

Code Validation - A Critical Step for Ensuring Criticality Safety

Zhian Li, PhD

Senior Criticality and Shielding Engineer

U.S. Nuclear Regulatory Commission

SCALE User Workshop Oak Ridge National Laboratory August 4-6, 2021

Outline

- Criticality safety
- Computer code validation
- Frequently Asked Questions

Criticality Safety

- Criticality accidents do happen
 - Fatal radiation exposures
 - Contamination to facility and environment
 - Costly remediations
 - Impacts on public confidence on safety of nuclear facilities
- Must assure criticality safety by design
 - Facility design
 - Operating procedures
 - Regulatory requirements: 10 CFR (NRC, DOE), 49 CFR (DOT), IAEA Regulations (SSR-6).

Criticality safety (cont.)

- Neutron multiplication factor: k_{eff}
 - The eigenvalue of the neutron transport equation or diffusion equation
 - Solving the neutron transport equation or diffusion equation
- Cross section

Criticality Safety (cont.)

- Neutron multiplication factor: K_{eff}
 - A derived value
 - Can not be measured
 - Must be known ahead of time for criticality safety in system designs
- Determination of K_{eff}
 - Mockup experiments
 - Cannot do experiments for true accident conditions
 - Solving neutron transport equation

Criticality Safety (cont.)

- Mockup
 - Traditional way to determine $k_{\rm eff}$
 - Still need to calculate k_{eff} by extrapolation
 - Cannot simulate accident conditions
 - Costly
- Determine system k_{eff}
 - Hand calculation: $k_{eff} = 1 S/N$
 - S: external source,
 - N: Neutron population

Criticality safety (cont.) — Calculation Methods

- Hand calculation
 - Solve only simple problems with less accuracy
- Computer code
 - Implementation of the algorithms
 - Same as hand calculations
 - With more accurate representation of the problem
- Can simulate accident conditions
- Cross section

Computer Code Validation

- Verification
 - Verify the correct implementation of the algorithm
 - Done by the software developers
- Validation of calculations is to:
 - Determine if the code is appropriate for a specific application
 - To determine the bias and errors associated with the calculations

Computer Code Validation (cont.)

- Code validation: Critical to assuring correct and accurate answers
 - Different solution methods
 - Different implementations
 - Representation of the system
 - Different approximations
 - Different conversion criteria
 - Run on different computers (CPU and compiler)
- Guidance: ANS 8.1, 8.15, 8.17, NUREG, IEEE

Computer Code Validation (cont.)

- Standards for Validation of Calculations
 - ANSI/ANS 8.1: Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors
 - ANSI/ANS 8.7: Nuclear Criticality Safety in the Storage of Fissile Materials
 - ANSI/ANS 8.17: Criticality Safety Criteria for the Handling, Storage, and Transportation of LWR Fuel Outside Reactors
 - ANSI/ANS 8.24: Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations
- NRC Guidance
 - NUREG/CR-6361: For LWR fuel storage and transportation
 - NUREG/CR-6698: For general fissile system

Computer Code Validation (cont.) —Select Critical Experiments

- Similarity to the system (Area of Applicability)
 - -Material composition, i.e., U, UO₂, MOX, Pu
 - —Enrichment (U-235 only)
 - -Geometry, i.e., solution, rod, plate, cluster, assembly
 - -H/X ratio, Reflector
- Critical experiments
 - International Handbook of Evaluated Criticality Safety Benchmark Experiments
 - Other resources, ORNL, LANL, Westinghouse, GE

Computer Code Validation (cont.) —Expected Results

- Bias and Bias Uncertainty
- Trend against major factors
 - Enrichment, geometry, H/X ration, EALF, etc
- Number of critical experiments
 - Around 100 is recommended
 - Minimal 30 based on textbook
 - Minimal 25 experiments (NUREG/CR-6361)
 - Perform normality distribution analysis if fewer than
 25 and apply further uncertainty

Computer Code Validation (cont.) —Available Tools

- Trend analysis tool:
 - USLSTATS A straightforward tool
 - User specific tool, least square curve fitting
- Critical experiment selection tool:
 - TSUNAMI (SCALE code suite)
 - Whisper (MCNP code suite)
 - Useful tools for selecting more fit critical experiments and may give a better bias.
 - User should still need to check the properness of the selected experiments.

Computer Code Validation (Extra) —Burnup Credit

- Two steps:
 - Depletion code
 - Criticality safety analysis code
- Guidance
 - Interim Staff Guidance Number 8, Revision 3 (now part of NUREG-2215/NUREG-2216 (SRP)
 - NUREG/CR-6811
 - NUREG/CR-6801, NUREG/CR-6800
 - NUREG/CR-7108, NUREG/CR-7109, NUREG/CR-7205

Frequently Asked Questions

- Similarity to the system (Area of Applicability)
 - -Thermal, mid-energy or fast system
 - -Material composition, i.e., U, UO₂, MOX, Pu
 - -Enrichment (U-235 only)
 - -Geometry, i.e., rod, plate, cluster, assembly
 - -H/X ratio, Reflector type
- Number of critical experiments
 - Suffient
 - Distributions (normality test)

Frequently Asked Questions (cont.)

• Trending analysis

-Trending against major parameters

-Upper subcriticality limit

- Bias and bias uncertainty
 - -All biases and bias uncertainties accounted for
 - —The total bias calculated correctly

Questions?

