Associate Laboratory Director
Physical Sciences
AT A GLANCE

<table>
<thead>
<tr>
<th>Established in</th>
<th>1943</th>
</tr>
</thead>
<tbody>
<tr>
<td>as part of the Manhattan Project</td>
<td></td>
</tr>
<tr>
<td>$2.2B annual budget</td>
<td></td>
</tr>
<tr>
<td>9 national user facilities</td>
<td></td>
</tr>
<tr>
<td>5,400 employees</td>
<td></td>
</tr>
<tr>
<td>3,200 visiting scientists</td>
<td></td>
</tr>
<tr>
<td>221 R&D 100 Awards</td>
<td></td>
</tr>
<tr>
<td>2 Nobel Prize winners</td>
<td></td>
</tr>
<tr>
<td>46 National Academy members</td>
<td></td>
</tr>
<tr>
<td>17 UT-ORNL Governor’s Chairs</td>
<td></td>
</tr>
<tr>
<td>9 university core research partners</td>
<td></td>
</tr>
<tr>
<td>9 new elements discovered</td>
<td></td>
</tr>
</tbody>
</table>

Contents

2 Big Science. Big Opportunities.
3 Building the World’s Premier Research Institution
4 About the Physical Sciences Directorate
6 Associate Laboratory Director
7 Roles and Responsibilities
8 Qualifications and Requirements
9 Community and Culture
10 How to Apply
Big Science. Big Opportunities.

Oak Ridge National Laboratory (ORNL) was created to help win a war and change the world. We have always adapted to meet national needs, developing expertise, tools, and even entirely new fields to solve the most difficult scientific and technical challenges.

- We pioneered nuclear energy, science, and engineering, developing techniques, technologies, and training programs that led to commercialization of nuclear power and creation of the nuclear navy.
- We produce life-saving medical isotopes and operate the National Isotope Development Center for the Department of Energy (DOE).
- We developed neutron diffraction, a scientific technique available to researchers who use two of the world’s most powerful neutron sources at ORNL for studies of materials, medicines, disease progression, and more.
- We create new materials including alloys with billion-dollar impacts on industry and unique properties that enable NASA to explore outer space.
- We build some of the world’s most powerful supercomputers, with three No. 1 systems since 2009 and one of the world’s first exascale systems, Frontier, due in 2021.
- We printed a car (and a house, jeep, boat ...) to study methods for improving the efficiency and productivity of manufacturing processes that give American industry a competitive edge.
- We secure the nation with expertise from across our research portfolio, sending teams worldwide to keep nuclear materials safe, pursuing cybersecurity for the power grid, and more.
- We discovered the sex-determining role of the Y chromosome and make breakthroughs in biology from genes to ecosystems, providing insights benefiting biotechnology, biosecurity, and biofuels.
- We invented radioecology and lead large-scale experiments in the Arctic and other remote locations.

We always ask, “What’s next?” We stand ready for the unexpected. Today, we are applying our expertise in several areas in the global fight against COVID-19, and we are looking to the future.
Building the World’s Premier Research Institution

National labs are distinguished by their ability to assemble large teams of experts from a variety of scientific and technical disciplines to tackle compelling national problems. They also design, build, and operate powerful scientific facilities that are available to the international research community.

From the start, ORNL has applied scientific discoveries and new technologies to address pressing challenges in the areas of clean energy and global security and to create economic opportunity for the nation. Today, Oak Ridge is the most diverse of the Department of Energy’s 17 national laboratories, providing leadership in energy research and technology, advanced materials, nuclear science and engineering, neutron science, isotope production, national security, environmental and biological sciences, and high-performance computing.

Resources like these enable the U.S. to compete in what former ORNL Director Alvin Weinberg called the arena of “Big Science” and they empower our researchers to pursue knowledge that’s fundamental to solving some of our world’s greatest challenges.

- **Advanced Materials**
 We developed a new class of affordable, lightweight superalloys that can withstand temperatures almost 100 degrees Celsius hotter than existing commercial alloys in complex engine parts.

- **Clean Energy**
 Our magnetic coils and power electronics enable the extreme fast charging of electric vehicles—wirelessly. ORNL’s expertise also supports industry and has set standards for energy efficiency.

- **National Security**
 The Mobile Uranium Facility equips ORNL staff members to characterize, process, package, and transport uranium materials anywhere in the world. We are using our scientific capabilities to counter enduring and emerging threats to national security.

- **Neutron Science**
 We use neutrons to directly observe battery behavior in pursuit of safer, more reliable energy storage and extended battery life, to study the behavior of drugs in combating disease, and much more.

- **Nuclear Science**
 A multidisciplinary team is printing a microreactor to help industry address high costs and lengthy deployment timelines that threaten the future of nuclear energy—the nation’s largest carbon-free energy source.

- **Supercomputing**
 Our scientists are cracking the code on opioid addiction using Summit, one of the world’s fastest supercomputers, to perform immense calculations on genomic data. Summit provides unique multi-precision computing capabilities that are ideal for artificial intelligence and machine learning applications.
ENABLING BIG DISCOVERIES THROUGH NANOSCIENCE

The Center for Nanophase Materials Sciences (CNMS) at ORNL provides a national and international user community access to expertise and equipment for a broad range of nanoscience research, including nanomaterials synthesis, nanofabrication, imaging/microscopy/characterization, and theory/modeling/simulation. CNMS acts as gateway for the nanoscience community to benefit from ORNL’s neutron sources and computational resources. CNMS facilities and capabilities are accessible based on peer-reviewed proposals and are offered at no cost to users who intend to publish their results.

About the Physical Sciences Directorate

The Physical Sciences Directorate (PSD) conducts highly integrated basic and applied research programs that develop new materials, chemical processes, and technologies for energy generation and storage and environmentally benign energy use. Our research encompasses foundational science in chemistry, materials science, nanoscience, and physics.

Our scientists work in a collaborative environment to develop composites and alloys to withstand the extreme environments in nuclear and fusion reactors, understand why there is more matter than antimatter in the universe, design new catalysts for clean energy, support the search for new superheavy elements, develop strong lightweight materials for energy-efficient transportation, enable safe high-performance solid-state batteries, advance direct air capture of CO₂, develop self-healing polymers for energy-efficient buildings, and advance new materials for quantum sensing and quantum computing.

Our research and development (R&D) portfolio spans from scientific discovery to technology transfer. It integrates precise synthesis and advanced processing methods with theory, modeling and simulation, and state-of-the-art characterization tools, using ORNL’s signature strengths in high-performance computing, data science, and neutron scattering. PSD is also home to the Center for Nanophase Materials Sciences.
The research portfolio for PSD spans four research divisions to advance key science, technology and engineering capabilities while building a competitive, world-class workforce to meet our future mission needs.

- The **Center for Nanophase Materials Sciences** provides a national and international user community access to expertise and equipment for a broad range of nanoscience research, including nanomaterials synthesis, nanofabrication, imaging/microscopy/characterization, and theory/modeling/simulation.

- The **Chemical Sciences Division** performs discovery and use-inspired research to understand, predict, and control the physical processes and chemical transformations, relevant to energy technologies, over a broad range of length and time scales.

- The **Materials Science and Technology Division** conducts fundamental and applied materials research for basic energy sciences programs and a variety of energy technologies, including energy efficiency, renewable energy, transportation, conservation, fossil energy, fusion energy, nuclear power, and space exploration.

- The **Physics Division** performs outstanding leadership research for the Nation in nuclear science, isotopes, and related areas. Our focus is in the areas of Fundamental Symmetries, Nuclear Structure Physics, Nuclear Astrophysics, Heavy Ion Collisions, and Isotope R&D and Production.

AT A GLANCE

- 438 scientists and engineers
- $243 million R&D budget
- 42 core research groups
- 4 Governor’s Chairs
- 802 journal articles and conference papers in 2019
- 44 patents issued in 2019
- 1 Office of Science Nanoscale Science Research Center user facility
- 653 unique users in 2019
The Associate Laboratory Director (ALD) for Physical Sciences serves as an executive member supporting the Laboratory Director in accomplishing Oak Ridge National Laboratory’s mission. In this capacity, the ALD leads the science and technology programs in physical sciences with responsibilities in three integrating roles to (1) establish a compelling future vision complemented with a strategic execution plan, (2) strengthen stakeholder engagement and relationship management with major sponsors, and (3) drive staff professional growth and development while creating organizational momentum that enhances our facilities and capabilities.

Emphasis is placed on combining experimental, theoretical, and computational approaches for basic energy sciences programs and applications for technologies, including in materials and chemistry, energy efficiency, renewable energy, transportation, fossil energy, fusion energy, and nuclear energy. You will also oversee research in nuclear physics, including low energy physics, relativistic heavy ions, theory, and fundamental symmetries of matter.

Distinguished scientific leadership is expected to build and integrate a focused research and development program portfolio for the Center for Nanophase Materials Sciences, a Department of Energy, Office of Science Nanoscale Science Research Center.

Strategic thinking and leadership will be critical for implementing management systems, operations, safety, security, compliance, and performance assessments across the entire directorate, and serving on the Laboratory Leadership Team.
Roles and Responsibilities

- Enhance world-leading scientific research programs in materials sciences, chemical sciences, nanosciences, and nuclear physics, as well as deliver high impact science with notable achievements.
- Strengthen science-to-energy integration at ORNL in areas relevant to materials and chemical processes, including leading quantum materials, nanomaterials, polymers and composites, structural materials, separations, catalysis, and geochemistry, among others.
- Manage DOE Basic Energy Sciences and Nuclear Physics programs with distinction by ensuring high impact publications and successful reviews in all program areas, including effective oversight of the management and operations of two Energy Frontier Research Centers, and effective management of Nuclear Physics scientific projects.
- Ensure growth of world-leading nanoscience research capabilities and a vibrant user program at the CNMS.
- Provide leadership in the integration of materials and chemical sciences capabilities across ORNL to promote laboratory-wide growth, including energy sciences and technology, life and environmental sciences, computational sciences, neutron sciences, and national security.
- Provide leadership for the R&D Work Control Management System.
- Implement management systems, operations, safety, compliance, and performance assessments across the entire directorate, and serve on the Laboratory Leadership Team.
- Integrate and implement commercialization activities through the directorate’s business plan and strategies.
- Work with the Laboratory Director and Leadership Team to identify and implement strategic research opportunities, including LDRD (Laboratory Directed Research and Development) priorities.
- Manage programmatic funds and discretionary investments for research and program development, and act as a steward for laboratory operations, facilities, capital, and equipment.
- Maintain compliance with Laboratory policies, standards, and procedures as documented in the Standards-Based Management System and implement operational standards to meet the expectations of the Laboratory Agenda.
- Develop and manage self-assessment programs, ensuring alignment with the Laboratory Critical Outcomes, the Laboratory Agenda, and other internal or DOE performance metrics.
- Act as the primary directorate contact and represent the directorate on lab-level committees, task forces, and working groups with a shared responsibility for the overall lab-wide science and technology strategy.
- Identify staffing and other resource requirements and support recruiting initiatives in diversity, fellowships, and university relations.
- Foster initiatives for employee development through mentoring, performance, and succession planning.
Qualifications

• PhD in a technical field related to the research conducted in a large division or directorate, with 3–10 years of demonstrated executive management experience, including developing and leading large, complex, and multidisciplinary research programs and organizations.

• An internationally recognized research stature in one of the disciplines within Physical Sciences Directorate, and experience in managing large multidisciplinary science programs.

• Experience communicating with key stakeholders, clients, program sponsors, and internal staff; and recognition as a leading expert and visionary.

• Demonstrated experience in successfully developing, implementing, and executing scientific strategy with engagement from critical stakeholders.

• Experience with the DOE Office of Science is preferred, especially Basic Energy Sciences or Nuclear Physics.

Requirements

This position requires the ability to obtain and maintain a security clearance from the Department of Energy. This position therefore is designated for Workplace Substance Abuse Program (WSAP) testing. WSAP positions require passing a pre-placement drug test and participation in an ongoing random drug testing program.

We’re seeking passionate leaders who will help us become the world’s premier research institution.
Community and Culture

The strong partnership between DOE and ORNL contractor UT-Battelle, LLC, has created a national resource that draws outstanding researchers in a wide range of disciplines to world-class facilities where they tackle fundamental scientific challenges, couple discoveries with applied research, and work with industry to translate results into commercial applications. The work of the laboratory is being performed safely and efficiently in a modern campus setting. Throughout the region, ORNL is regarded as a high-value asset for innovation, education, and economic development.

Discover East Tennessee

East Tennessee offers a variety of resources and experiences ranging from mountains, rivers, lakes, and a full menu of outdoor adventures to championship college teams and minor-league baseball to the arts and culture of Knoxville, including the internationally recognized Big Ears Festival. The city is recognized as one of the country’s best places to live, in part thanks to its Urban Wilderness system linking residential and commercial areas with the great outdoors. ORNL is within a day’s drive of 50 percent of the nation’s population and all of the East Coast’s major cities.

Our Workforce

ORNL is a great place to chart your own research course, work with like-minded colleagues, and build an extraordinary career. With more than 5,400 employees representing more than 60 countries, we assemble teams of experts from diverse backgrounds, equip them with powerful instruments and research facilities, and address compelling national problems.

In addition, ORNL offers professional development training at no cost to employees, provides professional networking opportunities, and sponsors employee resource groups that support diversity and inclusion efforts across the lab.

Diversity and Inclusion

ORNL’s ability to build and sustain a highly skilled workforce in a rapidly changing competitive environment for talent is greatly influenced by our ability to plan and forecast workforce needs and promote diversity. Maintaining an inclusive environment is a business imperative that focuses on people in all areas of the laboratory and on maximizing the unique talents of individuals, teams, and business partners to pursue world-leading scientific impact.
We Welcome Your Application

Our challenge now is to sustain our leadership and build on our success. Thank you for your interest in ORNL and how we are helping to address some of the big science challenges facing our nation and the world.

Apply Today

Apply at jobs.ornl.gov

Equal Employment Opportunity

ORNL is an equal opportunity employer committed to a diverse and inclusive workplace that fosters collaborative scientific discovery and innovation. All qualified applicants, including individuals with disabilities and protected veterans, are encouraged to apply.
CONTACT

Gary Worrell
Director, Talent Acquisition
worrellgs@ornl.gov
1 Bethel Valley Road
Oak Ridge, TN 37831
jobs.ornl.gov

Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy.