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INTRODUCTION

Polaris is a two dimensional lattice physics module in the
SCALE code system [1] that is used to analyze light water
reactor (LWR) fuel assemblies. Polaris provides multigroup
(MG) lattice physics solutions using the method of character-
istics (MOC) method for transport calculations. Self-shielding
calculations are performed using the embedded self-shielding
method (ESSM), and depletion calculations are performed
with ORIGEN. Polaris uses ENDF/B-VII.1-based 252-group
and 56-group libraries from SCALE 6.2. A detailed summary
of the Polaris calculational methods is provided in Jessee et al.
2014 [2].

Polaris was initially released as part of SCALE 6.2 in
April 2016. Several enhancements were implemented in the
SCALE 6.2.1 update that was made available in July 2016,
including the addition of PN scattering treatment in the MOC
solver, and hydrogen transport cross section correction based
on the approach of Herman et al. [3]. The impacts of these
calculational enhancements for full-core analysis using Po-
laris/PARCS are described by Xu et al. [4].

This paper describes updates to the Polaris geometry pack-
age that were implemented for modeling boiling water reactor
(BWR) lattice designs. The BWR geometry enhancements are
available in the SCALE 6.2.2 update released in May 2017.

POLARIS GEOMETRY

The primary function of the Polaris geometry package
is to convert the user-provided description of the problem
geometry, or the input, into an internal KENO-VI-based repre-
sentation of the problem geometry: the geometry scene. The
geometry scene is passed to the KENO-VI geometry ray-tracer,
which sets up the particle tracks for the MOC transport cal-
culations. Each region in the geometry scene is defined as an
intersection of N shapes and M shape complements. Accurate
computation of the region area is a fundamental requirement
for the Polaris geometry package. The KENO-VI geometry
package does not compute region areas analytically, so the
user (i.e., Polaris) must provide the region areas.

In its original implementation, Polaris computed region
areas based on the geometry data provided for the lattice de-
sign. For a simple example, consider a cylindrical fuel pin in

1This manuscript has been authored by UT-Battelle, LLC, under Con-
tract No. DE-AC0500OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or repro-
duce the published form of this manuscript, or allow others to do so, for the
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

a square-pitched flow channel with pitch p and fuel radius r.
Using integer 1 for the square channel ID and 2 for the fuel
cylinder ID, Polaris defines the coolant region in KENO-VI
syntax as “1 − 2”, i.e., inside shape 1 and not inside shape
2. In set notation, this region definition is written as “1 ∩ 2c”
and reads, “shape 1 intersect shape 2 complement.”2 Formerly,
Polaris would have calculated the area of the coolant region as
p2 − πr2.

For pressurized water reactor (PWR) lattice designs, the
region definitions are simple enough so that region areas can
be computed in Polaris via a small internal library of formulas,
such as the areas of rectangle, circle, triangle, circular sector,
and circular segment. BWR lattice designs require modeling of
control blades, curved channel boxes, and complicated internal
water cross structures. These features require complicated (i.e.,
error-prone) logic to compute region areas. To simplify the
area calculation while maintaining sufficient accuracy, a new
approach was implemented in which each KENO-VI shape is
modeled as a convex polygon, where the convex polygon is
defined based on a counter-clockwise ordering of the polygon
vertices. Given the counter-clockwise ordering of the vertices
of the polygon–(x1, y1), (x2, y2), . . . , (xn, yn)–the polygon area
is given as:
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Convex polygon intersect operations

As stated above, Polaris must calculate the area of a re-
gion defined as an intersection of N shapes and M shape
complements. This area calculation is simplified with the
convex polygon approximation. There are several algorithms
for computing the intersection of two convex polygons. The
Sutherland-Hodgman intersection algorithm [5] is used in Po-
laris. If two convex polygons intersect, the resulting polygon
is also convex, for which the area can be computed by Eq. (1).
If a region is defined as the intersection of N convex poly-
gons, the Sutherland-Hodgman intersection algorithm can be
applied N − 1 times to determine the final convex polygon and
region area as shown in algorithm 1. Only the final polygon
and area are needed to define the region in KENO-VI.

The intersect area of a shape and a shape complement is
given as:

A(S 1 ∩ S c
2) = A(S 1) − A(S 1 ∩ S 2). (2)

The area of the intersect of S 1 and S c
2 is equal to the area

2In set notation, “1 ∩ 2c” can also be written as “1 \ 2”, i.e., “the relative
complement of shape 2 with respect to shape 1” or as “1 − 2” (i.e., “shape
1 difference shape 2”). For this paper, “1 ∩ 2c” is chosen to facilitate the
discussion of area calculations based on convex polygons.
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Algorithm 1 Intersection of N convex polygons
1: function AreaPolygonSet(Q1,Q2, . . .Qn)
2: X ←Intersect(Q1,Q2) � Sutherland-Hodgman
3: for i← 3, n do
4: X ←Intersect(X,Qi)
5: end for
6: return PolygonArea(X) � Eq. (1)
7: end function

of S 1 minus the area of the intersection of S 1 and S 2. This
equation can be applied recursively to compute the intersect
area of a convex polygon and M convex polygon complements.
For example, consider computing the area of Y , defined as
Y = P ∩ Qc

1 ∩ Qc
2, where P, Q1, and Q2 are convex polygons.

Substituting X1 ≡ P ∩ Qc
1, the area of Y is:

A(Y) = A(P ∩ Qc
1 ∩ Qc

2)
X1 ≡ P ∩ Qc

1 ⇒ = A(X1 ∩ Qc
2)

= A(X1) − A(X1 ∩ Q2)

In this equation, A(X1) is computed from Eq. (2) as A(P)−
A(P∩Q1), and A(X1 ∩Q2) is expanded to be A(P∩Qc

1 ∩Q2).
The area of this final term can be computed by first computing
X2 ≡ P∩Q2 and then applying Eq. (2) to compute A(X2∩Qc

1).
Algorithm 2 computes the intersect area of convex poly-

gon and M convex polygon complements. This algorithm
requires O(M2) intersect calculations. This algorithm can be
combined with algorithm 1 to compute the intersect area of N
convex polygons and M convex polygon complements. The
KENO-VI region is defined based on the final intersect poly-
gon from algorithm 1 and the M convex polygon complements
used in algorithm 2.

Algorithm 2 Intersection of a convex polygon (P) and M
convex polygon complements (Q1, . . . ,Qm)

1: function AreaComplement(n, P,Q1, . . . ,Qm)
2: if m = 1 then
3: a← PolygonArea(P) � Eq. (1)
4: X ← Intersect(P,Q1) � Sutherland-Hodgman
5: b← PolygonArea(X)
6: return a − b
7: else
8: a← AreaComplement(m − 1, P,Q1, . . . ,Qm−1)
9: X ← Intersect(P,Qm)

10: b← AreaComplement(m − 1, X,Q1, . . . ,Qm−1)
11: return a − b
12: end if
13: end function

RESULTS AND ANALYSIS

The polygon-based area algorithms have been bench-
marked against The Computational Geometry Algorithms Li-
brary (CGAL) [6]. Portions of CGAL have been implemented
into Polaris for the calculation of region areas. The CGAL-
based coding can be disabled or enabled based on CMake

configuration settings for compiling SCALE. In early phases
of polygon-based area implementation, CGAL was used to
compute region areas based on the exact definition of the
shapes. The CGAL-based calculations were used to determine
the appropriate number of polygon sides necessary to approxi-
mate curved surfaces in Polaris. By default, Polaris uses one
side per 3◦ of curvature, which leads to a 0.001% maximum
relative error in region area computation for a BWR lattice. In
later phases of development, CGAL was used to compute the
region areas based on the convex polygon definitions consis-
tent with the Polaris algorithms. In these comparisons, CGAL
and Polaris computed identical region areas. Although CGAL
was used for code verification, CGAL cannot be used directly
in Polaris and SCALE due to licensing restrictions.

The key BWR features supported by the Polaris geometry
package are provided in Fig. 1. The top row displays ATRIUM
9 × 9 and 10 × 10 fuel, the middle row displays SVEA-100
and SVEA-96 fuel, and the bottom row displays GE 8 × 8 and
9 × 9 fuel. The ATRIUM lattices display the newly supported
square water box feature, which displaces a 3 × 3 location in
the lattice pin map in the ATRIUM design. The SVEA lattices
display the newly supported water cross option, and the GE
lattices display different cylindrical water rod designs.

For the BWR channel box, the top row in Fig. 1 displays
straight-edged channel box with uniform thickness. The mid-
dle row displays a curved channel box with uniform thickness.
The bottom row displays a curved channel box with variable
thickness.

For the BWR control blade, the top, middle, and bottom
rows display OEM, Marathon, and uniform blade designs re-
spectively. The left column displays a uniform bypass channel,
and the right column displays a nonuniform channel.

Additional supported features not shown in Fig. 1 include
(a) flexible control blade definition as a series of pin and/or slab
sections, (b) variable control blade wing tip radius, including
a straight-edged tip, and (c) a pin displacement option to
translate the center of the pin locations as required by some
lattice designs.

One hallmark feature of Polaris is the simplified input
description. The Polaris input file contains simple input cards
for pin, box, blade, cross, pinmap, dxmap, and dymap
for defining BWR lattice models. A full input file listing is
provided in Fig. 2 for a representative ATRIUM 9 × 9 design.

Fig. 3 presents k∞ comparisons between reference con-
tinuous energy (CE) KENO-VI calculations and Polaris cal-
culations for 362 lattice configurations composed of various
lattice designs and operating conditions, as well as enrichment
and gadolinium distributions and control blade insertion. 82%
of these calculations were within target accuracy criteria of
200 pcm, 1% root mean squared pin power difference, and
1.5% maximum pin power difference. Most cases outside of
the target accuracy are for cold zero power configurations with
control blade insertion. These calculations are under further
investigation.

CONCLUSIONS

The Polaris lattice physics code has been updated to sup-
port BWR lattice designs. This summary outlines the geometry
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modeling approach for BWR lattices with region area calcu-
lation based on convex polygons. The area calculation was
verified by calculations with CGAL. Computational bench-
mark results presented in Fig. 3 display acceptable agreement
with reference CE KENO-VI solutions for a wide range of
lattice geometries and conditions.
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Fig. 1. BWR design examples. Top left: ATRIUM 9 × 9. Top right: ATRIUM 10 × 10. Middle left: SVEA-100, Middle right:
SVEA-96. Bottom left: GE 8 × 8. Bottom right: GE 9 × 9. Lattices in the left column have uniform bypass gaps. Lattices in
the right column have wide and narrow bypass gaps. The control blade inserts are Hatch OEM design, Marathon design, and
uniform material in the top, middle, and bottom rows respectively.
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Fig. 2. Polaris input example.

Fig. 3. k∞ comparisons between CE KENO-VI and Polaris lattice calculations.




