *Annals of Nuclear Energy* **128**, 236 – 247. <u>https://doi.org/10.1016/j.anucene.2019.01.012</u>



 $10^{1}$ 

 $10^{2}$ 

Number of nodes

10<sup>0</sup>



 $10^{3}$ 

# GPU versus CPU generational improvements





## Device saturation and performance

Newest architectures remain unsaturated at 1M particles per GPU



Depleted SMR core



# **On-the-Fly Doppler Broadening**

- Cross section data is sensitive to temperature changes
  - Resonances are flattened as temperature increases
  - Significant impact on reactor operation
- No consensus in broader community about correct approach to treat Doppler broadening "on the fly" in MC transport
  - Needed for multiphysics simulations
- ExaSMR took the windowed multipole method from theory all the way to a production implementation
  - Data processing implemented in ORNL's AMPX nuclear data utility





# GPU performance

 $10^{7}$ 

10<sup>6</sup>

 $10^{5}$ 

10'

 $10^{3}$ 

 $10^{2}$ 

 $10^{1}$ 

 $10^{-2}$ 10<sup>-3</sup>

10<sup>-4</sup>∟ 10<sup>1</sup>

Section (b)

Cross 10  $10^{-1}$ 

- Performance testing with a quarter-core model of the awaited NuScale Small Modular Reactor (SMR)
- No significant sacrifice of accuracy compared to standard continuous energy (CE) data
- Each GPU thread does individual Fadeeva evaluations (no vectorization over nuclides)
- Factor of 2-3 performance penalty on both the CPU and GPU using Pole Method for Doppler Broadening



20

# Inter-node Scaling



Investigating MPI-aware CUDA

- Communication device-to-device (bypass NIC)
- Does not currently give same performance as manually moving data
- Next-gen platforms will optimize device-to-device



(in development – GPU)



Intra-set non-uniform block out to address load balancing

Ellis, J.A., Evans, T.M., Hamilton, S.P., Kelley, C.T., Pandya, T.M., 2019. Optimization of processor allocation for domain decomposed Monte Carlo calculations. *Parallel Computing* **87**, 77–86. <u>https://doi.org/10.1016/j.parco.2019.06.001</u>

# Collaboration efforts beyond ECP

- Algorithmic improvements in Nek5000 and Shift directly benefit DOE NEAMS
- Naval Nuclear Laboratory personnel attend ExaSMR and ECP project meetings
- Ongoing collaboration with NNSA labs (Summit on Summit working group)
- Team members contributed to OLCF Summit machine acceptance and early science campaign
- ExaSMR tools are being leveraged in a GAIN voucher proposal with X-energy
- ExaSMR Monte Carlo technologies are being leveraged by HEP (ORNL/FNAL) for advance particle physics transport on GPUs



### ECP Connections to NE Programs – NEAMS Applications



# Applications beyond SMRs



- Advanced reactors pebble beds, molten salt
- Micro-reactors
- Ex-core vessel fluence and dosimetry
- Radiation shielding



user: ylan Mon Mar 2 19:45:02 2020







TRISO coated particle fuel

