

DOE/NNSA Nuclear Criticality Safety Program – Brief Overview

Douglas G. Bowen, Ph.D. Nuclear Data and Criticality Safety Group Leader Reactor and Nuclear Systems Division Oak Ridge National Laboratory

Nuclear Criticality Safety Program Execution Manager

2020 SCALE Users' Group Workshop

July 27-29, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Agenda

- Nuclear Criticality Safety Program (NCSP) history and organization
- NCSP work in the DOE complex organized around 5 technical program elements
- Budget summary
- Future of NCSP SCALE support

CAK RIDGE

2

Background / History

- Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 93-2 and 97-2:
 - 93-2 (3/23/1993): Need for a general-purpose critical experiment capability that will ensure safety in handling and storage of fissionable material.
 - 97-2 (5/19/1997): Need for improved criticality safety practices and programs to alleviate potential adverse impacts on safety and productivity of DOE operations.
- 97-2 encompassed ongoing DOE activities of 93-2 while broadening scope to address important cross-cutting safety activities needed to ensure NCS throughout the Complex.
- DOE Implementation Plan for Board Recommendation 93-2 and 97-2 resulted in establishment of the US Nuclear Criticality Safety Program (NCSP)

Defense Nuclear Facilities Safety Board

NNSA Nuclear Criticality Safety Program

5 Year Plan The Mission and Vision of the United States Department of Energy Nuclear Criticality Safety Program United States Department of Er Fiscal Years 2014-2023 Nuclear Criticality Safety Program Five-Year Execution Plan for the Mission and Vision FY2014 through FY2018 MS Outober 2013

10 Year Mission & Vision

4

AM = Analytical Methods
IPD = Information Preservation and Dissemination
IE = Integral Experiments
ND = Nuclear Data
TE = Training and Education
TS = Technical Support
CSSG = Criticality Safety Support Group
CSCT = Criticality Safety Coordinating Team
MT = Management Team
NDAG = Nuclear Data Advisory Group
TM = Task Managers

Nuclear Data Measurements & Evaluation Work for NCSP

- **Objective**: Provide measured and evaluated thermal, resonance, unresolved resonance, and fast region cross section data to address the priority NCSP nuclear data needs
- Vision: Addresses multiple Nuclear Data 5- and 10year goals and attributes identified in the NCSP Vision
- Final product: Rigorous ENDF/B evaluations produced from cross section measurements and analyses.
- Measurement work effort focused on NCSP priorities by NCSP Nuclear Data Advisory Group (NDAG)
- NCSP 5-year plan provides a listing of Nuclear Data measurement and evaluation priorities for the program

Nuclear Data Measurements							
Materials	Pre-FY2019	FY2019	FY2020	FY2021	FY2022	FY2023	Post- FY2023
Cerium (142Ce)							
Basis	Neutron transmission and capture of ¹⁴² Ce in the resonance range. Cerium is an element that is predominately ¹⁴² Ce (88.450 a/o) and ¹⁴³ Ce (11.114 a/o) and can be found in chemical processing streams because it is commercially use as a catalyst or additive for chemical applications (e.g., glass polishing powder). As a result, cerium appears as an admixed material in process streams. ¹⁴³ Ce is also a stable fission product. The primary interest for cerium cross sections is for poison credit in NCS analyses. The need for improved cerium cross sections has been specifically identified for the Hanford Plutonium Finishing Plant and other similar operations. Isotopically enriched sample required.						
Chlorine (³⁵ Cl)							-
Basis	Measurement of the ³⁵ Cl (n,p) cross section in the resonance range. Chlorine is present in fuel cycle facilities in Pu solutions, electrorefining processes, chloride salts, and as brine/drift in some repository environments. Improved ³⁵ (n,p) cross sections needed for poison credit in these in these environments. A need for improved ³² Cl cross section has been specifically identified at LANL and Y-12.						
Lanthanum (^{nat} La)	0						
Basis	Measurement of neutron transmission and yield of ^{res} La in the resonance range. Lanthanum is an element that is predominately ^{Lan} La (59.910 a/o) and a stable fission product. The primary NCS interest is for fission product credit in the latest edition of the ENDF nuclear data library, the resonance analysis is based on parameters obtain with an experimental set up which is known to have certain problems. Currently, ENDF/B-VIII evaluations for La do not have adequate covariance data based on experimental data. Improved covariance data are needed to support sensitivity/uncertainty analyses for fission product credit applications. Natural samples can be used.						
Molybdenum (⁹⁵ Mo)							
Molybdenum (⁹³ Mo) Basis	Measurement of n completed at RPL. Molybdenum lisoto research reactors a casks, irradiated fu for example). Nee priority). Isotopica	eutron capture in "Mo is a stable f ipes are currently ind space reactor el storage, and n ds identified by M Iby enriched sam	n ⁵⁵ Mo in resonan lission product an y encountered in rs. The current pr eprocessing plant VR and IRSN for fi ple required.	ce range, URA. N d the primary ab irradiated fuel as imary interest in s (UPU-Mo2r dep usion product cre	Veutron transmi sorbing nuclide fission products NCS is for fission posits in French r ddit and Y-12 for	ssion measuremi in natural Molyb or in molybdemi product credit i eprocessing plar U-Mo applicatio	ents previous denum. um alloys in for transport. It equipment ns (lower
Molybdenum (⁹³ Mo) Basis Neptunium (²³⁷ Np)	Measurement of n completed at RPL. Molybdenum lisoto research reactors a caska, irradiated fu for example). Nee priority). Isotopica	eutron capture li **Mo is a stable for pes are currently ind space reactor el storage, and r si identified by N illy enriched sam	n ¹⁵ Mo in resonan lission product an encountered in rs. The current p eprocessing plant W and IRSN for ft ple required.	ce range, URR. 1 d the primary ab mary interest in s (UPu-MoZr dep sion product cre	Veutron transmi sorbing nuclide fission products NCS is for fission solits in French n dit and Y-12 for	ssion measurem in natural Molyb or in molybden in product credit f eprocessing plan U-Mo applicatio	ents previous denum. um alloys in ior transport. It equipment ns (lower
Molybdenum (⁹³ Mo) Basis Neptunium (²³⁷ Np) Basis	Measurement of n completed at RPL. Molybdenum isoto research reactors a casks, irradiated fu for example). Nees priority). isotopica priority). isotopica Measurement of ²³ safety for applicati priority) and fast b HPRL there is a req fast systems, and ti low accuracy in the	eutron capture in **Mo is a stable ti ind space reactor el storage, and in ds identified by M illy enriched sam *Np fission cross ons at ORNL and uast reactor for L uest for fission c he required accu- icovariance mat	n ¹⁹ Mo in resonan lission product an encountered in rs. The current pre- eprocessing plant Will and IRSN for fi- ple required. section in fast en other sites. App ANL. Nuclear da ANL. Nuclear da I.S. 45%, Tr (6-8%).	ce range, URR. N d the primary ab irradiated fuel as s (UPu-MoZr dep ssion product cre ergy range, ²³⁷ N ications include a improvements a energy range fr	Veutron transmi sorbing nuclide fission products NCS is for fission posits in French n dit and Y-12 for p is an actinide of Display the production will improve cri om 200 keV to 2 omes from the o	ssion measurem in natural Molyb or in molybdem product credit i eprocessing plan u-Mo applicatio U-Mo applicatio of interest in nucl w/ HFIR at ORNI cital mass estima 0 MeV. The appl fesire to improve	ents previous denum. um alloys in for transport it equipment is (lower lear criticality (low NCSP its. On the lication list w the current

NCSP Nuclear Data Program

CAK RIDGE

6

NCSP Integral Experiments

- NCSP integral measurements are performed at
 - Sandia National Laboratories (SNL) and
 - National Criticality Experiments Research Center (NCERC), currently operated by Los Alamos National Laboratory
 - NCERC is located at the Nevada National Security Site (NNSS) inside the Device Assembly Facility (DAF)
- Types of experiments that can be performed
 - Subcritical
 - Rocky Flats shells, BeRP ball, Np-237 sphere, TACS shells, etc.
 - Critical/Delayed Supercritical
 - NCERC: Planet, Comet, Godiva IV, Flattop
 - Sandia: Sandia Pulse Reactor critical assembly (2 fuel types, currently)
 - Prompt Supercritical
 - NCERC: Godiva IV (< 300 deg. C pulse)

SNL/TA-V/SPR Facility

NCSP Critical Assemblies

Sandia National Laboratory

NCERC/DAF

SNL – 7uPCX – U(6.9) UO₂ rods

NCERC – Comet

NCSP Differential Experiments

- NCSP integral measurements are performed at
 - JRC-Geel GELINA Facility (Geel, Belgium)– RPI LINAC (Troy, NY)
- Types of experiments that are performed
 - Total cross section/Transmission measurements
 - Capture measurements

RPI LINAC Rensselaer

Photos referenced from:

https://ec.europa.eu/jrc/en/research-facility/linear-electron-accelerator-facility http://www.linac.rpi.edu/public_html/accelerator.html

NCSP Nuclear Data Budget – by site and by year (FY20-24)

SCALE Support by the NCSP – FY2005 through FY2020

11

NCSP-funded Code Packages 2005-2020

NCSP Support of SCALE in the Future

- NCSP support tends to follow trends in the DOE/NNSA NCS community
 - SCALE/MCNP maintenance, modernization, and development funding has grown over the years with the NCSP budget, but this trend may not continue into the future
 - CSSG tends to recommend funding for tasks that more directly support facility staff
 - TE and IE elements are receiving much of the focus these days
- NCS staff are trained to preclude criticality accidents via NCS evaluations and implementing and maintaining process criticality safety limits for facility staff
 - Applying analytical methods to this goal is about ~10% of their job
- **Challenge**: continuously enhance ORNL AM tools for those supporting NCSP missions
 - ORNL SCALE work directly competes with comparable work at other sites

2019 Technical Program Review @ Pantex

Questions

