

Covariance and Other Nuclear Data in SCALE 6.3

A. Holcomb, W. Wieselquist

SCALE Users' Group Meeting, July 27, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Need for high-quality covariance data
- Brief history of covariance data in SCALE
- Updates pursued beyond just cross sections in SCALE 6.2
- Ramifications
- 6.3 Goals
 - delayed neutron uncertainty
 - sensitivity indices
 - improved infrastructure for covariance operations
 - on-the-fly sampling and correlated input sampling

Need for high-quality covariance data

- S/U Tools in SCALE rely on reasonable estimates for nuclear data uncertainty
- Historical lack of sufficient covariance data in ENDF
 - Treated as zero uncertainty, can be viewed as lower bound estimate on unc.
 - Problematic for TSURFER GLLS will adjust wrong data, compensate incorrectly
 - -Onus on user to provide their own "reasonable" guess of what the unc. should be

Brief history of covariance data in SCALE

- SCALE-6
 - Creation of an applications-oriented covariance library
 - Franken-library
 - ENDF-7.0, ENDF-6, JENDL, BNL-LANL-ORNL (BLO) data
 - -ORNL covariances based on the integral approximation below 5 keV
 - –BNL/LANL above 5.0 keV
 - Importantly, gives SOME justifiable estimate for all materials (~277 mats)

SCALE 6.3

- ENDF-7.1
 - Covariance data for 190 isotopes
- ENDF-8.0
 - Covariance data for 251 isotopes
- Still patched with BLO data

5

Updates pursued beyond just cross sections in SCALE 6.2

#	Nuclei	Year	Author(s)
1	^{227,229,232} Th	1994	England et al. [1994]
2	²³¹ Pa	1994	England et al. [1994]
3	²³²⁻²³⁸ U	1994	England et al. [1994]
4	^{237,238} Np	1994	England et al. [1994]
5	²³⁸⁻²⁴² Pu	1994/2011	England [1994]/Chadwick [2011]
6	^{241,242m,243} Am	1994	England et al. [1994]
7	²⁴²⁻²⁴⁸ Cm	1994	England et al. [1994]
8	^{249,251} Cf	1994	England et al. [1994]
9	254 Es	1994	England et al. [1994]
10	²⁵⁵ Fm	1994	England et al. [1994]

In 1993 T. R. England and B. F. Rider produced a recommended set of *independent* and *cumulative* yields for the fission products based on a compiled list of open literature measurements and calculated charge distributions.

Except for ²³⁹Pu, England and Rider FPY evaluations are still in ENDF/B-VII.1 library

Since 1993 decay sub-library data (branching ratios) updated!!

Decay data and (stable) cumulative FPY

Black dots : ratio of cumulative FPYs obtained by independent FPY and decay data in ENDF/B-VII.1 to cumulative FPYs in ENDF/B-VII.1.

Although deviations are small, ratios should be one!!

In red uncertainties (%) of cumulative yields in ENDF/B-VII.1

CAK RIDGE National Laboratory

Krypton and Xenon Covariance Data

- Strong negative correlations
- Relative strong positive correlations (delayed-neutrons)

Ramifications - LWR UAM dependent on SCALE covariances

Table I. Summary	of submitted	results of standald	one neutronics cases
------------------	--------------	---------------------	----------------------

Case	Contributor	NDL	Transport Code	VCM	UQ Method	PWR Cases	BWR Cases	VVER Cases
1	NINE	ENDF/B-VI	SERPENT 2	SCALE 6.0	Deterministic	I-1, I-2	I-1	I-1
2	EK	ENDF/B-VI	MULTICELL	SCALE 5.1	Deterministic	I-1, I-2	I-1	I-1, I-2, I-3
3	KIT	ENDF/B-VII.0	XSDRNPM	SCALE 6.1	Deterministic	I-1	I-1	I-1, I-2
4	VTT	ENDF/B-VI	CASMO-4	SCALE 6.0	Deterministic	I-1, I-2, I-3	I-1, I-2	
5	PSI	ENDF/B-VII.RO	CASMO-5MX	SCALE 6.0	Sampling	I-1, I-2	I-1, I-2	
6	NESCA	ENDF/B-VII.0	NEWT	SCALE 6.1	Deterministic	I-1, I-2, I-3	I-1	
7	UPM	ENDF/B-VII	MCNP5	SCALE 6.0	Deterministic	I-1	I-1	
	UPM	ENDF/B-VII.0	NEWT	SCALE6.1.3	Deterministic	I-2	I-2	
8	McMaster (Polaris)	ENDF/B-VII.1	POLARIS	SCALE 6.2	Sampling	I-1	I-1	
9	McMaster (NEWT-252G)	ENDF/B-VII.1	NEWT	SCALE 6.2	Sampling	I-1	I-1	
10	McMaster (NEWT-238G)	ENDF/B-VII.0	NEWT	SCALE 6.2	Sampling	I-1	I-1	
11	NRA	JENDL-4.0	CASMO5	JENDL-4.0	Sampling	I-1, I-2, I-3	I-1, I-2, I-3	
12	NWU	ENDF/B-VII.0	NEWT	ENDF/B-VII.1	Deterministic	I-1		I-1
13	SNU	ENDF/B-VII.1	McCARD	ENDF/B-VII.1	Deterministic	I-1	I-1	I-1
14	UNIST (MCS-44G-ENDF71)	ENDF/B-VII.1	MCS	ENDF/B-VII.1	Deterministic	I-1		
15	UNIST(MCS-44G-SCALE61)	ENDF/B-VII.1	MCS	SCALE 6.1	Deterministic	I-1		
16	UNIST (STREAM-GPT-56G- SCALE62)	ENDF/B-VII.1	STREAM	SCALE 6.2	Deterministic	I-1		
17	UNIST (STREAM-GPT- ENDF71)	ENDF/B-VII.1	STREAM	ENDF/B-VII.1	Deterministic	I-1		
18	UNIST (STREAM-SS-ENDF71)	ENDF/B-VII.1	STREAM	ENDF/B-VII.1	Sampling	I-1		
19	GRS (PT44G)	ENDF/B-VII.0	NEWT	SCALE 6.1	Deterministic	I-1, I-2	I-1, I-2	I-1, I-2
20	GRS (PT56G)	ENDF/B-VII.1	NEWT	SCALE 6.2	Deterministic	I-1, I-2	I-1, I-2	I-1, I-2

CAK RIDGE National Laboratory

10

LWR UAM dependent on SCALE covariances cont'd

Case	Contributor	NDL	Transport Code	VCM	UQ Method	PWR Cases	BWR Cases	VVER Cases
21	GRS (SS44G- HELIOS)	ENDF/B-VII.1	HELIOS2	SCALE 6.1	Sampling	I-1, I-2	I-1, I-2	I-1, I-2
22	GRS (SS44G- NEWT)	ENDF/B-VII.0	NEWT	SCALE 6.1	Sampling	I-1, I-2	I-1, I-2	I-1, I-2
23	GRS (SS56G- NEWT)	ENDF/B-VII.1	NEWT	SCALE 6.2	Sampling	I-1, I-2	I-1, I-2	I-1, I-2
24	ORNL	ENDF/B-VI	NEWT	SCALE 6.1	Deterministic	I-1, I-2, I-3	I-1, I-2	
25	JacobsAFW	JEFF-3.1.2	WIMS	Mixed ¹	Sampling		I-1, I-2,I-3	
26	UPV	ENDF/B-VII.0	NEWT	SCALE 6.2	Sampling	I-2	I-2	
27	Wood	JEFF-3.1.2	WIMS	WIMS	Sampling		I-3	
28	EK (Manu)	ENDF/B-VI	MULTICELL	SCALE 5.1	Sampling	I-2		
29	UPM (Sampler)	ENDF/B-VII.1	NEWT	SCALE 6.2	Sampling	I-2		
30	UPM- COBAYA without ADF	ENDF/B-VII.1	NEWT/COBAYA	SCALE 6.2	Sampling	I-3		
31	UPM -COBAYA with ADF	ENDF/B-VII.1	NEWT/COBAYA	SCALE 6.2	Sampling	I-3		
32	NESCA	ENDF/B-VI	MGRAC	SCALE 6.1	Sampling	I-3		
33	UPM COBAYA pin- by-pin	ENDF/B-VII.1	NEWT/COBAYA	SCALE 6.2	Sampling	I-3		
34	UPM COBAYA nodal	ENDF/B-VII.1	NEWT/COBAYA	SCALE 6.2	Sampling	I-3		
35	THU (REAL)	ENDF/B VII.0	RMC	SCALE 6.0	Sampling	I-3	I-3	
36	NCSU	ENDF/B-VII.1	POLARIS	SCALE 6.2	Sampling	I-3		
37	NCSU (MPACT)	ENDF/B-VII R1	MPACT	ENDF/B-VII.1	Sampling	I-1, I-2	I-1, I-2	

CAK RIDGE

11

29 out of 37 participants using SCALE covariance!!

6.3 Goals

- delayed neutron uncertainty
- sensitivity indices
- improved infrastructure for covariance operations
- on-the-fly sampling and correlated input sampling

Unexpected Uncertainty:

 Delayed neutron fraction, arguably one of most important safety parameters

$$\frac{dn(t)}{dt} = \frac{\rho - \beta_{eff}}{\Lambda} n(t) + \sum_{i=1}^{N} \lambda_i C_i(t)$$
$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t), \qquad (i = 1, \dots, N)$$

- For LWR systems: SCALE/Sampler uncertainty propagation of just cross sections
 - Fresh fuel: β_{eff} ~700 pcm +/- 7%
 - 40 GWd/MTU: β_{eff} ~500 pcm +/- 15% (2-sigma range is 350-650 pcm)
- Is it real?

CAK RIDGE

National Laboratory

13

- Sampling error?
- Neglected correlation?
- As we investigate non-LWRs, need perspective

Majdi I. Radaideh, William A. Wieselquist, Tomasz Kozlowski, "A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters", *Annals of Nuclear Energy*, Volume **127** (2019).

Sensitivity Indices

- Sampler able to report new sensitivity indices
 - squared multiple correlation coefficient R²
 - expected amount by which the total output variance would be reduced in case the true values of the input parameter group would become known
 - semi-partial squared multiple correlation coefficient SPC²
 - describes the variance of the **output** quantity which is expected to remain when the true values of the complementary parameter group became known
 - New indices can be used for any output response (e.g. k-eff)

Unifying linear algebra and matrices

- Historically the SCALE code base was littered with a myriad of different matrix and linear algebra implementations
 - Costly maintenance, requires developers to rebuild mental models as they work in different parts of the code
- Robust linear algebra and matrix packages exist BUT
 - Steep learning curves
 - Unstable or too problem domain specific
 - Outpaced by new software

Unifying linear algebra and matrices

- We are developing an interface layer between the details of a specific linear algebra and matrix implementation and SCALE
 - Current target is wrapping Trilinos
 - Interface future proofs SCALE
 - One place to swap out implementation details
 - Reusable everywhere in SCALE (and AMPX, SAMMY, etc.)
- Currently targeting sparse matrix implementations
 - Developing high-level linear algebra routines that take the interface layer as arguments
 - Allows SCALE implementation to grow organically with developer and sponsor needs

on-the-fly sampling and correlated input sampling

- We have the technology...
- Long term vision
 - We already generate samples from the covariance matrices, but ideally we should be able to sample from them on-the-fly to remove the current 1000 realizations limit
 - Investigate sampling methods, storage methods, and representations
 - Modifying our covariance data resources to be more flexible for different quantities of interest

Questions?

- Thanks to our sponsors!
 - NCSP
 - NRC
- Thanks to colleagues and collaborators!
- Tutorial in next session
 - Generation of SCALE Multigroup Libraries for Advanced Reactors using AMPX
- Upcoming Fall Training Nuclear Data Fundamentals and AMPX Library Generation
 - October 26-28, 2020
 - Description: <u>https://www.ornl.gov/scale/scale/nuclear-data-</u> <u>fundamentals-and-ampx-libraries-generation-course</u>

