

LWR Activation Analysis with Polaris and TRITON

Matthew Jessee Shane Hart Steve Skutnik Will Wieselquist Rike Bostelmann

SCALE Users' Group Workshop August 4-6, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Consider simple coolant activation model in Polaris

- 3.1% enr UO2 fuel
- Zirc4 cladding
- WEC 17x17 geometry
- 600 ppm boron
- 40 MW/MTU
- Coolant and Fuel are depleted from 0 to 10 GWD/MTU
- Output of Interest: H-3 buildup in coolant

```
=polaris
    lib "broad lwr"
    geom wec pin : ASSM 1 1.26
    sys PWR
    comp c uox3 : UOX 3.1
    mat FUEL.1 : c uox3 10.157
    pin 1 : 0.4096 0.418 0.475 : FUEL.1 GAP CLAD
10
11
12
                 : nr=2 ns=-4
    mesh FUEL
13
    shield ALL=P
14
15
    state ALL : temp=600 FUEL : temp=900 COOL : boron=600 dens=0.6
16
    power 40
17
    bu 0.1 1 2 4 6 8 10
18
    deplete ALL=no FUEL=yes COOL=yes
19
    opt DEPL ArchiveF33='ALL'
20
21 end
```


Text Output

- F71 Archive Summary:
- Go to positions 9-16 in F71 file in Fulcrum

							_
1969-							
1970	Deplet	LION AI	rchive F	71 Summary for	r History: BA	ASE_HISTORY	
1971 -							. –
1972							
19/3				Tolit Name	(d)		
1974	Index	Pos		Edit Name	Time (d)	Time (sec)	
1975				GIAD 1 -1			
1970			1	CLAD.1.pl	0.000e+00	0.000e+00	
1977		2	1	CLAD.1.pl	2.500e+00	2.160e+05	
1970				CLAD.1.pl	2.500e+01	2.100e+06	
1000	<u>+</u>	4	1	CLAD 1 p1	1 000c+01	4.320e+06	
1001	1 1		1	CLAD 1 pl	1.000e+02	1 296o+07	
1092	<u>+</u>	. 7	1	CLAD 1 p1	1.500e+02	1 72904407	
1002	<u>+</u>		1	CLAD.1.pl	2.000e+02	1.720e+07	
1004	· · ·	0	 	CLAD.I.PI	2.500e+02	2.100e+07	
1985	2	9		COOT. 1 p1	0 000e+00	0 0000+00	
1986	2	10		COOL 1 p1	2 500e+00	2 160e+05	
1987	2	11		COOL 1 p1	2.500e+01	2.160e+06	
1988	2	12		COOL 1 p1	5 000e+01	4 320e+06	
1989	2	13		COOL 1 p1	1.000e+02	8 640e+06	
1990	2	14		COOL 1 p1	1.500e+02	1.296e+07	
1991	2	15		COOL.1.p1	2.000e+02	1.728e+07	
1992		16	;)	COOL.1.p1	2.500e+02	2.160e+07	
1993							
1994	3	17	İ	FUEL.1.p1	0.000e+00	0.000e+00	
1995	3	18	İ	FUEL.1.p1	2.500e+00	2.160e+05	
1996	3	19	Ì	FUEL.1.p1	2.500e+01	2.160e+06	
1997	3	20	İ	FUEL.1.p1	5.000e+01	4.320e+06	
1998	3	21	Ì	FUEL.1.p1	1.000e+02	8.640e+06	
1999	3	22	ĺ	FUEL.1.p1	1.500e+02	1.296e+07	
2000	3	23	ĺ	FUEL.1.p1	2.000e+02	1.728e+07	
2001	3	24	l	FUEL.1.p1	2.500e+02	2.160e+07	
2002							
2003	4	25		GAP.1.p1	0.000e+00	0.000e+00	
2004	4	26		GAP.1.p1	2.500e+00	2.160e+05	
2005	4	27		GAP.1.p1	2.500e+01	2.160e+06	
2006	4	28	I	GAP.1.p1	5.000e+01	4.320e+06	
2007	4	29		GAP.1.p1	1.000e+02	8.640e+06	
2008	4	30	I	GAP.1.p1	1.500e+02	1.296e+07	
2009	4	31	I	GAP.1.p1	2.000e+02	1.728e+07	
2010	4	32	I	GAP.1.p1	2.500e+02	2.160e+07	
2011							

3

Fulcrum Output

- F71 Archive Summary:
- Go to positions 9-16 in F71 file in Fulcrum
- H-3 activity is13.5 Ci @ 250 days (or 10 GWD/MTU)

Concern

CAK RIDGE

- Calculation above used 56-group LWR library
- If 252-group library is used:
- H-3 activity is 3.6 Ci @ 250 days (or 10 GWD/MTU)
- Similar results for equivalent TRITON model

Why is 252G library calc produce ~4x less tritium in coolant than equivalent 56G calc?

Data Mining with obiwan

- Use obiwan to get micro XS
- Command : obiwan view -format=coefft <file.f33> | grep '10001003<'
- Columns: bu= 0.0, 0.1, 1, 2, 4, 6, 8, 10

[m8j ~/Downloads/trit]\$ /Use	rs/Shared/bu	ild/master_r	el/INSTALL/b	in/obiwan vie	ew -format=co	pefft pol56.0	COOL.1.f33	grep '10001003<'
10001003<[102]10001002	3.9814e-05	3.9140e-05	3.8358e-05	3.7626e-05	3.6434e-05	3.5498e-05	3.4746e-05	3.4128e-05
10001003<[103]10002003	3.8805e+02	3.8102e+02	3.7270e+02	3.6488e+02	3.5220e+02	3.4225e+02	3.3427e+02	3.2773e+02
10001003<[105]10003006	6.8783e+01	6.7543e+01	6.6074e+01	6.4695e+01	6.2457e+01	6.0702e+01	5.9294e+01	5.8139e+01
10001003<[22]10003007	6.3795e-03	6.3895e-03	6.4549e-03	6.5208e-03	6.6259e-03	6.7079e-03	6.7748e-03	6.8311e-03
10001003<[33]10004009	2.8772e-05	2.8874e-05	2.9287e-05	2.9699e-05	3.0375e-05	3.0922e-05	3.1383e-05	3.1782e-05
10001003<[33]10004010	1.4563e-06	1.4615e-06	1.4824e-06	1.5032e-06	1.5374e-06	1.5651e-06	1.5884e-06	1.6086e-06
10001003<[105]10005010	1.7316e-02	1.7279e-02	1.7358e-02	1.7442e-02	1.7563e-02	1.7643e-02	1.7700e-02	1.7741e-02
10001003<[105]10005011	1.7868e-05	1.7931e-05	1.8188e-05	1.8444e-05	1.8864e-05	1.9203e-05	1.9489e-05	1.9737e-05
[m8j ~/Downloads/trit]\$ /Use	rs/Shared/bu	ild/master_r	el/INSTALL/b	oin∕obiwan vi	iew -format=o	coefft pol25	2.COOL.1.f33	grep '10001003<
10001003<[102]10001002	4.0181e-05	3.9508e-05	3.8715e-05	3.7973e-05	3.6776e-05	3.5844e-05	3.5101e-05	3.4497e-05
10001003<[103]10002003	3.9190e+02	3.8489e+02	3.7644e+02	3.6853e+02	3.5578e+02	3.4587e+02	3.3799e+02	3.3160e+02
10001003<[105]10003006	6.9467e+01	6.8229e+01	6.6738e+01	6.5342e+01	6.3091e+01	6.1344e+01	5.9953e+01	5.8825e+01
10001003<[22]10003007	6.4912e-03	6.5044e-03	6.5746e-03	6.6450e-03	6.7575e-03	6.8456e-03	6.9177e-03	6.9784e-03

10001003<[22]10003007	6.4912e-03	6.5044e-03	6.5746e-03	6.6450e-03	6.7575e-03	6.8456e-03	6.9177e-03	6.9784e-03	
10001003<[33]10004009	8.3262e-07	8.3595e-07	8.6824e-07	9.0113e-07	9.5643e-07	1.0040e-06	1.0469e-06	1.0865e-06	
10001003<[33]10004010	7.3576e-13	8.9324e-13	2.2240e-12	4.8230e-12	1.5468e-11	3.3265e-11	5.6673e-11	8.4129e-11	
10001003<[105]10005010	1.7375e-02	1.7342e-02	1.7424e-02	1.7511e-02	1.7636e-02	1.7720e-02	1.7779e-02	1.7822e-02	
10001003<[105]10005011	5.9215e-07	5.9456e-07	6.1875e-07	6.4336e-07	6.8459e-07	7.1984e-07	7.5149e-07	7.8060e-07	

Data Mining with Fulcrum

• Use Fulcrum (or obiwan) to get number densities

CAK RIDGE National Laboratory

6

Navigation		
State 1 T+0 State 2 T+21600 State 3 T+2.16e+ State 4 T+4.32e+ State 5 T+8.64e+ State 5 T+8.64e+ State 6 T+1.296e State 7 T+1.728e	0 06 +06 +07 +07 5 000	0
State 8 T+2.16e+	07	
State 10 T+21600	00	
State 11 T+2.16e+	+06)(
State 13 T+8.64e	2.000	0
State 14 T+1.296	e+07 2.500	0
State 16 T+2.16e	+07	
State 17 T+0	20	
State 18 1+21600 State 19 T+2.16e	+06	
State 20 T+4.326	+06	
Data filtering (via Opus)		
[svmnuc]	b10 p14 p16 p17	
[0]	bio hi4 oi6 oi7	
[symnuc] filter set		
[libtype]	Light elements Actinides	
5	Fission products	
[nrank]	1	
[plot units]	at/bcm 😒	
[sort units]	at/bcm 📀	
[time units]	days 📀	
[time units]	days 📀	

						Plot	Tab
	o16	o17	b10	n14	Subtotals	Tota	als
0.000000e+00	0.0200371	7.63255e-06	3.99068e-06	1.00145e-20	0.0200487	0.0602	2365
2.500000e+00	0.0200371	7.63264e-06	3.89404e-06	4.76835e-16	0.0200486	0.0602	2366
2.500000e+01	0.020037	7.63345e-06	3.12678e-06	6.49525e-15	0.0200478	0.0602	2374
5.000000e+01	0.020037	7.63436e-06	2.4607e-06	1.67119e-14	0.0200471	0.0602	2381
1.000000e+02	0.0200369	7.63618e-06	1.53881e-06	4.83743e-14	0.0200461	0.0602	2391
1.500000e+02	0.0200368	7.63803e-06	9.70658e-07	9.51322e-14	0.0200454	0.0602	2398
2.000000e+02	0.0200367	7.63991e-06	6.15547e-07	1.57199e-13	0.020045	0.0602	2402
2.500000e+02	0.0200366	7.64181e-06	3.9163e-07	2.34797e-13	0.0200446	0.0602	2405

Results and Analysis

- 8 top contributors to the production of H-3 at 10 GWD/MTU
- The sum macro xs of the production of H-3 is 6x bigger in 56g calculation compared to 252g
- Errors can come from
 - Number density differences
 - Microscopic XS differences
- "Rel Err in Sum" is the contribution of each reaction to the error in the sum macro xs
- Notice that He-3 (n,p) reaction has the most error

H-3 Parent	56g micro	252g micro	56g numden	252g numden	56g macro	252g macro	Rel Err in Sum
Li-7	6.8E-03	7.0E-03	3.6E-06	3.6E-06	2.5E-08	2.5E-08	-2%
B-10	1.8E-02	1.8E-02	3.9E-07	3.9E-07	6.9E-09	6.9E-09	0%
He-3	3.3E+02	3.3E+02	5.2E-10	3.6E-12	1.7E-07	1.2E-09	501%
H-2	3.4E-05	3.4E-05	1.3E-05	1.3E-05	4.3E-10	4.4E-10	0%
Li-6	5.8E+01	5.9E+01	7.7E-12	5.4E-12	4.5E-10	3.2E-10	0%
B-11	2.0E-05	7.8E-07	1.6E-05	1.6E-05	3.2E-10	1.3E-11	1%
Be-9	3.2E-05	1.1E-06	1.3E-11	4.3E-12	4.0E-16	4.7E-18	0%
Be-10	1.6E-06	8.4E-11	4.9E-11	4.5E-11	7.9E-17	3.8E-21	0%
				sum	2.0E-07	3.4E-08	6

Results and Analysis

- 4 top contributors to the production of He-3 at 10 GWD/MTU
- The sum macro xs of the production of He-3 is 5465x bigger in 56g calculation compared to 252g
- Errors can come from
 - Number density differences
 - Microscopic XS differences
- "Rel Err in Sum" is the contribution of each reaction to the error in the sum macro xs
- Notice that O-16 (n,He-3) reaction has the most error

He-3 Parent	56g micro	252g micro	56g numden	252g numden	56g macro	252g macro	Rel Err in Sum
0-16	9.2E-06	1.7E-09	2.0E-02	2.0E-02	1.8E-07	3.4E-11	546432%
B-10	6.2E-06	3.2E-10	3.9E-07	3.9E-07	2.4E-12	1.3E-16	7%
0-17	1.3E-08	6.8E-13	7.6E-06	7.6E-06	9.9E-14	5.2E-18	0%
N-14	1.2E-06	6.2E-11	2.3E-13	1.2E-13	2.8E-19	7.4E-24	0%
				sum	1.8E-07	3.4E-11	5465

- O-16 (n,He-3) is a threshold reaction > 14 MeV
- In the 252g structure, the top 3 energy groups are above this threshold
- In the 56g structure, the top energy group lower bound is 6.43 MeV
- This coarse structure in the 56g library leads to over prediction of the ORIGEN transition coefficient (in this case by 5400x)

Best practices

- LWR depletion calculations in SCALE (TRITON or Polaris) can utilize either the 56g library or the 252g library
- The transition coefficients in ORIGEN depend on the flux-volume collapse of cross sections.
- Several of the 54,000 transitions tracked in ORIGEN are threshold reactions, with Q-values above 6 MeV
- Flux-volume collapse of these threshold reactions tend to produce over-estimated transition coefficients for a 56g library calculation
- Non-threshold or fission transitions are not as sensitive to library structure, but are still susceptible to errors if the model spectrum is different than the collapsing spectrum
- For non-fuel LWR activation studies, best practice is to use the 252g library with SCALE 6.3

