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ABSTRACT 

The embedded self-shielding method (ESSM) is described for computing resonance-shielded cross 
sections used in multigroup neutron transport calculations with the SCALE code system. The 

ESSM ―embeds‖ the self-shielding computation within the transport solution. The transport 

solution provides information for treating heterogeneous self-shielding effects, and the resulting 

shielded cross sections are fed back to the transport calculation. Iterations are done to obtain self-

consistency. This allows self-shielded cross sections to be generated directly in the transport 

geometry without requiring external computation of Dancoff factors. The ESSM theory and 

example calculations are presented. 
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1. INTRODUCTION 

Advanced reactor computational methods used for multidimensional transport calculations 

provide capability to model complicated systems with explicit representation of most spatial 

features. However accurate solutions depend on having space-dependent multigroup (MG) cross 

sections (XS) self-shielded with the local fine-spectrum, which is impacted by non-local 

heterogeneities. Many self-shielding (S-S) techniques treat these heterogeneous effects through 

use of a Dancoff factor obtained from a deterministic method-of-characteristics (MoC) or a 

Monte Carlo calculation for the true multidimensional system. However for full-core 

computations, more than 10,000 regions may require Dancoff factors. Although some regions 

may have approximately the same Dancoff factor and may be lumped together, a substantial 

amount of data and effort is still required.  

In this paper we describe a method called the embedded self-shielding method (ESSM) that is 

being developed for the SCALE computation system [1]. The ESSM is fundamentally a variation 

of the extensively used Bondarenko method [2]; however, it provides tighter coupling between 

the neutron transport and S-S calculations, so that the heterogeneous S-S effects are consistent 

with the MG transport calculation of the full system. This is accomplished by embedding the S-S 

computation within a fixed-source transport calculation that provides scalar fluxes to compute 

parameters for the Bondarenko method. The fixed-source transport solution can be performed 

with the same code and geometry used to compute the system eigenvalue, so that shielded XSs 

are produced directly for the problem-specific transport geometry. In this regard the ESSM is 

similar to the subgroup approaches in HELIOS [3] and DeCART [4], which use a fixed-source 

transport solution to compute background XS parameters; however, the proposed method does 

not require generation of subgroup levels and weights. Instead of solving the transport equation 

for multiple subgroups, an iterative transport/S-S algorithm is used. A fixed-source transport 

solution provides parameters for the S-S calculations, and the resulting shielded MG XSs are fed 
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back to another fixed-source transport calculation, which produces new parameters for the S-S 

calculation. Iterations are performed to obtain a converged set of self-shielded XSs within a 

specified tolerance. In principle, the ESSM is quite general and can be used with existing or 

enhanced 2D or 3D transport solution methods in SCALE [5,6]. The final set of shielded XSs 

can be used in the eigenvalue transport calculation for the 2D lattice or full-core problem. A 

recently published paper by Hong and Kim [7] describes an iterative Bondarenko approach—

developed independently of this work—which was implemented into a 2D MoC lattice physics 

code at the Korean Atomic Energy Research Institute (KAERI). Although there are several 

differences between the KAERI approach and the ESSM, both iterate between the S-S and 

transport calculations. KAERI shows that results from their iterative method are as accurate as 

the subgroup method and often run faster [7].  

2. DESCRIPTION OF METHOD 

The Bondarenko method is based on preprocessing MG data for several different degrees of 

resonance S-S, as represented by the value of a parameter called the background XS, 0σ . With 

this method the shielded XS for resonance nuclide ―r‖ is defined as  
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where (r)

0(E;σ )  is the fine-spectrum for a system characterized by the background XS (r)

0σ .  As 

part of future development efforts for SCALE, the preprocessed shielded data will ultimately be 

obtained from a series of CENTRM [8]calculations for heterogeneous unit cells with varying 

pitch and/or moderator densities that span the desired range of (r)

0σ values as defined by lattice 

equivalence theory. However, the initial approach described here computes the flux fine-

spectrum using

 

CENTRM  pointwise (PW) slowing-down calculations for an infinite 

homogeneous medium containing the resonance material mixed with hydrogen with varying 

concentration ratios that produce the desired range of (r)

0σ values, where the background XS for 

this system is 
(H)
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σ σ  . The calculated PW spectra (r)

0(E;σ ) from CENTRM are used to 

evaluate eq. (1) for the specified background XSs, and the resulting shielded MG values are 

stored on the SCALE nuclear data libraries.  

The Bondarenko method uses the second equivalence theorem to relate the preprocessed shielded 

values for homogeneous systems to actual reactor configurations. This approach defines a 

background XS for an equivalent homogeneous system that produces (nearly) the same 

resonance integral as a heterogeneous system. For a given spatial region Z containing a single 

mixture within a heterogeneous system, the macroscopic background XS for an equivalent 

homogeneous system is usually defined in the conventional Bondarenko method as 
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In this expression, (j)

gλ are group-dependent intermediate resonance (IR) parameters; (j)

pΣ and N
(j)

 

are the potential XS and number density of moderating nuclide j, respectively; and the escape  

XS (Z)

esc
 is a function of the dimensions and shape of zone Z as well as the Dancoff factor. The 

system Dancoff factor may be quite difficult to determine for complex heterogeneous cores with 

many non-uniformities. SCALE has the capability to compute this quantity using Monte Carlo, 

but this requires an auxiliary calculation. One of the major advantages of the ESSM is that it 

avoids the need to compute a Dancoff factor.  

The following analytical approximation for the MG flux in region Z can be obtained by applying 

the IR approximation to the equivalence theory expression for the flux in group g with lethargy 

width of Δug [8]: 
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p,gλ is defined similarly. Conversely, if the MG flux is known, eq. (3) can be solved for the 

macroscopic background XS in region Z, 
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The microscopic background XSs for resonance nuclide r is defined as
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and the shielded XS is obtained by interpolating the pre-processed tabulated values to this (r)

0,g (Z)σ

value. 

In the ESSM method the region-averaged MG flux appearing in eq. (4) is computed by solving 

the multidimensional transport equation, using the IR approximation for the scattering source in 

order to be consistent with the analytical flux expression in eq. (3). As shown in reference [9], 

this equation corresponds to  

 g
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.  (5) 

Equation (5) is a MG transport equation with a region-dependent inhomogeneous source of 
(Z)

p g(1- ) u   , which can be solved with existing transport solvers in SCALE. The computed 

angular flux
g(r, )  is integrated over direction and averaged over region Z to obtain (Z)

g  for 

later use in the S-S calculation.  

To solve the MG transport equation, self-shielded XSs for every region Z are required. The 

shielded XSs are computed using the Bondarenko method as described previously. Since self-
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shielded XSs depend on fluxes obtained from the transport calculation, an iterative procedure 

must be employed to converge the values of the shielded XSs and fluxes [9]. The fixed-source 

transport calculations for each group, as well as the S-S computations for each spatial region, are 

independent, so they may be done in parallel. Figure 1 shows the iterative scheme being used. 

The entire algorithm is completed prior to performing the eigenvalue transport calculation, so the 

ESSM procedure can be modularized. 

 

Figure 1. ESSM iterative procedure. 

3. RESULTS 

A typical fuel pin of a pressurized water reactor (PWR) has been selected as an initial sample 

problem to test the ESSM. Geometry and composition data for the sample problem are shown in 

Table I. The reference solution was obtained by performing an MCNP calculation with reflecting 

boundary conditions, using ENDF/B-VII.0 continuous energy (CE) cross sections.  

Two SCALE calculations were performed for the sample problem using the NEWT 2-D discrete 

ordinates lattice physics code. The first SCALE/NEWT calculation used 238-group ENDF/B-

VII.0 cross sections that were self-shielded by the BONAMI/CENTRM/PMC modules in 

SCALE. The CENTRM calculation to obtain self-shielded 238-group cross sections was 

performed for a 1-D Wigner-Seitz cylindrical pin configuration using the discrete ordinate (SN) 

method, with a pointwise energy mesh of approximately 50,000 points. The second 

SCALE/NEWT calculation used 81-group ENDF/B-VII.0 cross sections that were self-shielded 

by BONAMI/CENTRM/PMC. However, the CENTRM pointwise transport calculation was 

performed using a new 2-D MoC [10] option and a square pin configuration similar to the 

MCNP model. The 81-group cross sections were processed from a new SCALE 81-group library 

[11]. 



The Embedded Self-Shielding Method 

2012 Advances in Reactor Physics – Linking Research, Industry, and Education (PHYSOR 2012),  5/7 

Knoxville, Tennessee, USA April 15-20, 2012 

 

Table I. PWR pincell geometry and composition 

Region Material 
Temperature 

(K) 

Radius, pitch  

(cm) 

Density  

(g/cm
3
) 

Fuel UO2 600 0.4025 10.4 

Clad 
27

Al 600 0.4759 2.7 

Moderator H2O 600 0.7120 (1.2620) 0.65 

 

Self-shielded cross sections computed with the ESSM module were used in a MoC transport 

solver to obtain the eigenvalue for the sample problem. The 81-group library was used for these 

calculations, in which the Bondarenko factors as a function of background cross sections were 

prepared from the CENTRM pointwise transport calculations for a homogeneous model.  

It was found that the ESSM computation converged in three iterations for this case.  Figure 2 

provides a comparison of neutron spectra obtained from the MCNP, NEWT, and ESSM 

eigenvalue calculations. As shown in Fig. 2, the neutron spectrum from ESSM is very consistent 

with the neutron spectra from the other codes in the energy range below 20 keV where the 

method was applied.  Variations in the high energy range are caused by group structure 

differences in representing the fission spectrum, which is not related to the ESSM.   Table II 

provides a comparison of eigenvalues calculated by the various codes. The ESSM eigenvalue 

agrees within the statistical uncertainty of MCNP, and is even slightly better than the result 

obtained with NEWT using the continuous-energy self-shielding method in CENTRM.  The 

computational result shows that the newly developed ESSM module is working well.  
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Figure 2. A comparison of neutron spectra. 

 

Table II. A comparison of eigenvalues for PWR pincell 

Code Multiplication factor  (pcm) 

MCNP 1.3736 ±0.00013 - 

CENTRM(SN)/NEWT (238-g) 1.36744 325 

CENTRM(MoC)/NEWT (81-g) 1.37011 183 

ESSM/MoC (81-g) 1.37323 17 

 

4. SUMMARY 

The ESSM provides an improved method for Bondarenko S-S which accounts for the impact of 

multidimensional heterogeneous effects without requiring an independent Dancoff factor 

calculation. Similar to the subgroup approach, a fixed-source, multidimensional transport 

calculation is performed to obtain region-averaged MG fluxes for computing the background XS 

in the S-S operations. However, no subgroup levels are used. Instead, iteration between the S-S 

and transport solutions is done to obtain consistent self-shielding and transport solutions. This 

makes the ESSM method easy to implement in existing Bondarenko-based lattice physics codes.  

Results show that the iterative procedure converges rapidly and produces accurate results.  This 

method is currently being incorporated into a new SCALE lattice sequence. 
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