Predicting the Bias of SNF Depletion Calculations: Application of Polaris, Sampler, and Machine Learning

Ahmed Shama (Inventories & Logistics Unit, Nagra)

2022 SCALE Users’ Group Workshop
April 28, 2022
Background

- Nagra, the WMO in Switzerland, plans for nuclear waste disposal in deep geological repository

- General licence application is in preparation, to be submitted around 2024

- SNF is high-level waste, ~13k FA by the end-of-life of the Swiss NPPs

- SNF characteristics, e.g., decay heat, are calculated using codes (e.g., Polaris) and data (e.g., fuel irradiation data)
Background

Downstream Applications
Requiring accuracy and precision of the bias

Economics
Reducing DH uncertainty could lead to reduction in the no. of disposal canisters

Safety
Ensure subcriticality, e.g., burnup credit CSA penalizes k_{eff} with bias and uncertainty (e.g., nuclide concentrations (Gauld and Mertyurek, 2019))

$\sum DH \leq 1500 W$
Main topics

Validation of Depletion Calculations → Propagation of Uncertainties → Machine Learning (ML) for Bias Prediction → Assessment of the Validation Sufficiency

SCALE-6.2.3/Polaris → **SCALE-6.2.3/Sampler** → **R Language** → **R Language**

$$Bias \rightarrow B = C - E$$

- Few measurements, with limited range of properties
- ~ hundreds of PIE, SFCOMPO (F. Michel-Sendis et al., 2017)
- ~ 133 DH FA at Clab < 51 GWd/tU (SKB, 2006) & < 55 GWd/tU (EPRI, 2020)
Topic 1: Validation of the depletion calculations

Calculations using SCALE-6.2.3 Polaris and ORIGEN applied on the 152 DH measurements at Clab (SKB, 2006)

- On average, calc. DH are within 5% of the measured ones
- Large variances (potential improvements)
Topic 2: Uncertainty propagation of ND and DO uncertainties (also SA)

Calculations using **SCALE-6.2.3 Sampler/Polaris** applied on the 152 DH measurements at Clab (SKB, 2006)

Bias informative features (Spectral index $SI_i = \frac{\varphi_{Fast}}{\varphi_{Total}}$, $SI = \frac{\sum_{i}^N (BU_i \times SI_i)}{\sum_{i}^N (BU_i)}$, Calc. value C, Correlation coeff. $\rho_{ij} = \frac{1}{N-1} \sum_{k=1}^{N} \frac{(c^i_k - \bar{c}^i)(c^j_k - \bar{c}^j)}{\sigma_i \sigma_j}$)

ρ between calc. DH, ordered by BU (top to bottom, left to right)
Topic 3: Application of Machine Learning (ML) for the bias prediction

\[C - \epsilon = f(X) + \epsilon \]

- \(f(X) \): predictable part (systematic bias)
- \(\epsilon \): unpredictable part (random bias)

- \(f \): model (e.g., similar benchmarks)
- \(X \): bias informative features,
- assumptions: correlations \(\rho \)
- many features/selection (RFE): \(SI, C, \rho \)

Weighted k-Nearest Neighbors (KNN):
\[B_{(\rho=1)} = \sum_{k=1}^{K} w_k \ B_k, \quad w_k \propto f(\Delta\rho) \]

Random Forest (RF):
\[B_{(\rho=1)} \approx \frac{1}{N} \sum_{n=1}^{N} w_n \ B_n, \quad I_{\rho > co} \]
Topic 3: Application of Machine Learning (ML) for the bias prediction

\[
C - E = f(X) + \epsilon
\]

- \(f(X) \) predictable part (systematic bias)
- \(\epsilon \) unpredictable part (random bias)

- \(f \) model (e.g., similar benchmarks)
- \(X \) bias informative features,
- assumptions: correlations \(\rho \)
- many features/selection (RFE): \(SI, C, \rho \)

Application in ML algorithm

<table>
<thead>
<tr>
<th>Application in ML algorithm</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resampling technique</td>
<td>LOOCV</td>
</tr>
<tr>
<td>Test metrics</td>
<td>(R^2), KS-test, Regression</td>
</tr>
<tr>
<td>Treatment of outliers</td>
<td>Z-score, Cook’s distance (3(\sigma) and distance, apply AND)</td>
</tr>
<tr>
<td>Multiple measurements (same FA)</td>
<td>Random sampling</td>
</tr>
</tbody>
</table>
Topic 3: Application of Machine Learning (ML) for the bias prediction

RF model predicted bias of the DH benchmarks of Clab-2006, using **LOOCV**:
- 149 measurements on 83 FA
- 3 outliers (of multiple measurements on C20 and 5F2 FA), 2% of the data

\[C - E = f(X) + \epsilon \]
Topic 3: Application of Machine Learning (ML) for the bias prediction

RF model predicted bias of the DH benchmarks of Clab-2006, using **LOOCV**:

- 149 measurements on 83 FA
- 3 outliers (of multiple measurements on C20 and 5F2 FA), 2% of the data

\[C - E = f(X) + \epsilon \]

\[\bar{B} \pm \sigma \rightarrow f(\rho, C, SI) \pm \epsilon \]

Diagram:
- **Polaris Bias**
- **ML Predicted Bias** $f(x)$
- **Outliers**

Statistics:
- RMSE = 3.36 W
- KS p-value = 0.84
- $R^2 = 0.451$
Topic 4: Assessment of the sufficiency of the measurements

Sufficiency of the measurements/experimental gaps, range of applicability?

83 FA DH measurements at Clab: <51 GWd/tU 11-27 yrs of cooling (SKB, 2006)

1. No MOX
2. No high burnup

\[C - E = f(X) + \epsilon \]

\(f(X), \epsilon \) predictable/unpredictable

Clab-2006 (random sampling)

\(RF \ R_{\text{ref}}^2 = 0.38, \quad KKNN \ R_{\text{ref}}^2 = 0.40 \)

Topic 4: Assessment of the sufficiency of the measurements

Sufficiency of the measurements/experimental gaps, range of applicability?

83 FA DH measurements at Clab: <51 GWd/tU 11-27 yrs of cooling (SKB, 2006)

1. 3 pin-cells having the same H/X ratio as the full lattice: W15x15 UO$_2$ and MOX, GE14 UO$_2$
2. Sampler perturbations (625 ND and 625 DO)
3. ML on the application side

![Clab – 2006: Validation Data](image)
Topic 4: Assessment of the sufficiency of the measurements

Sufficiency of the measurements/experimental gaps, range of applicability?

83 FA DH measurements at Clab: <51 GWd/tU 11-27 yrs of cooling (SKB, 2006)

1. 3 pin-cells having the same H/X ratio as the full lattice: W15x15 UO$_2$ and MOX, GE14 UO$_2$

2. Sampler perturbations (625 ND and 625 DO)

3. ML on the application side

Application

Topic 4: Assessment of the sufficiency of the measurements

Sufficiency of the measurements/experimental gaps, range of applicability?

83 FA DH measurements at Clab: $<51 \text{ GWd/tU}$, 11-27 yrs of cooling (SKB, 2006)

1. 3 pin-cells having the same H/X ratio as the full lattice: W15x15 UO$_2$ and MOX, GE14 UO$_2$
2. Sampler perturbations (625 ND and 625 DO)
3. ML on the application side
Topic 4: Assessment of the sufficiency of the measurements

Sufficiency of the measurements/experimental gaps, range of applicability?
83 FA DH measurements at Clab: <51 GWd/tU 11-27 yrs of cooling (SKB, 2006)

1. 3 pin-cells having the same H/X ratio as the full lattice: W15x15 UO$_2$ and MOX, GE14 UO$_2$
2. Sampler perturbations (625 ND and 625 DO)
3. ML on the application side
Summary

SCALE in our organization

- Support SNF characterization and downstream applications
- Polaris & ORIGEN calculate fuel assembly wise decay heat and nuclide inventory (large-scale verification)
- Sampler is used for uncertainty propagation

+ Machine Learning
 - Bias prediction in applications (e.g., potentially for decay heat and nuclide inventory for burnup credit)
 - Assessment of the validation data, highlight the parameters of potential future measurements

+ Participation in international projects using SCALE (Polaris, ORIGEN, KENO, Sampler)
 - EJP-EURAD (decay heat and PIE analysis, activated cladding samples)
 - NEA WPNCS subgroups (decay heat and PIE analysis)
thank you for your attention
References

