Molten Salt Reactor Fuel Cycle and Reactor Physics Analysis with SCALE/TRITON

Benjamin R. Betzler, Kursat B. Bekar, William A. Wieselquist, Shane W. Hart, and Shane G. Stimpson

SCALE User’s Group Workshop

19 August 2019
SCALE Code System
Analysis enabling nuclear technology advancements

2016 – present:
Increased Fidelity, Infrastructure Modernization, Parallelization, Quality Assurance
Solutions for extremely complex systems
High-fidelity shielding, depletion and sensitivity analysis in continuous energy
Modern, modular software design
Scalable from laptops to massively parallel machines

• Transport
 – Monte Carlo
 – Deterministic

• Point depletion
SCALE Code System
Reactor physics and used fuel characterization

Pin-by-pin burnup and radioactive source terms

Power distribution for AP-1000 reactor

Burnup (MWd/MT U)

User interface for facility-wide source term characterization
Liquid-Fueled Molten Salt Reactors
Extending methods for solid fuel reactors

- Solid fuel reactor characteristics
 - Fission products and actinides remain with fuel until reprocessing (if applicable)
 - Excess reactivity control occurs with soluble boron/burnable absorbers

- Liquid fuel reactor characteristics
 - Fuel flows with carrier material (delayed neutron precursor drift)
 - Includes continuous and batch chemical processes
Liquid-Fueled Molten Salt Reactors

Core designs using molten fuel salt

- Fast spectrum molten salt reactor (MSR) cores are usually large volumes of salt
- Thermal spectrum cores incorporate fixed moderator material
- Multiple fuel stream designs include
 - Different salt compositions
 - Fissile and fertile salt compositions
- Multiple spectrum zones include
 - Different fuel-to-moderator ratios
 - Driver and blanket zones for breeding

Motivation

Develop MSR modeling and simulation capabilities in SCALE

• Account for the flowing fuel materials in a liquid-fueled system
 – Model precursor drift and its effect on neutronics and depletion
 – Remove isotopes with specific rates or portions of the fuel salt

• Draw on reactor physics tools within the SCALE code system
 – Neutron transport and depletion
 – Strong quality assurance program

• Provide ORNL modeling and simulation tools applicable to liquid-fueled reactor problems
 – Assessment of MSR impact on fuel cycle outcomes
 – Fuel cycle and core optimization and design
Reactor Physics Analysis
Challenges in neutronic modeling and simulation

• Delayed neutron precursor drift occurs in flowing fuel
 – Delayed neutron precursors are radioactive fission products that release neutrons upon decaying
 – In solid fuel systems, the movement of these delayed neutron precursors is negligible
 – In liquid fuel systems, the precursors move away from their birth location and may decay outside the core, changing the neutron source distribution within the core

• Fission source calculated by standard lattice physics codes is biased
 – Prompt neutrons and some delayed neutrons are emitted in the liquid fuel while it is still inside the core
 – Some delayed neutrons are emitted after the liquid fuel leaves the core (coolant loop, chemical processing, etc.)
 – Effect on k eigenvalue is on the order of a few hundred pcm
Reactor Physics Analysis
Challenges in depletion modeling and simulation

• Depletion with continuous and batch feeds and removals
 – Continuous processes in liquid fuel systems remove fission gases and potentially other elements during operation
 – In addition to continuous processes, material may be added to and removed from the liquid in batches at specific times

• Set of depletion equations describing the rate of change of nuclides

\[
\frac{dN_i}{dt} = \sum_{j=1}^{m} l_{ij} \lambda_j N_j + \Phi \sum_{k=1}^{m} f_{ik} \sigma_k N_k - (\lambda_i + \Phi \sigma_i + \nu_i) N_i
\]

- Decay rate of nuclide \(j \) into nuclide \(i \)
- Production rate of nuclide \(i \) from irradiation
- Loss rate of nuclide \(i \) due to decay, irradiation, or other means
Precursor Drift Model in SCALE/NEWT
Implementation, impact, and remaining work

• Developed a simple one-dimensional delayed neutron precursor drift model
 – Impact is severe in regions where delayed neutrons dominate the neutron source
• Remaining tasks
 – Finalize implementation of input at the sequence level
 – Coordinate with PARCS team on format for tabulation of broad group data
Continuous Feeds, Removals, and Tracking

Implementation and results

- Implemented removal and feed and waste tracking mechanisms within TRITON
 - New timetable input to access these capabilities

- Remaining tasks
 - Some numerical integration work on the feedback mechanism is required to conserve mass
 - Addnux nuclide mapping must be implemented
 - Write additional mass information to output
Input

- Typical SCALE/TRITON input of an assembly of the Molten Salt Demonstration Reactor
- New input block for continuous feed and removal
 - Fission product gases and noble metals
 - Power must be normalized to represent full salt amount
 - Must quantify processing systems for accurate results

Output

- Typical SCALE/TRITON output with additional mixtures provided on the *.ft71 file
- Run OPUS or convert the isotopic data file to generate isotopic composition in time

Analysis

- Outputs must be normalized to provide total amount in the system or relevant densities
- Relate these trends in terms of burnup or masses
Adapting SCALE Methods for MSR Analysis

Key points

• Developed a simple 1D model for calculating precursor distribution that is internal to SCALE
 – Used correction factors to generate flow-adjusted parameters to implement during neutron transport calculations

• Developed feed, removal, and tracking mechanisms available within SCALE/TRITON timetable inputs
 – Tested and used tools in several applications for fuel cycle, source term, and safeguards analyses
Acknowledgements

• This work is supported by the US Department of Energy, Office of Technology Transitions, Technology Commercialization Fund and Nuclear Regulatory Commission non-light water reactor development. The authors would also like to thank M. A. Jessee and R. A. Lefebvre their help with the SCALE implementation and quality assurance process.