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INTRODUCTION

Nuclear fuel cycle simulators (NFCSs) are fundamental
in guiding policy and economic decisions regarding nuclear
fuel cycle (NFC) options. This paper introduces a new method
to predict the mixed oxide fuel (MOX) criticality value using
an artificial neural network (ANN) model, while most current
NFCSs use simple MOX fabrication estimations that do not
account for burnup effects.

The authors generated over one million depletion simula-
tion results of MOX fuel with varying plutonium vectors and
plutonium content to train an ANN network to predict the fuel’s
Beginning of Cycle (BOC) and End of Cycle (EOC) criticality.
Results show that the trained ANN can predict criticality of
MOX fuel within 1% error compared with the test data. The
trained ANN is implemented into Cyclus, an agent-based NFC,
to demonstrate capabilities to model dynamic reactor behavior
such as reactor power and incoming plutonium vector variation.
This paper concludes with the discussion of the shortcomings
of the ANN approach and potential ways to mitigate them.

BACKGROUND AND MOTIVATION

The NFC is a complex system of facilities and material
mass flows that are combined to provide nuclear energy for use
in society, usually in the form of electricity [1]. NFCSs are
system analysis tools used to investigate issues related to the
dynamics of a NFC.

Due to their large-scale nature, NFCSs cannot implement
high-fidelity physics models since the computational burden
becomes excessive. Functionalities in a NFCS are specific
models that substitute the behavior of the NFC facility (e.g.,
reactor, enrichment plant). The functionality highlighted in this
paper is mixed fuel fabrication. Functionalities in a NFCS can
be divided into two large categories: static and dynamic. Static
modeling methods are user inputs that define fixed behavior
for a facility model, while dynamic modeling methods use the
user’s input and facility parameters (e.g., material inventory) to
calculate or approximate facility model behavior (Fig. 1).
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For once-through fuel cycles, the composition of materials
in each stage does not change because the fuel cycle is linear.
This makes modeling of the once-through cycle simple, as the
material composition in each stage is static. Due to this static
nature, simple methods such as fixed depleted compositions, or
recipes, are good approximations.

However, for a closed NFC, loops created by the reprocess-
ing plant cause the reactor’s incoming and outgoing material
composition to be dynamic, making simple, static assumptions
such as the recipe method a poor approximation [2]. Addition-
ally, the variation in reactor discharge composition changes sep-
arated fissile stream composition from the reprocessing plant,
which then varies the fissile content in the fuel created by the
fuel fabrication facility for a critical fuel. For investigating the
state-of-art for these functionalities, three NFCSs are primarily
investigated: Cyclus [3], ORION [4], and CLASS [5].

METHODS FOR MOX FUEL FABRICATION

In a NFC, the MOX fuel fabrication plant receives a sepa-
rated fissile stream such as a plutonium or a transuranic (TRU)
stream, as well as a fertile (e.g., depleted uranium) stream.
The goal of the MOX fuel fabrication functionality is to find a
mixing ratio of the two streams that will make a fit MOX fuel.

The fitness of MOX fuel has three layers:
1. Front-end: does the MOX fuel contain enough fissile ma-

terial?
2. Back-end: does the MOX fuel remain critical after a cer-

tain burnup?
3. Core average: does this MOX batch have the criticality

required by the reactor?
Methods for modeling MOX fuel fabrication in a NFCS are
shown in Table I.

For the recipe-based method, the user enters a fissile frac-
tion, and the NFCS always mixes the fuel to the specified
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Fig. 1: Logical flow differences between a fixed modeling
method (top) and a dynamic modeling method (bottom) for
NFCSs.
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fraction. For the equivalent fissile worth method, a cross sec-
tion library is provided by the user, and the NFCS calculates the
mixing ratio to fulfill a certain equivalent fissile threshold. The
equivalent fissile value method is used by Cyclus and ORION
and is an effective method to take into account the changing
plutonium vectors in a NFC simulation. However, there are two
shortcomings of the equivalent fissile value method:

1. The equivalent fissile value does not indicate the fuel’s
criticality, and

2. The equivalent fissile value method does not take into
account effects of burnup on the fuel.

Therefore, the equivalent method only partially addresses the
first layer of the fit-ness of MOX.

Database interpolations methods employ a large database
of MOX data to find the appropriate mixing ratio. This method
can be effective, but the accuracy depends on the scope of the
database and lacks in flexibility.

Surrogate Method Approach

A surrogate method approach for MOX fabrication em-
ploys a surrogate model (regression model) for approximating
the appropriate mixing ratio for MOX fuel.

Leniau et al. [6] developed an ANN to predict the required
plutonium content and to predict depleted MOX fuel composi-
tions in CLASS. Leniau et al. trained the model to predict the
plutonium content in fresh fuel, given the plutonium vector, ura-
nium stream enrichment, and maximum burnup (Fig. 2). The
model predicts a plutonium content for the MOX fuel that re-
mains critical after the maximum burnup, satisfying the second
layer of the fit-ness of MOX. However, the ANN architecture is
designed so that the EOC criticality criteria are hard-coded into
the ANN, so the ANN is specific about its question and thus is
not flexible in its implementation to the NFCS.

The method herein aims to implement similar capabilities,
with improvements in flexibility and robustness—mainly to
increase the implementation flexibility of the trained ANN
model by making the ANN architecture less problem-specific.
The ANN architecture in this work is set up so that the model
predicts the BOC and EOC kinf values of the MOX, with high-
resolution burnup steps (Fig. 3). This modification to the ANN
design allows flexible implementation of the ANN to address
the third layer of the fit-ness of MOX.

METHOD

The workflow for this effort is as follows:
1. Generate data with SCALE/TRITON [7]

TABLE I: Methods for MOX fuel fabrication in an NFCS.

Static Modeling Dynamic Modeling
· Fixed fraction · Cross section + equivalent fissile worth

· Database interpolation
· Surrogate models

2. Perform data curation
3. ANN Perform training and testing
4. Implement into Cyclus

Cyclus is used for implementation of the created ANN since its
source code is freely available on Github.

Data Generation and Curation

In this effort, 200, 000 SCALE TRITON cases were run on
MOX assemblies with constrained, randomly generated pluto-
nium vectors with random plutonium content in the MOX (Fig.
4). The process began from a separated plutonium vector with
an isotopic composition randomly sampled. Then the 241Pu
vector was decayed for a time between 0 to 9 years (randomly
sampled uniformly) to obtain the final plutonium vector for
MOX fabrication. The randomly generated plutonium vector
is mixed with depleted uranium for varying plutonium con-
tent (4% to 10%). For each MOX assembly composition, a
SCALE/TRITON input file was created and run. Twenty-five
burnup steps, up to 72 GWd/MTHM, were used per input, mak-
ing 5 million data points. A python script parsed all the output
files for the k eigenvalues (Fig. 5) and the depleted composi-
tions.

ANN Training and Testing

The neural network is trained with the Keras python pack-
age [8]. The first ANN was designed to predict the criticality of
a MOX assembly before and after irradiation (Fig. 3). For the
ANN model, a separate hyperparameter optimization was run
to optimize the number of hidden layers, neurons per layer, and
activation functions. The data were split 60-20-20, where 60 is
the training set, and the other two sets are for hyperparameter
search and final model testing (Table II). The workflow is as
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Fig. 2: ANN architecture used to predict plutonium content in
fresh fuel, by Leniau et al. [6]
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Fig. 3: ANN architecture used in this work.
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follows:

1. Neural network is trained on the training set (60% of data).
2. Prediction error is measured with the validation set (20%

of data).
3. A hyperparameter set with the lowest prediction error is

selected.
4. Test set is used to test final model.

For the criticality prediction, over 97% of predictions have
errors less than 0.5% compared with the test data (97% for
EOC, 99% for BOC).

RESULTS

The fuel fabrication and reactor models are implemented
into Cyclus, and the capabilities are demonstrated for a three-
batch reactor (Table III) with a given plutonium fissile stream
(Table IV). The burnup of the fuel is grouped by batches. This

Fig. 4: Histogram of plutonium vector distribution. Differences
in shape are due to the different ranges of potential composi-
tions.

Fig. 5: BOC and EOC k eigenvalue distribution in the data

reactor burns fuel to

3000MWth ∗ (18 ∗ 3 ∗ 30)days
(24 ∗ 3)MTHM

= 67, 500
MWth · d
MT HM

.

The reactor parameters and plutonium stream were varied in the
tests to show the adaptability of the dynamic MOX fabrication
model.

The reactor’s power output was varied from 800 to 1,200
MWe to demonstrate the effect of different reactor power rates
on MOX fuel demand and criticality over a cycle (Fig. 6).
The decrease in criticality by burnup is followed by a sudden
increase, which is by refueling. At the refueling time, the
reactors require a fuel with a kinf value to reach the objective
core-averaged k value. Therefore, higher power reactors require
MOX fuel with higher TRU content (Fig. 7). The abnormal
behavior for 600 MWe at timestep 54 is due to the model un-
derestimating the EOC kinf of the MOX assemblies, thereby
requesting a high kinf batch. Varying the cycle length would
have the same effect, as a longer cycle length increases TRU
content in the incoming MOX fuel. Different fuels have dif-

TABLE II: Input, Hidden, and Output Layer of the ANN Used
for MOX Fabrication Modeling in This Work.

Input Layer Hidden Layers Output Layer

235U
238U
238Pu 3 Hidden Layers (Dense)
239Pu BOC kinf
240Pu X
241Pu EOC kinf
242Pu 27 Neurons per Layer

241Am (activation fcn. RELU)
Burnup

TABLE III: Reactor Parameters Used for Testing

Parameter Units Value
No. Batches 3
Batch Mass MTHM 24

Reactor Power MWe 1,000
Efficiency % 33.3

Cycle Time months 18
Refuel Time months 0
Target kinf 1.10

TABLE IV: Plutonium Vector Used for Testing

Isotope Composition [%]
238Pu 1.83
239Pu 48.57
240Pu 31.85
241Pu 9.14
242Pu 8.13

241Am 0.48
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ferent sensitivities to burnup ( δk
δBU ), which causes dips in TRU

content.

A fundamental function of a fuel fabrication model is to
account for the change in the plutonium vector to adjust TRU
content in the MOX fuel. In a modeled scenario in which the
incoming plutonium stream increased in 239Pu and decreased
in 240Pu with time, the fuel fabrication output MOX fuel with
lower TRU content, with higher fissile quality of the incoming
plutonium stream (Fig. 8).

Fig. 6: Core average kinf value for reactor with 800, 1,000, and
1,200 MWe power rates. Lower power rates lead to lower kinf
value demands for new MOX fuel.

Fig. 7: TRU content of incoming MOX fuel for reactor with
800, 1,000, and 1,200 MWe power rates. Lower power rates
lead to a lower kinf value demand, resulting in a lower TRU
content for incoming MOX fuel.

Fig. 8: The Pu vector is varied to have more 239Pu and less
240Pu to demonstrate the impact of higher fissile quality Pu in
fuel fabrication. Higher fissile quality of incoming Pu stream
leads to lower TRU content.

DISCUSSION

This work demonstrates a rapid and effective method to
model a MOX fabrication and reactor in a large-scale fuel cycle
simulator. Implementing an ANN model to predict BOC and
EOC kinf from an initial composition vector allows the fabrica-
tion plant to adjust the criticality of the outgoing MOX batch to
fulfill the varying need of the reactor. This approach improves
upon the previously existing equivalence models by being able
to reflect the MOX reactors’ varying power rates (burnup rates)
and the varying batch-wise MOX criticality demand.

Improvements can be made by generating more data on
MOX criticality calculations that span a wider range of po-
tential plutonium vectors and TRU content in MOX fuel. A
physics-informed cost function can also be implemented during
the training of data to prevent the model from making unnat-
ural calculations. Also, non-deep learning algorithms such as
linear regressions can be implemented to make predictions for
unfamiliar data. Finally, the dimensionality reduction method
can be employed to reduce the complexity of the ANN.
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