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INTRODUCTION

Detection of illicit nuclear materials in urban
environments is difficult due to the large amount of
background radiation from naturally occurring radioactive
materials (NORM) in the roadways and buildings. Mobile
searches suffer from low count rates, so the detection
algorithms must be carefully balanced between missing real
sources and reporting too many false alarms. The Modeling
Urban Scenarios and Experiments (MUSE) project aims to
create a virtual testbed for simulation of radiation detection
to predict realistic background and threat source detection
events so that detection algorithms can be better optimized
to find illicit sources. The MUSE project is a collaboration
of Oak Ridge National Laboratory (ORNL), Lawrence
Berkeley National Laboratory (LBNL), and the Remote
Sensing Laboratory (RSL). The project also works with
staff at Lawrence Livermore National Laboratory (LLNL) to
support the development of the Optimization Planning Tool
for Urban Search (OPTUS) software package [1]. The first
step in creating a virtual testbed is to determine the level of
detail required in the models to match actual measurements.

Several measurement campaigns were conducted in
2015 and 2016 at the Fort Indiantown Gap (FTIG)
Combined Arms Collective Training Facility (CACTF).
This facility contains a representative urban environment,
with a dozen buildings and s weeral s teets . Detectors
commonly used in search operations—2 in X 4 in x16 in
Nal(Tl)—were used to measure count rates from
background and sources [2]. Measurements with a shielded
high-purity germanium detector of the roadways, sidewalks,
and building walls were made to determine the
concentration of NORM that makes up the bulk of the
background radiation [3, 4].

This paper shows some comparisons of modeling
simulations to measurements taken during the OPTUS-3
campaign in November 2015. Measurements with and
without an 81 pCi cesium source were made at several
points along the center line of the main road. Initial results
show good agreement between the measured and simulated
spectra above 300 keV. Additional studies to determine the
causes of mismatch below 300 keV have been started and
will also be discussed.

MEASUREMENTS

Four source locations were used, with several detector
locations for each source location. For some combinations

of source and detector positions, there was a direct line of
sight between the two. In other cases, the direct line of sight
was blocked by buildings. Distances between the source and
detector varied between 12 and 35 meters. The source and
detector locations are listed in Table 1 and shown in Fig. 1.
Seven background measurements were taken, and 19
measurements with the cesium source were also taken.
Measurement locations are denoted using the distance from
the center of the left intersection. The detectors were
oriented with the 4 in x 16 in faces toward the buildings and
the long axis aligned with the roadway.

Table I. Source and Detector Locations
Distance from Road centerline

Source road centerline (m) detector locations (m)
1 16.5 10, 20, 30, 40, 50
2 30.0 10, 20, 30, 40
3 11.0 30, 40, 50, 70, 80
4 16.5 30, 40, 50, 70, 80

Note: direct line-of-sight locations in bold; locations with
no data recorded in red

Fig. 1. Overhead view of FTIG CACTF main street
@ source locations 1-4
o detector locations10-80
I asphalt (gray)
gravel (light gray)
[ ] concrete intersections (white)

MODEL

A 3D computational model of the FTIG CACTF for use
in the SCALE/MAVRIC [5] radiation transport package
was developed from the construction drawings supplied by
the US National Guard. The current model focuses on the
area near the main street and includes four concrete
intersections, six asphalt roads, a gravel road, sidewalks,
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curbs, soil with a rough approximation of terrain elevation,
and nine buildings. Eight of the buildings consist mostly of
just their outer shells, but the three-story hotel includes
interior floors and walls since measurements have been
made inside that building during previous campaigns. The
size of the model (Fig. 2), is 416 ft x 409 ft x 66.667 ft
(126.8 m x 124.7 m x 20.3 m). Materials in the model were
assigned based on information in construction drawings.
Elemental composition and density for each material were
taken from standard materials definitions for transport [6].

Fig. 2. FTIG CACTF model with nine buildings
[ | concrete intersections (white)
Il asphalt (black)
gravel (cream)
M soil (green)

For photon detectors in urban areas, nearly all of the
background is due to the presence of NORM in the soil,
roadways, and buildings. The main contributors to NORM
are *°K, 2’Th and its daughter products, and 23%U/?**U and
their daughters. In order to model the background at the
FTIG CACTF ste, s wrces were defined in roads,
sidewalks, curbs, soil, and buildings using the NORM
concentration values determined from the HPGe
measurements [3]. The energy spectra for the NORM
components were computed using SCALE/ORIGEN [5] to
accurately account for all daughter products. The calculation
assumed that the daughter products were all in transient
equilibrium with the parent, which may not always be the
case. Radon is present in the thorium and uranium decay
sequences, and because it is a noble gas, it could escape
from the material before it decays into the next isotope in
the decay sequence. Materials processing techniques could
also alter the elemental ratios by preferentially removing
elements midway in the decay chains (called technologically
enhanced NORM, or T ENORM). In the process of
determining the NORM concentration values for the FTIG
CACTF materials [3, 4], the concentrations of several
individual isotopes in each decay chain were determined
and were consistent with the transient equilibrium
assumption.

Radiation Protection and Shielding: General

Typically, radiation transport codes require the user to
define the geometric extent and strength of each source. The
volume of the source is required to determine the strength.
Because the materials with NORM sources have very large
extents with difficult-to-compute volumes (soil) or consist
of a large number of small bodies (cinder block walls of
buildings), a more automated approach was taken in
constructing source descriptions. A 416 x 409 x 66 mesh
(1ft3 voxels) was overlaid across the geometry model and
the fraction of each real material within each voxel was
determined. With these values, the total volume of each
material across the site could be found and the total strength
determined. A set of mesh-based sources, one for each
materia/NORM component combination, was created.
Biasing factors were applied to each of the mesh-based
sources so that when they were used in a Monte Carlo
calculation, more photons would be sampled nearest the
centerline of the main street.

A common way to efficiently simulate detector systems
is to break the simulation into two steps: (1) transport
photons from the various sources to determine the energy-
dependent flux at the detector locations, and (2) transport
photons within the detector to compute the energy deposited
pulse height distribution, which is the basis of the final
spectrum. Note that the detectors are not modeled in the first
step, so the same transport calculation for step 1 can be used
with several different types of detectors in step 2. The
calculations in step 2 can be performed once for each type
of detector of interest: each calculation is called a detector
response function. After running step 1, the energy-
dependent fluxes from anywhere in the transport model can
be folded with one or more detector response functions,
which is much more efficient than explicitly modeling
individual detectors in a site-wide transport calculation.

For this project, three detector response functions were
created for a 2 in x 4 in x 16 in Nal(Tl) crystal surrounded
by 1 mm of aluminum using MCNP [7]. Photons incident
perpendicularly to the 2 in X 4 in face (orientation 1), the
2in x 16 in face (orientation 2) and the 4 in X 16 in face
(orientation 3) were considered. In each orientation, for a
given monoenergetic unit flux (photons/cm?s), the pulse
height distribution (counts/s) was determined. A short utility
code was written to take an energy-dependent flux and
apply one of the three response functions to determine the
total pulse height distribution. The expectation is that the
real detector response would be a weighted combination of
the computed responses for orientations 2 and 3: incident
photons mainly enter these two faces of the detector.
Photons from the road underneath enter face 2, and photons
from far away or from buildings enter face 3. Real detectors
also have an energy-dependent resolution that broadens the
peaks of the pulse height spectrum. To account for this,
another utility program was created to apply a simple energy
resolution function similar to what GADRAS [8] uses for
Nal(TT) detectors.

Transactions of the American Nuclear Society, Vol. 116, San Francisco, California, June 11-15, 2017



Radiation Protection and Shielding: General

COMPARISON OF RESULTS

The MAVRIC Monte Carlo background calculation
used weight windows in addition to the biased sources to
reduce the variance of the energy dependent flux along the
main street. Fluxes were processed with the response
functions for orientations 2 and 3. The Monte Carlo run
time required about 1,500 hours to reduce the channel-by-
channel statistical uncertainties to minimize the impact the
final detector spectra.

Figure 3 shows the measured background and
simulations (using two detector response functions) for the
detector position at 30 m. Agreement is good over a large
energy range. Predicted values are a bit high at the “°K peak
(1461 keV) and are low below 300 keV. These mismatches
were observed for all seven of the detector locations.

MAVRIC was run for 40 hours for each of the four
source locations, with the runtime set long enough so that
statistical uncertainties did not impact the final spectrum.
Only the 81 pCi of cesium source was included in the
simulations. The NORM background from above was added
to the cesium source results to produce the total predicted
spectrum. An example from source location 1 and detector
location at 30 m is shown in Fig. 4 for the energy region
near the cesium 662 keV line. This peak overlaps with the
214Bi 609 keV peak. The same data are shown in Fig. 5,
comparing just the cesium source response to the
background-subtracted measured values. In this case,
orientation 3 should match well because most photons from
the source enter face 3. The full spectra for the background-
subtracted comparison is shown in Fig. 6 using broader
energy bins for the measured data to reduce the statistical
noise. For source locations 1, 2, and 4, the background-
subtracted measured values lie between predictions of the
two orientations. For source location 3, both orientations are
higher than the background-subtracted measured values.
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Fig. 3. Simulated and measured background spectra at
detector location at 30 m. Measurements (gray) include the
1-0 uncertainties, and simulated results show two detector
responses: 2 in X 16 in face (red) and 4 in x 16 in face
(blue).

915

0.6

0.45 —

0.3 —

0.15 —

counts/s kel

500 600 00 800
energy (keV)

Fig. 4. Peak area comparison of measured values (gray) and
simulated detector responses, 2 in x 16 in face (red) and
4in x 16 in face (blue), for source location 1 and detector
location at 30 m.
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Fig. 5. Peak area comparison of background-subtracted
measured values (gray) and simulated detector responses,
2”x16” face (red) and 4”x16” face (blue), for source
location 1 and detector location at 30 m.

0.25

0.2 —

0.15 —

e
=
|

counts/s/keV

e
=}
@
|

0

energy (keV)
Fig. 6. Full spectrum comparison of rebinned background-
subtracted measured values (gray) and simulated detector
responses, 2 in x 16 in face (red) and 4 in x 16 in face
(blue), for source location 1 and detector location at 30 m.

Transactions of the American Nuclear Society, Vol. 116, San Francisco, California, June 11-15, 2017



916

ADDITONAL STUDIES

For the background simulations, two items are being
explored to explain/improve the agreement between
measurements and predictions in the low-energy region of
the spectrum. First, the lack of skyshine from more distant
background sources is being studied. Second, the lack of
scattering material near the detector—such as the table
holding the detector and the associated electronics next to
the detector—is being examined. Both of these additions are
expected to increase the response at low energy.

Initial skyshine studies that added increasingly larger
amounts of soil and air to a simple model of a detector
1 meter above a ground indicated that about 500 m of
ground in each direction and 500 m of air were required
before the simulated spectra stopped increasing. Preliminary
calculations using extra soil and extra air around the FTIG
model show about a factor of two increase in the final
background spectrum in the low-energy region.

Adding materials around the detector location also
increases the low-energy portion of the predicted spectrum
(only 5-15%) due to photons scattering into the detector that
otherwise would have missed the detector. There is also a
slight (~2%) decrease in the high-energy portion of the
spectra, as photons are scattered or absorbed by the
materials close to the detector.

Both of these items, as well as other items such as
radon daughters in the air, need to be examined more fully
to determine what is required for background simulations to
match measurements. An improved detector response
function is also being developed to better account for the
angular flux at the detector location.

SUMMARY

Initial Monte Carlo simulations of measurements
conducted at the FTIG CACTF using detailed models and
measured NORM concentrations agree with the measured
spectra quite reasonably. Under-prediction in the low-
energy portion of the spectrum may be remedied by the
inclusion of larger extents of ground, larger extents of air,
and materials near the detector (possibly within the detector
response function).

Even with the low-energy under prediction, synthetic
detector event data derived from Monte Carlo simulations
show enough representative detail that they will be used as
the basis of a detection algorithm competition. Data sets
with and without sources will be prepared for virtual city
streets and then given to competitors to test their detection
algorithms against.
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