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Abstracts 

Subtle quantum physics probed by STM: Examples and Lessons 
Mikhail Katsnelson 

 
Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands 
I will discuss some examples of efficient interaction between theory and 
experiment in scanning probe microscopy. The first is on the discovery of “orbital 
Kondo resonance” on Cr(001) surface [1]; the related theoretical work is still 
continuing [2,3]. A very general and nontrivial issue on the role of essentially many-
body physics in STM is clearly manifested in this case. 
The second one is a direct observation of Berry phase in graphene by STM [4] 
following the theoretical prediction [5]. This is a nice opportunity to discuss 
topological effects observable by scanning probe microscopy.  
The third one is a discovery of self-induced spin-glass state in elemental Nd via 
spin-polarized STM [6] following theoretical predictions of this new magnetic state 
of matter [7]. This illustrates the role of STM in studying general issues of statistical 
physics and in particular the origin of complexity.   
 
[1] O. Yu. Kolesnichenko et al, Nature 415, 507 (2002); Phys. Rev. B 72, 085456 
(2005).  
[2] L. Peters et al, Phys. Rev. B 96, 245137 (2017). 
[3] L. Peters, A. N. Rudenko, and M. I. Katsnelson, Phys. Rev. B 97, 165438 (2018). 
[4] C. Dutreix et al, Nature 574, 219 (2019).  
[5] C. Dutreix and M. I. Katsnelson, Phys. Rev. B 93, 035413 (2016). 
[6] U. Kamber et al, Science 368, eaay6757 (2020).  
[7] A. Principi and M. I. Katsnelson, Phys. Rev. Lett. 117, 137201 (2016); Phys. Rev. 
B 93, 054410 (2016).   
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Generative Models and Symmetries 
 

Invited Talk - Danilo Rezende – Google 
 
Abstract:  
The study of symmetries in physics has revolutionised our understanding of the 
world. Inspired by this, I will focus on our recent work on equivariant generative 
models and its applications to fundamental physics and molecular dynamics 
simulations. 
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Towards Autonomous Experimentation for Nanomechanics with Scanning Probes 
 

Keith A. Brown 
 
Department of Mechanical Engineering, Boston University, Boston, MA 
 
Nature realizes extraordinary material properties through the hierarchical 
organization of polymers from the molecular scale to the macroscopic scale. 
However, designing polymers for desired nanomechanical performance is a grand 
challenge as not only are these experiments challenging to perform, but there are an 
overwhelming number of potential materials and processing conditions to consider. 
In this talk, we describe our recent progress addressing this challenge by 
transforming scanning probes into autonomous experimentation (AE) systems that 
accelerate the pace and value of experiments. 
First, we discuss our efforts to use scanning probes to understand size effects in 
nanoscale polymers through an approach that combines finite element analysis and 
nanoindentation. We find that elastomeric thin films are stiffer than bulk samples in 
a manner consistent with enhanced crosslinking at the surface. Subsequently, in an 
effort to accelerate the rate at which novel materials can be studied, we describe our 
recent realization of a closed-loop process for using scanning probes to pattern fluids 
and polymers at the sub-femtoliter scale. The ability of scanning probes to both 
pattern and characterize polymers could enable materials research on the 
nanometer scale using a single instrument. To explore the degree to which such a 
system could accelerate research, we discuss AE systems, or automated platforms in 
which experiments are iteratively chosen by machine learning to maximize progress 
towards a chosen goal. To test the merits of AE, and study the mechanics of 
macroscopically structured polymers, we present an AE system that combines 
additive manufacturing, robotics, and mechanical characterization to rapidly print, 
test, and study mechanical structures. In addition to developing an understanding of 
the non-linear mechanics of a family of mechanical structures, we also use these 
studies to determine how simulation can be incorporated into AE to provide a 
transferable path to optimizing non-linear mechanical properties. AE systems that 
span additive manufacturing, machine learning, and advanced characterization have 
the potential for transformatively advancing the pace of research to meet the 
challenge of designing and understanding hierarchical materials.   
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Quantitative Digital Microscopy with Deep Learning 
 

 
Video microscopy has a long history of providing insights and breakthroughs for a 
broad range of disciplines, from physics to biology. Image analysis to extract 
quantitative information from video microscopy data has traditionally relied on 
algorithmic approaches, which are often difficult to implement, time consuming, and 
computationally expensive. Recently, alternative data-driven approaches using deep 
learning have greatly improved quantitative digital microscopy, potentially offering 
automatized, accurate, and fast image analysis. However, the combination of deep 
learning and video microscopy remains underutilized primarily due to the steep 
learning curve involved in developing custom deep-learning solutions. To overcome 
this issue, we introduce a software, DeepTrack 2.0, to design, train and validate deep-
learning solutions for digital microscopy. We use it to exemplify how deep learning 
can be employed for a broad range of applications, from particle localization, 
tracking and characterization to cell counting and classification. Thanks to its user-
friendly graphical interface, DeepTrack 2.0 can be easily customized for user-specific 
applications, and, thanks to its open-source object-oriented programming, it can be 
easily expanded to add features and functionalities, potentially introducing deep-
learning-enhanced video microscopy to a far wider audience. 
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Dynamical systems and machine learning: combining in a principled way data-
driven models and domain-driven models 

 
Michael W. Mahoney 

ICSI and Department of Statistics, UC Berkeley 
 
Data-driven machine learning (ML) models tend to be relatively domain-agnostic and 
thus are widely-applicable across many domains.  A fundamental challenge in 
scientific machine learning (SciML) involves combining such data-driven models with 
fine-scale domain-driven scientific models that make strong use of domain-specific 
insight and that are common in physics and other natural sciences.  Among other 
things, a domain-informed model formulation should encode some degree of 
stability or robustness or well-conditioning (in that a small change of the input will 
not lead to drastic changes in the output), characteristic of the underlying scientific 
problem.  Here, we describe recent work on using techniques from dynamical 
systems theory to combine these two types of models in a principled way.  We'll 
describe how to develop physics-informed autoencoders using Lyapunov stability, 
leading to novel domain-driven regularization and to models that improve the 
generalization error and reduce prediction uncertainty for fluid flow problems.  We'll 
also describe ContinuousNet, a variant of the popular residual neural network 
(ResNet) model that is meaningfully continuous-in-depth.  By embedding discrete 
neural network models into higher-order numerical integration schemes, e.g., Runge 
Kutta schemes, ContinuousNet can learn to represent continuous dynamical systems 
(which ResNets and other nominally-continuous models cannot); and, by exploiting 
ideas from numerical integration theory, ContinuousNet have improved robustness 
properties as well as improved training and inference properties on standard (non-
scientific) ML tasks and initial SciML tasks.  These results point to directions for SciML 
more generally. 
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Tutorial – Pycroscopy: SPM in the Cloud 
 

Rama Vasudevan  
 
Collecting, storing, processing, analyzing and visualizing microscopy data is a 
standard workflow for most scientists in microscopy; yet the choices available at each 
step, and the lack of coherence and standardization in this process leads to sub-
optimal workflows with low efficiency, high redundancy and poor reproducibility.  
 
Here, in this tutorial, we will discuss our solution: the pycroscopy ecosystem of 
packages, starting out with the base input/output tools with standardized data 
models for imaging and spectral data, and discuss how microscopy data can be read 
into these formats through the SciFiReaders package. Once read into sidpy dataset 
objects, this allows users full access to the visualization and processing capabilities 
of the sidpy package, which is itself built on top of dask arrays. Further processing is 
also possible with more domain-specific packages, including AtomAI and pyTEMLib 
and STEMTools, which users are encouraged to visit. Data can then be saved via the 
pyNSID package for completeness. 
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Digital Chemistry and Chemputation   
  
Leroy (Lee) Cronin, Center for Digital Chemistry, School of Chemistry, The University 

of Glasgow, Glasgow, UK. Email: 
Lee.Cronin@Glasgow.ac.uk; www.croninlab.com; 

  
Today it is possible to design and synthesize many of the physically allowed 
molecules and materials conceivable if practical, yet paradoxically it is not possible 
to reproduce or rerun these successful procedures with high reliability. This is 
because many of the conditions devised for the manual or semi-manual synthesis 
are not uniformly recorded. The situation is even worse when the literature is 
investigated. For example, our preliminary studies reveal that >80% of all the 
published procedures fail to replicate without the help of an expert.    
  
In this talk I will outline how we have solved this problem by devising a universal 
approach to chemical synthesis that allows us to translate all procedures, manual 
or automatic, to a new interchange format, XDL, that allows chemistry to be 
universally communicated. Furthermore, this new approach maps into a universal 
programming language for chemistry that is accessible to ALL synthetic chemists 
and will work on ALL robotic systems (subject to suitable specification).  We 
demonstrate that the process is universal, and by analogy with computation, we 
call systems capable of universally turning code into reliable chemistry and 
materials processes Chemputation, see Figure.  
  

  
Figure: Depiction of a chemical state machine (CSM) for synthesis that is capable of 
Chemputation. The input is a combination of reagents, process information and 
hardware addresses. The CSM organizes the reagents and the processes by using a 
scheduler that then gets executed in the hardware as a function of the available 
state until the product is formed.  
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I will also explain why our Chemical Synthesis Machine is really a Chemical State* 
Machine (CSM) and why you should care. This because our CSM can be used with AI 
and machine learning to search for new reactivity, reactions, materials, and 
molecules – that once discovered, can be reproduced using the CSM. This allows us 
to build the ultimate system that can both reproduce, search, discover, and update 
chemical knowledge autonomously in real time. I will show this working with real 
world examples from energy materials to small molecule drug candidates.  
References  
J. Granda, L. Donina, V. Dragone, D. –L. Long, L. Cronin 'Controlling an organic 
synthesis robot with machine learning to search for new reactivity', Nature, 2018, 
559, 377-381.   
P. Kitson, G. Marie, J. –P. Francoia, S. Zalesskiy, R. Sigerson, J. S. Mathieson, L. Cronin 
'Digitization of multistep organic synthesis in reactionware for on-demand 
pharmaceuticals', Science, 2018, 359, 314-319.   
S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. Granda, G. Keenan, T. Hinkley, G. Aragon-
Camarasa, P. J. Kitson, D. Angelone, L. Cronin 'Organic synthesis in a modular 
robotic system driven by a chemical programming language', Science, 2019, 363,  
144-152  
P. S. Gromski, A. Henson, J. Granda, L. Cronin 'How to explore chemical space using 
algorithms and automation', Nat Rev Chem., 2019, 3, 119-128.  
S. Hessam M. Mehr, M. Craven, A. Leonov, G. Keenan, L. Cronin 'A universal system 
for digitization and automatic execution of the chemical synthesis literature', 
Science, 2020, 370, 101-108.  
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Time-Frequency Analysis and Multimodal Imaging of Energy Materials Using 
Scanning Probe Microscopy 

 
Rajiv Giridharagopal 

 
Department of Chemistry, University of Washington 

 
rgiri@uw.edu 

 
The combination of functional scanning probe microscopy with data science 
techniques has led to new discoveries on a wide range of materials. In this 
presentation I will discuss our work using data-driven scanning probe methods and 
analysis techniques as applied to functional imaging of energy materials. These 
projects include multimodal correlations of optical and SPM data as well as 
measurements of sub-microsecond dynamics using time-resolved electrostatic 
force microscopy (trEFM) on halide perovskite photovoltaics. I will discuss how we 
use newer advances in time-frequency analysis, thereby demonstrating some of the 
advantages of employing ideas from the broader signal processing literature in 
SPM techniques. Lastly, I will show how we can utilize neural networks to analyze 
instantaneous frequency behavior in AFM. Together, these projects represent 
different methods for analyzing SPM data in new ways. 
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Machine Learning for Sparse Nonlinear Modeling and Control 
 

Steven Brunton – University of Washington 
 
Abstract:  This work describes how machine learning may be used to develop 
accurate and efficient nonlinear dynamical systems models for complex natural and 
engineered systems.  We explore the sparse identification of nonlinear dynamics 
(SINDy) algorithm, which identifies a minimal dynamical system model that balances 
model complexity with accuracy, avoiding overfitting.  This approach tends to 
promote models that are interpretable and generalizable, capturing the essential 
“physics” of the system.  We also discuss the importance of learning effective 
coordinate systems in which the dynamics may be expected to be sparse.  This 
sparse modeling approach will be demonstrated on a range of challenging modeling 
problems in fluid dynamics, and we will discuss how to incorporate these models into 
existing model-based control efforts.   
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Enabling autonomous scanning probe microscopy imaging of single molecules 
with deep learning 

 
Juan F. Gonzalez-Martinez 

Department of Biomedical Science, Faculty of Health and Society, 
Malmö University,20506 Malmö, Sweden 

 
Abstract 
Scanning probe microscopies allow characterizing surfaces with high resolution in 
real space. However, these microscopies are not widely used considering their 
potential. The need of experienced users, the interpretation of data and the time-
consuming experiments that require continuous user supervision are among the 
limitations that prevent a wider use. In this presentation, I will go through some 
previous works on AFM automation, with a focus on those using Machine Learning 
techniques. I will then present an algorithm that we recently developed for 
controlling the operation of an Atomic Force Microscope for the specific purpose of 
acquiring high-resolution images of single molecules. The algorithm made use of two 
deep learning techniques. One of them was an object detector, YOLOv3, whose 
function is to locate the molecules in the acquired images. The other one was a 
Siamese network, capable of identifying whether the molecules detected by the 
object detector in different scans corresponded to the same molecule. This allowed 
e.g., zooming on the same molecule while decreasing the scanned area, as well as 
keeping track of molecules already imaged at high resolution, thus, avoiding loops 
where the same molecule would be imaged an unlimited number of times.  
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Random and sparse mixed-scale convolutional neural networks with pyMSDtorch 
 
 

Eric Roberts, Peter Zwart 
Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence 

Berkeley National Laboratory 
 
 
Abstract: We introduce a new python software library, pyMSDtorch, which provides easy 
access to a number of segmentation and denoising methods using convolution neural 
networks in PyTorch. PyMSDtorch focuses on two network paradigms, both of which surpass 
popular U-Net architectures when labeled training data is low, namely: 
 
 
1) mixed-scale dense network (MSDNet), a relatively simple architecture which relies on 
dense interconnectivity of all intermediate feature maps and dilated convolutions to capture 
features at different scales, and  
 
 
2)  sparsely-connected mixed-scale networks, a lean, lower-parameter MSDNet variant based 
on stochastically-generated graph networks with user-configurable complexity. 
 
 
With microscopy and synchrotron-imaging/scattering data in mind, this talk will present the 
motivation and results for both dense and sparse networks paradigms, including 
comparisons with established U-Nets and aggregations of multiple lower-parameter sparse 
networks. Overall, this talk aims to showcase the ease-of-use and flexibility of the 
pyMSDtorch library. 
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Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via 
Scanning Dielectric Force Volume Microscopy and Machine Learning 

 
Martí Checa1,4, Ruben Millan-Solsona1,2, Adrianna Glinkowska3 Mares, Silvia 
Pujals2,3, Gabriel Gomila1,2 
Nanoscale Bioelectrical Characterization Group 
Institute for Bioengineering of Catalonia (IBEC) 
The Barcelona Institute of Science and Technology (BIST) 
Carrer Baldiri i Reixac ��-��, Barcelona �����, Spain 
Nanoscale Bioelectrical Characterization Group 
Institute for Bioengineering of Catalonia (IBEC) 
The Barcelona Institute of Science and Technology (BIST) 
Carrer Baldiri i Reixac ��-��, Barcelona �����, Spain 
1Nanoscale Bioelectrical Characterization Group (IBEC), The Barcelona Institute of 
Science and Technology (BIST), Carrer Baldiri I Reixac 11-15, Barcelona, Spain. 
2Departament d’Enginyeria Electronica i Biomedica, Carrer Marti i Franques 1, 
Barcelona, Spain. 
3Nanoscopy for Nanomedicine Group (IBEC), The Barcelona Institute of Science and 
Technology (BIST), Carrer Baldiri I Reixac 11-15, Barcelona, Spain. 
4 Currently at: Center for Nanophase Materials Sciences, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee 37831, United States. 
checam@ornl.gov 
 
Mapping the biochemical composition of eukaryotic cells without the use of 
exogenous labels is a long-sought objective in cell biology. Recently, it has been 
shown that composition maps on dry single bacterial cells with nanoscale spatial 
resolution can be inferred from quantitative nanoscale dielectric constant maps 
obtained with the scanning dielectric microscope [1]. In this presentation, I will show 
that this approach can also be applied to the much more challenging case of fixed 
and dry eukaryotic cells [2], which are highly heterogeneous and show micrometric 
topographic variations. More importantly, it is demonstrated that the main 
bottleneck of the technique (the long computation times required to extract the 
nanoscale dielectric constant maps) can be shortcut by using supervised neural 
networks, decreasing them from weeks to seconds in a workstation computer. This 
easy-to-use data-driven approach opens the door for in situ and on-the-fly label free 
nanoscale composition mapping of eukaryotic cells with scanning dielectric 
microscopy. 
 
[1] M Checa, R Millan-Solsona, N Blanco, E Torrents, R Fabregas, G Gomila. Mapping 
the dielectric constant of a single bacterial cell at the nanoscale with scanning dielectric 
force volume microscopy. Nanoscale (2019). 
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[2] M Checa, R Millan-Solsona, AG Mares, S Pujals, G Gomila. Fast Label-Free 
Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force 
Volume Microscopy and Machine Learning. Small Methods (2021) 
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Tutorial – Variational Autoencoders: applications and physical invariances 
 
We will explore how variational autoencoders can be used for finding main factors 
of variation from high-dimensional datasets and show how the addition of rotational, 
translational, and scale invariances to variational autoencoders allows for better 
disentanglement of these (latent) factors. 
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Tutorial – Mapping structure-property relationships with the encoder-decoder 
architectures 

 
We will explore how to use neural networks with the encoder-decoder type of 
architecture for predicting property (spectra) from structure (images) and for getting 
insights into the structure-property relationship via the analysis of the model's latent 
space. 
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Rapid Unsupervised Fitting using Physics Constrained Neural Network 
Approximates 

 
Scientific experiments can generate tremendous volumes of scientific data. 
Conventionally, this data has been processed by fitting data to empirical expressions. 
This imposes challenges for high-throughput applications, noisy data, and 
automated control systems. Neural networks have been used a data driven 
surrogates to extract information from scientific data. Most of these approaches lack 
physical constraints making it difficult to interpret the results. Furthermore, because 
of the underlying mathematics these models lack parsimony. In this tutorial we 
combine neural network approximates constrained with empirical expressions to 
conduct rapid fitting of spectroscopic data. This general approach can be applied to 
real-time fitting of spectroscopic data broadly.    
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Machine Learning for Microscopy: from Imaging to Autonomous Experiments 
  

Sergei V. Kalinin 
 

The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak 
Ridge, TN 37831 

  
Machine learning and artificial intelligence (ML/AI) are rapidly becoming an 
indispensable part of physics research, with domain applications ranging from 
theory and materials prediction to high-throughput data analysis. However, the 
constantly emerging question is how to match the shallow correlative nature of 
classical ML with deep hypothesis-driven causal nature of physical sciences. In 
parallel, the recent successes in applying ML/AI methods for autonomous systems 
from robotics through self-driving cars to organic and inorganic synthesis are 
generating enthusiasm for the potential of these techniques to enable automated 
and autonomous experiment (AE) in imaging. 
            In this presentation, I will discuss recent progress in automated experiment in 
electron and scanning probe microscopy, ranging from feature to physics discovery 
via active learning. The applications of classical deep learning methods in streaming 
image analysis are strongly affected by the out of distribution drift effects, and the 
approaches to minimize though are discussed. We further present invariant 
variational autoencoders as a method to disentangle affine distortions and rotational 
degrees of freedom from other latent variables in imaging and spectral data. The 
analysis of the latent space of autoencoders further allows establishing physically 
relevant transformation mechanisms. Extension of encoder approach towards 
establishing structure-property relationships will be illustrated on the example of 
plasmonic structures. I will briefly discuss the transition from correlative ML to 
physics discovery, incorporating prior knowledge and yielding generative physical 
models of observed phenomena. Finally, I illustrate transition from post-experiment 
data analysis to active learning process. Here, the strategies based on simple 
Gaussian Processes often tend to produce sub-optimal results due to the lack of prior 
knowledge and very simplified (via learned kernel function) representation of spatial 
complexity of the system. Comparatively, deep kernel learning (DKL) methods allow 
to realize both the exploration of complex systems towards the discovery of 
structure-property relationship, and enable automated experiment targeting physics 
(rather than simple spatial feature) discovery. The latter is illustrated via 
experimental discovery of the edge plasmons in STEM/EELS in MnPS3, the lesser-
known 2D material, and hysteresis loop measurements in PFM. 
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Reinforcement learning: Improving behavior through evaluative feedback 
 

Michael Littman – Brown University 
 
The field of reinforcement learning is experiencing a bit of a renaissance. In this talk, 
I will survey some of the background and foundations of this subarea and its relation 
to other forms of machine learning. I will also describe some recent high-profile 
successes of reinforcement-learning techniques including smart thermostats, 
automatic content filtering, and mastery of games via self play ranging from 80s-era 
video games to the ancient board game Go. Time permitting, I will also plug some of 
my own research in the area. 
 
Michael L. Littman's research in machine learning examines algorithms for decision 
making under uncertainty.  He has earned multiple awards for teaching and his 
research has been recognized with three best-paper awards and two influential 
paper awards.  Littman has served on the editorial boards for the Journal of 
Machine Learning Research and the Journal of Artificial Intelligence Research.  He 
was general chair of International Conference on Machine Learning 2013 
and program chair of the Association for the Advancement of Artificial Intelligence 
(AAAI) Conference 2013. He is also a AAAI Fellow and an ACM Fellow. 
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“Intelligent” and Practical Machine Learning in Scanning Probe Microscopy 
  

Joshua C. Agar 
 

Lehigh University, Bethlehem PA, 18015 
E-mail: Jca318@lehigh.edu 

  
Machine learning has become an essential analysis tool in materials science. Open-
source packages (e.g., TensorFlow and PyTorch) have democratized state-of-the-art 
machine learning methods making them easy to adapt to materials science 
problems. This accessibility, however, is a double-edged sword. The easiness to 
deploy these powerful and adaptive models can give the perception of success, even 
passing conventional validation and benchmarks, without genuinely achieving a 
robust and physically meaningful understanding of the problem. Here, we discuss 
three exemplars in materials science where traditional machine learning provides 
unsatisfactory results. We demonstrate intelligent corrections that enable these 
methods to achieve practical value in accelerating scientific discovery. First, we 
discuss ways to extract similarity projections from a collection of >25,000 images. We 
show that through symmetry-aware featurization and recursive interactive 
projections that we can discover essential correlations in unstructured materials 
microscopy. Second, we demonstrate the ability of convolutional neural networks 
(CNNs) to give a false perception of learning 2D-wallpaper group symmetry on a 
dataset of more than 2 million images. We demonstrate how custom kernels can 
improve robustness enabling learning a general concept of 2D-wallpaper group 
symmetry. Finally, we show how to create ultra-compact unsupervised neural 
networks for real-time physics-constrained fitting of band-excitation piezoresponse 
force microscopy to simple-harmonic oscillator models. Our method enables fitting 
at >5000 fits/second on a single GPU-accelerated workstation. This provides real-time 
insight to guide subsequent scientific experimentations. We will conclude with a 
perspective on emerging opportunities for fast (sub-ms) machine learning 
approximates for materials characterization and control on the edge. 
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Automated experimentation in piezoresponse force microscopy  
 

Kyle P. Kelley,1 Maxim Ziatdinov,1 Rama K. Vasudevan,1 and Sergei V. Kalinin1 
 

1 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak 
Ridge, TN 37831 

 
Domain structures and topological defects in ferroelectric materials underpin a 
broad range of applications ranging from materials with giant electromechanical 
responses to domain wall electronics and logic devices. Correspondingly, exploring 
the functionalities of domain walls and controlled modifications of the domain 
structures is of interest for a broad spectrum of applications. However, the dynamic 
nature of these objects severely constrains the experimental approaches to explore 
their functionality. Here, we introduce fundamentally new approaches for the control 
and modification of domain structures within an automated piezoresponse force 
microscopy framework. First, we utilize real space image-based feedback to control 
the atomic force microscope tip bias during ferroelectric switching allowing for 
modification routes triggered by domain states under the tip. Specifically, by applying 
voltage pulses at domain walls in PbTiO3 thin films in an automated fashion, we are 
able to create metastable phases with enhanced electromechanical response and 
explore domain wall dynamics. Additionally, we are able to separate reversible and 
irreversible domain wall motion providing fundamental insight into domain wall 
propagation. Secondly, we deploy a computer-vision based algorithm to identify 
locations of interest and track domain wall motion under an applied electric field. 
These studies highlight a new pathway toward discovery and control of metastable 
states in ferroelectrics, and more generally paves way for automated systems for 
controlled modification of domain walls and defects to improve material properties. 
 
  



26 

Hystorian: A Processing Tool for Scanning Probe Microscopy and Other n-
Dimensional Datasets  

R. Bulanadi1*, L. Musy1, I. Gaponenko1, P. Paruch1 
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Research in materials science relies increasingly on the correlation of information in 
ever larger datasets.  With this data processing becoming an increasingly important 
and unavoidable aspect of scientific work, modern researchers are faced with various 
challenges. The acquired data must first be extracted from  (usually) proprietary data 
formats and transformed into a shape more suitable for further analysis — whereby 
useful physical metadata, such as the physical scale of an image, may be lost. Analysis 
is further complicated by the use of datasets from disparate sources, especially when 
quantitative comparison is required, as is increasingly becoming the norm in large 
scale collaborations between groups with  complementary areas of expertise. This 
all leads to a need for processing tools that can operate on these  distinct datasets, 
while also ensuring that both raw and processed data is stored, accessible, and 
verifiable.  
A cross-platform Python library, Hystorian, has been developed to seamlessly load, 
merge, and operate on  arbitrarily-sourced datasets [1], with a focus towards 
improving the traceability, reproducibility, and  archival ability of scientific data 
processing. This is performed by converting proprietary data formats into  open 
hierarchal data format (HDF5) files, with both datasets and the outputs of 
subsequent workflows  automatically stored in a single location to allow easy 
management of the multiple data types. Wrapper  functions also allow existing 
processing functions to apply over both raw datasets and subsequent 
process  outputs, as well as additional metadata that is produced during data 
collection. Hystorian also contains  
various in-built functions to streamline particularly materials-science data 
processing, including drift  correction within series of (scanning probe) microscopy 
images, or binarization of piezoresponse force  microscopy phase channels to 
identify the local polarization.  
This presentation will begin by discussing the structure of the HDF5 files created by 
Hystorian, focusing on  the benefits and ease of use brought by the file conversion 
process and use of wrapper functions. We then  illustrate some distinct, practical 
applications of Hystorian: the integration and correlation of  piezoresponse force 
microscopy images with second harmonic data in ferroelectric thin films to 
highlight  the non-Ising, chiral behavior of ferroelectric domain walls; the 
identification and tracking of 180° domain  walls in a sample cross-hatched with 90° 
domain walls; the interpolated positions of iced regions on a  sample surface in 
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humid environments; and the application of unsupervised machine learning 
algorithms  to elucidate hidden characteristics of ferroelectric domain walls.  
[1] Musy, L., Bulanadi, R., et al. "Hystorian: A processing tool for scanning probe 
microscopy and other n dimensional datasets." Ultramicroscopy 228 (2021): 113345. 
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We report the application of novel laser processing techniques such as picosecond 
(PS) laser micromachining and CO2 laser ultra–fast sintering of direct ink written 
(DIW) alumina paste, and a machine learning approach to predict the microstructure 
of the laser-sintered alumina. The bulk ceramic green body of complex geometries 
was fabricated using the DIW method. Using CO2 laser irradiation, we found that the 
extruded alumina powder can be sintered close to full density within a few tens of 
seconds. Since the microstructure of laser-sintered alumina is significantly different 
from the furnace-sintered ones, to predict alumina’s microstructure under laser 
sintering, we developed an elegant machine learning (ML) algorithm to predict the 
microstructure under arbitrary laser power. We name this algorithm, regression-
based conditional generative adversarial networks (GANs) with Wasserstein loss 
function and gradient penalty (RCWGAN-GP). After training, the RCWGAN-GP 
realistically regenerates the SEM micrographs under the trained laser powers, in 
terms of the grain size, porosity and microstructure morphologies. It also accurately 
predicts the alumina’s microstructure under unexplored laser power. We further 
establish a ML-based monitoring method allowing in situ monitoring of 
microstructure during laser sintering of ceramics. We used a camera to record the 
brightness of the laser spot. After training using the laser spot brightness and 
corresponding SEM micrographs, the RCWGAN-GP can accurately predict the 
microstructure from the laser spot brightness. Due to the fast result-generation rate 
of the ML model, we are able to integrate the ML model to the laser-based 
manufacturing platform for the in-situ monitoring of microstructure.   
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Tutorial – Gaussian Processes and Bayesian Optimization 
 

Rama Vasudevan 
 
In this tutorial, we will explore the concept of Gaussian Process Modeling as a 
nonparametric Bayesian machine learning method that is useful in a host of tasks 
where we need flexible function approximation along with uncertainty 
quantification. We will observe how different kernels and different kernel 
hyperparameters affect the functions drawn from the process, and then utilize our 
knowledge to perform simple regression on some textbook examples.  
 
Next, we will introduce the concept of Bayesian Optimization that will show how 
model predictions with uncertainty can be leveraged to determine the next point to 
sample, via incorporation of suitable acquisition functions.  
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Abstract 
Optimization of materials performance for specific applications often requires 
balancing multiple aspects of materials functionality. Even for the cases where 
generative physical model of material behavior is known and reliable, this often 
requires search over multidimensional function space to identify low-dimensional 
manifold corresponding to required Pareto front. In this workshop, we introduce the 
multi-objective Bayesian Optimization (MOBO) workflow for the ferroelectric/anti-
ferroelectric performance optimization for memory and energy storage applications 
based on the numerical solution of the Ginzburg-Landau equation with 
electrochemical or semiconducting boundary conditions. MOBO is a low 
computational cost optimization tool for expensive multi-objective functions, where 
we update posterior surrogate Gaussian process models from prior evaluations, and 
then select future evaluations from maximizing an acquisition function. Using the 
parameters for a prototype bulk antiferroelectric (PbZrO3), we first develop a 
physics-driven decision tree of target functions from the loop structures. Then, a 
physics-driven MOBO architecture is developed to build and explore Pareto-frontiers 
by maximizing multiple target functions jointly - e.g. energy storage and loss. This 
approach allows for rapid initial materials and device parameter selection for a given 
application and can be further expanded towards the active experiment setting. The 
tutorial starts with theoretical concepts on traditional MOBO with illustration to a 
simple benchmark problem, and then extends to notebook walkthrough of the 
physics-driven MOBO architecture and its implementation.  
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Tutorial – Adding Physics into Bayesian Optimization 
 

We will explore a hybrid optimization/exploration algorithm created by augmenting 
the standard GP with a structured probabilistic model of the expected system's 
behavior. This approach balances the flexibility of the non-parametric GP approach 
with a rigid structure of physical knowledge encoded into the parametric model. 
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Variational Autoencoders for Physics Extraction: Latent View of Complex 
Processes 

  
In this talk, I will discuss applications of the invariant variational autoencoders (VAEs) 
to analyze imaging and spectroscopic data with problems 
ranging from discovering chemical reaction pathways from atom-resolved movies 
to disentangling domain wall geometries and switching pathways in ferroelectric 
materials. The connection of the learned latent representations to the system’s 
physical complexity and the fundamental length scale of the relevant physical 
mechanisms will be discussed. Finally, I will discuss applying variational encoder-
decoder models to the analysis of the structure-property relationships in classical 
and quantum systems and the prediction of functional responses from structural 
observations alone, and how these can be utilized for autonomous experimentation. 
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Reinforcement learning for sequential decision tasks: A novel approach for 
microscopy optimization and design? 

 
Matthew Taylor – University of Alberta 

 
Reinforcement learning (RL) is a type of machine learning that has recently gained 
significant visibility. These autonomous agents have learned to beat world-class Go 
champions, play video games by only observing pixels, and optimize real-world 
systems like ride-sharing platforms and wastewater treatment. Because microscopes 
are able to manipulate atoms and molecules, they can likewise be considered an 
agent that could be optimized. This talk will provide a brief introduction to RL and 
suggest how it could be used to 1) learn more efficient manipulation techniques for 
microscopy and 2) allow microscopes to learn to autonomously construct new 
artefacts. 
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Sifting Self-Organisation: Automated Classification of Far-From-Equilibrium 
Nanostructures 

 
Philip Moriarty1 
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Nanoparticle-solvent films deposited on solid substrates are associated with a rich 
dynamic behaviour that gives rise to a wide variety of striking self-organized patterns. 
In the far-from-equilibrium regime (i.e. where solvent evaporation is rapid), a 
remarkably broad array of intricate, spatially correlated patterns form including 
"foam-like" cellular networks, labyrinthine structures similar to those formed in 
spinodal decomposition of binary fluids, and fractal morphologies [1-4]. In many 
ways the system is a playground for self-organisation driven far from equilibrium 
(and, coincidentally, has many parallels with the physics of coffee stains). Its ability to 
generate a panoply of patterns across a wide range of length-scales provides a 
stringent test of the ability of machine learning algorithms to sift and classify self-
organised and self-assembled structures.  
  
We have used a combination of Monte Carlo simulations, traditional statistical 
approaches, and machine learning to automatically distinguish a variety of spatially 
correlated patterns in a broad data set of experimental AFM images of self-organized 
nanoparticle patterns [5]. We do this regardless of feature-scale and without the 
need for manually-labelled training data. I will discuss the efficacy of the machine 
learning approach versus more traditional statistical image analysis techniques. 
Although convolutional neural nets are a powerful tool, we need always be wary of 
Maslow’s aphorism: “If all you have is a hammer, everything looks like a nail.” 
  
[1] E Rabani et al., Nature 2003, 426, 271– 274; TP Bigioni et al., Nature 
Materials 2006, 5, 265. 
[2] MO Blunt et al., Nature Nanotechnology 2007, 2, 167 
[3] CP Martin et al., Phys. Rev. Lett. 2007, 99, 116103; E. Pauliac-Vaujour et 
al., ibid. 2008, 100, 176102 
[4] A. Stannard, J. Phys. Cond. Matt. 2011, 23, 083001 
[5] O. Gordon et al., Nano Lett. 2020, 20, 7688 
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Point defect identification in two-dimensional materials enables an understanding of 
the local environment within a given system, where scanning probe microscopy that 
takes advantage of hyperspectral tunneling bias spectroscopy acquisition can both 
image and identify the atomic and electronic landscape. Transition metal 
dichalcogenides (TMDs) have gained substantial interest for a variety of unique 
properties in its monolayer form such as serving as a host substrate for photo- and 
spin- active functionalization and showing promise in tunable band gap control. Here 
dense spectroscopic volume is collected autonomously via Gaussian process 
regression (gpCAM), where convolutional neural networks are used in tandem for 
defect identification and subsequent feedback. Monolayer semiconductor is 
explored on sulfur vacancies within tungsten disulfide (WS2), to provide the first 
hyperspectral insight into available sulfur-substitution sites within a TMD, combined 
with spectral confirmation on the Auf111g herringbone reconstruction for both tip 
state verification and local fingerprinting, where face-centered cubic (fcc) and 
hexagonal-closed packed (hcp) regions are detected by machine learning methods. 
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Acquired data enable image segmentation across the above mentioned defect 
modes. 
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Characterizing possible failure modes in physics-informed neural networks 
 

Aditi Krishnapriyan – University of California Berkeley 
 
Directly incorporating fundamental physical laws into the machine learning process 
has numerous benefits, including better generalization and more efficient learning. 
As such, recent work in scientific machine learning has developed so-called physics-
informed neural network (PINN) models. The typical approach is to incorporate 
physical domain knowledge as soft constraints on an empirical loss function and use 
existing machine learning methodologies to train the model. Here, we characterize 
different challenges associated with incorporating physical laws into the learning 
process. We demonstrate that, while existing PINN methodologies can learn good 
models for relatively trivial problems, they can easily fail to learn relevant physical 
phenomena even for simple PDEs. In particular, we analyze several distinct situations 
of widespread physical interest, including learning differential equations with 
convection, reaction, and diffusion operators. We provide evidence that the soft 
regularization in PINNs, which involves differential operators, can introduce a 
number of subtle problems. Importantly, we show that these possible failure modes 
are not due to the lack of expressivity in the NN architecture, but that the PINN's 
setup makes the loss landscape very hard to optimize. We then describe two 
promising solutions to address these failure modes. The first approach is to use 
curriculum regularization, where the PINN's loss term starts from a simple PDE 
regularization, and becomes progressively more complex as the NN gets trained. The 
second approach is to pose the problem as a sequence-to-sequence learning task, 
rather than learning to predict the entire space-time at once. We can achieve up to 
1-2 orders of magnitude lower error with these methods as compared to regular 
PINN training. 
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Tutorial – Deep Kernel Learning 
 
We will explore a machine learning framework that actively discovers correlative 
relationships between structural data and functionalities encoded in spectroscopic 
measurements and uses this knowledge to guide the experiment. 
  



39 

Tutorial - Reinforcement Learning 
Rama Vasudevan 

 
In this final tutorial, we will explore the concepts of reinforcement learning (RL) from 
a practical perspective. We will begin with a short discussion of two types of 
algorithms: Q learning, and the actor-critic algorithm, for discrete and continuous 
action tasks, respectively. We will explore how to implement these within Colab 
notebooks for some simple examples within the OpenAI Gym environments. We will 
discuss potential applications of RL within microscopy and the steps needed to turn 
these simple examples to real, tangible RL policies for microscope control. 
 
 
 
 


