

Introduction to Resonance Self-Shielding Methods in SCALE :: XSPROC and ESSM

2020 SCALE Users' Group Workshop July 27, 2020

Kang Seog Kim (ORNL)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Contents

• What is resonance self-shielding effect?

Resonance self-shielding methods

- Bondarenko methods
- Pointwise slowing down method
- Hybrid method
- SCALE-XSPROC cross section processing procedure
 - BONAMI based Bondarenko method
 - CENTRM based PW slowing down method
- AMPX MG resonance cross section table generation
 - Resolved resonance data generation
 - Unresolved resonance data generation
- SCALE-Polaris Embedded Self-Shielding method
- Recent and on-going improvements

What is Multigroup Resonance Self-Shielding Effect?

Boltzmann neutron transport equation

Continuous energy

$$\hat{\Omega} \cdot \nabla \psi + \Sigma_t(\vec{r}, E)\psi(\vec{r}, E, \hat{\Omega}) = \int_{4\pi} d\Omega' \int_0^\infty dE \Sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \cdot \hat{\Omega})\psi(\vec{r}, E', \hat{\Omega}') + q(\vec{r}, E, \hat{\Omega})$$

Multigroup

 \geq

$$\hat{\Omega} \cdot \nabla \psi_g + \Sigma_{l,g}(\vec{r})\psi_g(\vec{r},\hat{\Omega}) = \sum_{g'} \int_{4\pi} \sum_l \frac{2l+1}{4\pi} P_l(\hat{\Omega} \cdot \hat{\Omega}') \Sigma_{s,g'g}^l \psi_{g'}(\vec{r},\hat{\Omega}') d\hat{\Omega}' + \frac{1}{k_{eff}} \chi_g \sum_{g'} v_g \Sigma_{f,g'} \phi_{0,g'}$$

- Multigroup resonance self-shielding effect
 - Somewhat different from physical resonance, but mostly from it.
 - Composition \geq

Representative Resonance Self-Shielding Methods

Bondarenko approach

- Procedure
 - Prepare resonance cross section tables
 - $\sigma_{x,g}$ vs. background cross sections (XS)
 - High order calculation for flux weighting
 - Narrow resonance approximation
 - Homogeneous slowing down calculation
 - o Heterogeneous slowing down calculation
 - o Continuous energy Monte Carlo calculation
 - Estimate background XS
 - Dancoff factor, fixed source calculation ...
 - Read/interpolate self-shielded XS tables
 - Calculate resonance interference effect
 - Bondarenko iteration, Resonance interference table
- Application
 - Methods
 - Embedding Self-Shielding method: Polaris, MPACT
 - Subgroup method: MPACT, HELIOS, DeCART
 - Dancoff method: SCALE-BONAMI, CASMO
 - Drawbacks

CAK RIDGE

- Fast but less accurate
- Fine energy groups
- Reactor specific XS libraries

- PW Slowing down calculation
 - Procedure
 - Divide whole domain into constituent cells
 - Global Dancoff factor
 - MCDancoff in SCALE
 - Adjust cell pitch for each cell
 - Global Dancoff factors
 - Perform pointwise slowing down calculations
 - Heterogeneous cells
 - Obtain self-shielded MG XSs & scatt. matrices
 - Flux weighting
 - Application
 - **SCALE-XSProc**, MC²-3
 - Drawbacks
 - Accurate but very time consuming
 - Poor global effect

Hybrid method

- Bondarenko + Slowing down methods
 - SCALE-BONAMI+CENTRM
 - MPACT ESSM-X

SCALE-XSPROC

SCALE-XSPROC Cross Section Processing Procedure

Standard procedure

SCALE-XSPROC BONAMI Based Bondarenko Procedure

BONAMI methods

- Background cross sections for homogeneous media
 - Narrow resonance approximation

$$\sigma_{0,g}^r = \frac{1}{N^r} \sum_{i \neq r} N^i \sigma_{t,g}^i$$

> Intermediate resonance approximation without resonance interference

$$\sigma_{0,g}^{r} = \frac{1}{N^{r}} \sum_{i \neq r} N^{i} \lambda_{g}^{i} \sigma_{p}^{i}$$

> Intermediate resonance approximation with resonance interference

$$\sigma_{0,g}^{r} = \frac{1}{N^{r}} \sum_{i \neq r} N^{i} (\sigma_{a,g}^{i} + \lambda_{g}^{i} \sigma_{p}^{i})$$

- Background cross sections for heterogeneous media
 - Equivalence theory between homogeneous and heterogeneous systems

$$\hat{\Omega} \cdot \nabla \psi_{g} + \sum_{i} (\Sigma_{a,g}^{i} + \lambda_{g}^{i} \Sigma_{p}^{i}) \psi_{g}(\hat{\Omega}) = \sum_{i} \lambda_{g}^{i} \Sigma_{p}^{i} \longleftrightarrow \left[\sum_{i} (\Sigma_{a,g}^{i} + \lambda_{g}^{i} \Sigma_{p}^{i}) + \Sigma_{e} \right] \phi_{g}(\hat{\Omega}) = \sum_{i} \lambda_{g}^{i} \Sigma_{p}^{i} + \Sigma_{e}$$

$$\sigma_{0,g}^{r} = \frac{1}{N^{r}} \left[\sum_{i \neq r} N^{i} (\sigma_{a,g}^{i} + \lambda_{g}^{i} \sigma_{p}^{i}) + \Sigma_{e} \right]$$

$$\sigma_{e}^{r} = \frac{\Sigma_{e}}{N^{r}}$$

SCALE-XSPROC BONAMI Based Bondarenko Procedure

BONAMI methods

- How to obtain equivalence (or escape) cross sections
 - Internal Dancoff method

$$\Sigma_e = \frac{(1-c)A}{\overline{\ell}[1+(A-1)c]}$$

- $\overline{\ell}$ = Average chord length = 4*volume / Surface area
- A = Bell factor to improve the accuracy of the Wigner rational approximation Otter: as a function of $\Sigma_t \overline{\ell}$ Leslie as a function Dancoff factor
- c = Dancoff factor

*Probability that a neutron from an absorber reaches other absorber without a collision

External Dancoff method

- Dancoff factors are obtained from MCDancoff
- Input for SCALE

SCALE-XSPROC BONAMI Based Bondarenko Procedure

BONAMI methods

- Spatially dependent self-shielding method (SCALE-6.3)
 - Multiple fuel zones with non-uniform temperature distribution
 - > Dancoff factor obtained by internal 1-D cylindrical CPM solver
 - Newly developed extended Stoker-Weiss method

т	<u>lm</u>	F_m
1	$l_1(\rho_k) = \frac{2R}{\pi} (\sqrt{1 - \rho_k^2} + \frac{\sin^{-1} \rho_k}{\rho_k} + \frac{\pi}{2} \rho_k)$	$\frac{s_0 \rho_k l_1(\rho_k)}{4V_k}$
2	$l_2(\rho_k) = \frac{2R}{\pi} (\sqrt{1 - \rho_k^2} + \frac{\sin^{-1} \rho_k}{\rho_k} - \frac{\pi}{2} \rho_k)$	$-\frac{s_0\rho_k l_2(\rho_k)}{4V_k}$
3	$l_{3}(\rho_{k-1}) = \frac{2R}{\pi} \left(\sqrt{1 - \rho_{k-1}^{2}} + \frac{\sin^{-1} \rho_{k-1}}{\rho_{k-1}} + \frac{\pi}{2} \rho_{k-1} \right)$	$-\frac{s_0 \rho_{k-1} l_3(\rho_{k-1})}{4 V_k}$
4	$l_4(\rho_{k-1}) = \frac{2R}{\pi} \left(\sqrt{1 - \rho_{k-1}^2} + \frac{\sin^{-1} \rho_{k-1}}{\rho_{k-1}} - \frac{\pi}{2} \rho_{k-1} \right)$	$\frac{s_0 \rho_{k-1} l_4(\rho_{k-1})}{4 V_k}$

Nonuniform temperature :: Fission density

Temperature	# of fuel		BONAMI	56-group	BONAMI 2	252-group	CENTRM		
distribution	zones	CE-KENO	SCALE-6.2	SCALE-6.3	SCALE-6.2	SCALE-6.3	56-g	252-g	
Uniform	1	1.38340	1.37562	-	1.38015	-	1.38137	1.38066	
Uniform	3	1.38340	1.30303	1.38090	1.32919	1.38438	1.38120	1.38086	
Nonuniform	3	1.38416	1.30407	1.38281	1.33015	1.38575	1.38216	1.38171	

SCALE-XSPROC CENTRM Based Slowing Down Calculation I

Pointwise slowing down calculation (CENTRM)

- Nuclear data
 - CRAWDAD
 - Pointwise cross sections
 - S(α,β) thermal scattering kernel data
 - > BONAMI
 - Self-shielded multigroup cross sections and scattering matrices
 - Problem dependent AMPX working library
- Pointwise + Multigroup hybrid
 - ➢ Upper multigroup range: ≥ DEMAX (default=20 keV)
 - Multigroup cross sections are determined by BONAMI
 - Convert multigroup data into pointwise data
 - Pointwise range: DEMIN-DEMAX (default=0.001 eV 20 keV)
 - Pure pointwise slowing down calculation

$$\begin{aligned} \hat{\Omega} \cdot \nabla \psi + \Sigma_t(\vec{r}, u)\psi(\vec{r}, u, \hat{\Omega}) &= \int_{4\pi} d\Omega' \int_0^\infty du' \Sigma_s(\vec{r}, u' \to u, \hat{\Omega}' \cdot \hat{\Omega})\psi(\vec{r}, u', \hat{\Omega}') + q(\vec{r}, u, \hat{\Omega}) \\ \int_{4\pi} d\Omega' \int_0^\infty du' \Sigma_s(\vec{r}, u' \to u, \hat{\Omega}' \cdot \hat{\Omega})\psi(\vec{r}, u', \hat{\Omega}') &= \sum_i \sum_{\ell=0}^L \sum_{k=0}^\ell \frac{2\ell+1}{2} Y_{\ell k}(\hat{\Omega}) \Sigma_\ell^i(u' \to u,)\Phi_{\ell k}(u') \end{aligned}$$

- ➢ Lower multigroup range: ≤ DEMIN (default=0.001 eV)
 - Multigroup cross sections are determined by BONAMI
 - Convert multigroup data into pointwise data

SCALE-XSPROC CENTRM Based Slowing Down Calculation II

Pointwise slowing down calculation (continued)

Scattering physics

- > Epithermal elastic scatter
 - S-wave approximation assuming isotropic scattering in CM system
 - \geq thermal cutoff energy (for example, 5 eV)
 - Discussion
 - o Not true actually
 - Cause some issue at epithermal neutron spectra
 - \circ $\,$ Can be resolved by optimizing group structure
- > Epithermal inelastic scatter
 - DEMAX ≤ inelastic threshold
 - o Multigroup inelastic scattering matrices
 - DEMAX ≥ inelastic threshold
 - Discrete-level inelastic reaction: two-body interaction
 - High energy: discrete → continuum
- > Thermal scatter
 - ≤ thermal cutoff energy (for example, 5 eV)

$$\sigma_{\ell}(E' \to E, T) = \frac{\sigma_b}{T} \sqrt{\frac{E}{E'}} e^{-\frac{\beta(E' \to E)}{2}} \int P_{\ell}(\mu_0) S(\alpha, \beta, T) d\mu_0$$

- Free gas thermal kernel for $S(\alpha,\beta)$: internal analytic formula
- Bound thermal scatter
 - ENDF/B data processed by AMPX
 - Prepared by CRAWDAD

SCALE-XSPROC CENTRM Based Slowing Down Calculation III

Pointwise slowing down calculation (continued)

- Slowing down transport solvers
 - O-dimensional slowing down
 - \succ 1-dimensional discrete ordinates (S_N)
 - Slab and Wigner-Seitz cylinder and sphere
 - 2-dimensional method of characteristics (MOC)
 - 2D square with cylindrical fuels
 - > Two-region collision probability
- Double-heterogeneity treatment
 - Consecutive two PW slowing down calculation
 - Perform the 1st slowing down calculation for infinite TRISO array
 - Homogenize TRISO and matrix using the PW flux moments
 → disadvantage factors
 - Perform the 2nd slowing down calculation
 - Collapse PW into MG
 - Slab, cylinder and sphere

SCALE-6.3 improvement

- Use a Dancoff factor to adjust TRISO pitch to consider neutron leakage effect
- Dancoff factor can be a user input and obtained using MCDancoff
- TRISO pitch can be adjusted to have same Dancoff with input using internal 1D spherical CPM
- Nuclide dependent temperatures and PW data can be at the 2nd slowing down calculation over the homogenized TRISO and matrix region

SCALE-XSPROC CENTRM Based Slowing Down Calculation IV

Energy group collapsing: Pointwise → Multigroup

- Equivalence relation between PW and MG
 - > Angle dependent total cross section + High order flux moment weighted scattering matrices

$$\hat{\Omega}_{m} \cdot \nabla \psi_{m,g} + \Sigma_{t,g} \psi_{m,g}(\vec{r}) = \sum_{\ell} (2\ell+1) P_{\ell}(\mu_{m}) \sum_{s,\ell,g'g} \Sigma_{s,\ell,g'g} \phi_{\ell,g'}(\vec{r}) + q_{g}(\vec{r})$$

$$\Sigma_{t,m,G} = \frac{\sum_{g \in G} \Sigma_{t,g} \psi_{m,g}(\vec{r})}{\sum_{g \in G} \psi_{m,g}(\vec{r})} \qquad \Sigma_{s,\ell,G'G} = \frac{\sum_{g' \in G', g \in G'} \Sigma_{s,\ell,g'g}^{g'} \phi_{\ell,g'}(\vec{r})}{\sum_{g' \in G'} \phi_{\ell,g'}(\vec{r})} \qquad q_{G}(\vec{r}) = \sum_{g \in G} q_{g}(\vec{r})$$

- Energy group collapsing: PMC, MIXMACRO
 - > Cross sections $\sigma_{x,g,j}^{i} = \frac{\int_{\Delta E_{g}} dE \sigma_{x,g}^{i} \phi_{g,j}(E)}{\int_{\Delta E_{g}} dE \phi_{g,j}(E)}$
 - > Scattering matrices: various options

$$n2d = 0: \quad \sigma_{s,\ell,g'g}^{new} = \frac{\sigma_{s,0,g'}^{new}}{\sigma_{s,0,g'}^{orig}} \sigma_{s,\ell,g'g}^{orig} \quad for \ all \ groups$$
$$n2d = -1: \quad \sigma_{s,0,gg}^{new} = recompute \ using \ S - wave \ scatter \ for \ge thermal \ cutoff$$

$$n2d = 1: \quad \sigma_{s,l,g'g}^{new} = \int_{\Delta E_g} dE \int_{\Delta E_{g'}} dE' \sigma_{s,\ell}(E' \to E) \phi_{\ell}(E') / \int_{\Delta E_{g'}} dE' \phi_{\ell}(E') \quad \text{for } \ge \text{thermal cutoff}$$

$$\sigma_{s,l,g'g}^{new} = \int_{\Delta E_g} dE \int_{\Delta E_{g'}} dE' \sigma_{s,\ell}(E' \to E) \phi_0(E') / \int_{\Delta E_{g'}} dE' \phi_0(E') \quad \text{for } \le \text{thermal cutoff}$$

$$n2d = 2: \quad \sigma_{s,l,gg}^{new} = \sigma_{s,l,gg}^{orig} + \sigma_{t,g} - \sigma_{s,l,g}, \quad 0 < \ell < isct \quad for \ge thermal \ cutoff$$

$$n2d = -2: \quad n2d = 2 + n2d = -1 \quad for \ge thermal \ cutoff$$

EMBEDDED SELF-SHIELDING METHOD

AMPX MG Resonance Cross Section Table Generation

Multigroup resonance cross section tables

- Resolved self-shielded resonance data
 - > Narrow resonance approximation

$$\sigma_{i,g}(T,\sigma_0) = \frac{\int_g \sigma_i(T,E)\phi(T,E)dE}{\int_g \phi(T,E)dE}, \quad \phi(T,E) = \frac{\sigma_0}{\sigma_t(T,E) + \sigma_0}$$

- Intermediate resonance parameters (LAMBDA)
 - Probability to penetrate resonances of resonance nuclide by scattering with target nuclide
 - Mixture: ¹H + ²³⁸U + target nuclide

$$\lambda_{g}^{x} = \frac{\sigma_{g,b}^{238} N^{238} - N^{238} \lambda_{g}^{238} \sigma_{p}^{238} - N^{1} \lambda_{g}^{1} \sigma_{p}^{1}}{N^{x} \sigma_{p}^{x}}$$

Homogeneous/heterogeneous resonance data (Roux)

PW slowing down calculation using CENTRM

$$\hat{\Omega} \cdot \nabla \psi + \Sigma_{t}(\vec{r}, u)\psi(\vec{r}, u, \hat{\Omega}) = \int_{4\pi} d\Omega' \int_{0}^{\infty} du' \Sigma_{s}(u' \to u, \hat{\Omega}' \cdot \hat{\Omega})\psi(\vec{r}, u', \hat{\Omega}') + q(\vec{r}, u, \hat{\Omega})$$

$$\sigma_{x,g} = \int_{\Delta u_{g}} \sigma_{x}(u)\varphi(u)du / \int_{\Delta u_{g}} \varphi(u)du$$

• Background cross sections using ESSM

$$\hat{\Omega} \cdot \nabla \psi_{g,k} + \sum_{i} (\Sigma_{i,g,a}^{k} + \lambda_{i,g} \Sigma_{i,p}^{k}) \psi_{g,k}(\hat{\Omega}) = \sum_{i} \lambda_{i,g} \Sigma_{i,p}^{k}$$
$$\sigma_{R,b,g} = \frac{\sum_{i} N_{i} \lambda_{i} \sigma_{i,p,g} + \Sigma_{e,g}}{N_{R}} = \frac{\sigma_{a,g} \phi_{g}}{1 - \phi_{g}}$$

Case		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19
Volume	Fuel	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Clad	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Mod	1	1	1	1	1	2	5	5	5	5	5	5	5	5	5	5	5	5	5
Fuel	235U	1	1	1	1	1	1	1	2-1	2-2	2-3	2-4	2-5	10-2	10-2	10-2	10-2	10-2	10-2	10-2
	²³⁸ U	1	1	1	1	1	1	1	2-1	2-2	2-3	2-4	2-5	10-2	3·10 ⁻³	10-3	10-4	10-5	10-7	10-8
	¹⁶ O	1	1	1	1	1	1	1	2-1	2-2	2-3	2-4	2-5	10-2	10-2	10-2	10-2	10-2	10-2	10-2
H ₂ O	$^{1}\mathrm{H}$	0.1	0.2	0.5	0.75	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	¹⁶ O	0.1	0.2	0.5	0.75	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

AMPX MG Resonance Cross Section Table Generation

- Multigroup resonance cross section tables (continued)
 - Unresolved self-shielded resonance data
 - Probability table method with NR approximation

$$\sigma_{x,g,i} = \frac{\int_{g} \sum_{m} p_{i}^{m} \sigma_{x,i}^{m}(E) \phi^{m}(E) dE}{\int_{g} \sum_{m} p_{i}^{m} \phi^{m}(E) dE}$$

$$\phi^{m}(E) = \frac{W(E)}{N_{i}\sigma^{m}_{t,i}(E) + \sum_{j \neq i} N_{j}\sigma_{t,j}(E) + \Sigma_{e}(E)}$$

$$\sigma_{x,g,i} = \frac{\sum_{m} \frac{p_i^m \sigma_{x,i,g}^m}{\sigma_{t,i,g}^m + \sigma_{0,i,g}}}{\sum_{m} \frac{p_i^m}{\sigma_{t,i,g}^m + \sigma_{0,i,g}}}$$

- σ_x^m p^m = a cross section level *m* of reaction *x* in the URR probability table,
 - = a probability of the level *m*,
- = a self-shielded cross section of reaction x $\sigma_{x,q}$

Embedded Self-Shielding Method

Direct use of resonance self-shielded XS table

- Consistency between resonance data generation and use
 - Similar with the subgroup method
 - Primary method for SCALE-Polaris
- Procedure
 - a. Assume initial background cross section

$$\sigma_{b,g}^{r(n)} = \frac{1}{N^r} \sum_{i \neq r} N^i \lambda_g^i \sigma_p^i$$

b. Obtain corresponding absorption cross sections for all nuclides by reading and interpolation

$$\sigma^{i(n)}_{b,g} o \sigma^{i(n)}_{a,g}$$

c. Solve fixed source transport (ESSM) equation using transport solver (MOC)

$$\hat{\Omega} \cdot \nabla \psi_g^{(n+1)} + \sum_i N_i (\sigma_{g,a}^{i,(n)} + \lambda_g^i \Sigma_p^i) \psi_g^{(n+1)}(\hat{\Omega}) = \sum_i \lambda_g^i \Sigma_p^i$$

d. Update background cross sections using

$$\sigma_{b,g}^{r,(n+1)} = \frac{1}{N^r} \frac{\sum_{i} N^i \sigma_{g,a}^{i,(n)} \phi_g^{(n+1)}}{1 - \phi_g^{(n+1)}} - \lambda_g^r \sigma_p^r$$

- e. Convergence check for background cross sections
- f. Repeat b-e until converged

Recent and on-going Improvements

Underlined improvements for SCALE-6.3

XSPROC

- > Thermal scattering kernel data reconstruction (CENTRM)
- Neutron leakage consideration for double-het fuels (CENTRM)
- > Spatially dependent resonance self-shielding method for nonuniform temperature (BONAMI)
- Improvement for nonuniform temperatures in TRISO (CENTRM)
- Explicit thermal scattering matrix reconstruction (PMC, MIXMACRO)
- Improve the drawback of S-wave approximation (AMPX)

On-going & planned improvements

- SCALE-XSPROC
 - User defined thermal cutoff energy for free gas model
 - Consistent energy group collapsing to conserve reaction rate
 - Super-homogenization method (SPH)
- AMPX for ESSM
 - Extend within-group resonance data to thermal
 - Improve the SPH method for ROUX
- SCALE-Polaris ESSM
 - Dancoff based fast mode ESSM
 - > Spatially dependent ESSM for multiple fuel rings with non-uniform temperature distribution
 - On-the-fly energy group collapsing

