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Overview

e Infroduction to TRISO fuel and pebble-based reactor systems

 Modeling strategy
- How can we model flowing-pebble systems using SCALE?
- How does this compare to prior approaches for PBR modelinge
- What level of detail is required to capture the relevant physicse

* Physics observations of the PBR-400 core
— Relevant parameters for ORIGEN library development
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Chater pyrolytic carbon layer (OPyC, 30-60 pm)

TRISO-based fuels

e TRISO particle

— TRISO: portmanteau for
tristructural isofropic

- Kernel - 1.5 g U; 250 um radius
— Porous carbon buffer layer
- 3 coatings to contain fission

TRISO Particle
pro d U CTS g e LUCO kernel encased in carbon and

ceramiolaylers .
e TRISO pebble J
Fuel Pebble
— Contains 14,500 TRISO particles . Lo
— 25 mm radius I

- 5 mm graphite outer shell v
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Silcon carbide (SiC) layer
(30-50 pm)

Inner pyrolytic carbon layer (TPyC, 30-60 jm)

Graphite buffer layer (80-150 pm)

Fuel kemel (200-800 pm diameter)
uco - uo,, UC, UC,

Uranium Oxycarbide (UCO) Kernel
s 10% enrichment

TRISO pebble
Pebble Bed (U.S. Department of Energy)
e 170,000 pebbles per Xe-100 reactor



PBMR-400

« 400 MW

e Helium coolant
- 9 MPa (1300 psi)
— 500 Cinlet / 900 C outlet

e 452,000 TRISO pebbles in an annular core
with graphite reflectors

— 2.0 inner diameter / 3.7 m outer diameter
- 11 m height

e 92,000 MWdA/MTU target burnup

 Two cases evaluated
— Startup core: 1/3 fuel pebbles, 2/3 graphite “dummy” pebbles

: g . PBMR-400 SCALE geometry
— Equilibrium core: 110 material zones with pre-specified material (S. Skutnik, ORNL)

compositions (100% fuel)
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Modeling strategy for
pebble-based reactors




Self-shielding calculations for doubly-heterogeneous
fuel with CENTRM / XSPROC in SCALE

e Creation of an “effective’” fuel mixture for MG

calculations
- Basically two self-shielding calculations @87
— Simple user input in cell block for i/

self-shielding

— Creates one mixture to be placed
INn geometry model

______________________

' CENTRM |

CE data | ' CENTRM/PMC |_, shielded

: —+ TRISO particle | | = WG libra
& library . calculation | l_R?EEIE_Ea!El_I_I_a_tJEE_J L/
e disadvantage
. ey factors
cell-weighted
CE library

Double-het computational procedure
for a pebble fuel component with SCALE
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HTGR analysis with SCALE: Overview
PBMR-400

- Main goals equilibrium core
— Evaluate neutronic characteristics

- Generate individual pebble inventory within a core
zone/batch (e.q., difference between fresh vs.
once-through pebble in a single core zone)

-~ Generate discharge pebble inventory/decay heat
with sensitivity/uncertainty analysis

e Limitations / caveats

— Goalis to construct an equilibrium core inventory;
not trying to perform transient / reload analysis

How do we do this for
moving / reloading pebbles?
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Strategy for LWRs

- What level of TRITON model fidelity is required to generate a reasonable
1-group xs database (ORIGEN reactor library) for rapid LWR inventory calculationse

a. 3D full-core with plant-specific loading pattern «— Requires p|c|n1'_speciﬁc know|edge

> b. 3D full-core with equilibrium loading pattern

% c. 3D core subset Assembly position matters >

= d. 3D single assembly Imposes additional assumptions or

i e 2D core subset requires too much information!

7))

o f. 2D single assembly Has trouble with local variations

2 g. 2D single pin « (control elements, water holes, channel box)
B h. 0D infinitely homogeneous mixture «

Has trouble if any geometry is important

- For LWRs, using 2D single assembly models to generate the 1-group xs database appears
sufficient!

- verification confirms ORIGAMI reproduces TRITON results with same (simple) operating history

- vdlidation against spent fuel inventory and decay heat measurements confirms the overall
approach is adequate

code results generally within experimental uncertainty bands

<1% error in decay heat, <5% error in important nuclides, <15% error in others
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Strategy for HTGRs

-  What level of TRITON model fidelity is required to generate a reasonable 1-group
xs database for rapid HTGR inventory calculations?

a. 3D full-core with plant-specific pebble <«

loading & discharge strategy \
3D full-core with equilibrium pebble distribution <

—»@ 2D core slice with equilibrium pebble distribution

Requires plant-specific knowledge

Computationally expensive

: : : Previously investigated in other
. 1D I I th “buffer” f h ffects <« . .
. single pebble with “ouffer” for neighbor effects work; difficult to optimize buffer
1D single pebble  « Does not account for
f. 0D infinitely homogeneous mixture « reflectors

Used to understand sensitivity to model fidelity

- Using SCALE/TRITON 3D full-core at equilibrium (b) is equivalent to prior approaches like
VSOP, but with:

—  ENDF/B-VII.1+ modern nuclear data

-  Complete SCALE/ORIGEN nuclide set instead of VSOP limited set

— SCALE high-fidelity full-core Monte Carlo transport instead of VSOP diffusion
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VSOP workflow shares several features of conventional
2-step LWR core analyses

Updated material

. - Inventories
Core inventories Fuel shuffling / Depletion
. pebble recycle : update

eeeerese e eeeeeeeeesaeees e easnen® d (pin / pebble)

Single-element / y N

assembly flux solution

--------------------------------------------
*

Few-group cross-sections Region-wise
(critical spectrum) flux solution

Simplified transport / /
diffusion Spatial flux / power

e Homogenized material regions distribution across
with few-group cross-sections the core
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Fresh fuel :
pebbles

— — — — — — —
— . . . S s o e . .y

\
Ex-core decay
storage |

Discharged batch
YES

— BU=BU ., 7

max

Discharged region

YES
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_______________ | Fresh fuel !
! L pebbles
@ % _______
: . Loaded material Ex-core decay
[ Core material regions }7 region } storage
/ "\ 0 -
Neutron spectrum \ . Discharged batch
/ l \ YES
\ This is just two-
Neutron diffusion (2-D / 3-D) step neutronics NO
(Polaris+PARCS) — BU=BU,.,, 7
Burnup / depletion
Hmtp 7 fepict NO I Discharged region
v / YES 4
: R X Material update
\\ Thermal hydraulics / > Keit < ktarget ? ” (shuffle)

\/ <
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VSOP calculation flow (MEDUL)  ~————-

/

[ Core material regions }—

4 :

/ Neutron spectrum\ ‘
< Neutron diffusion (2-D / 3-D) >

N /

Burnup / depletion

Thermal hydraulics
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S | Freshfuel !
! L pebbles
Loaded material Ex-core decay
region storage
1 1 Discharged batch
At equilibrium, spatial distributions YES
are static: power, neutron spectrum,
isotopics! NO
We use Monte Carlo to generate the BU 2 BUmax -
high-fidelity spatial flux spectrum and
one-group cross sections
- NO I Discharged region
YES 4
k.<k Material update
eff = target (shuffle)
|




VSOP calculation flow (MEDUL)  ————- .

_______________ | Fresh fuel !
E 1 nebbles !
I —___—= '
p A 4
: . Loaded material Ex-core decay
Core material regions }7\ region } storage

A
X

Neutron spectrum « Discharged batch

We simulate a pebble” moving
through the equilibrium core with

l a time-dependent power and flux

spectrum based on its position. NO

Neutron diffusion (2-D / 3-D)

This pebble” can be used to
reconstruct the detailed core
composition or iterate on the
equilibrium core.

e —_—

(/ Burnup / depletion
S~

—_—

Discharged region

Material update
(shuffle)

Thermal hydraulics

= target - [

*equivalent to a batch of
FOAKRIDGE  pehbles with same history




lterative procedure for developing equilibrium
core compositions

Determine average burnup of each pebble
batch within a zone (axial / radial)

Repeat on initial guess
inventories until kg
converges; depleted
compositions represent
approximate “equilibrium”

Deplete each batch within zone to its respective

burnup
* Origen library based on region-wise flux from core transport ‘
Average zone composiftions

* Weighted sum of batches

Calculate core power distribution & flux shape by
zone

e Generate ORIGEN library for each zone
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ORIGEN library analysis strategy

Evaluate PBMR-400 cross-sections & isotopic
responses at different levels of model fidelity

Lower fidelity High fidelity
Lower computational cost High computational cost
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ORIGEN library development: “reflected plane” model

- Accounts for important radial effects

— Proximity to reflector
— Effects of nearest neighbor pebbles

- Can easily be funed for different axial zones

a2
-
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Plane model captures important neighbor effects
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the PBMR-400 core




Temperature feedback (1/2)

e Estimation of specific reactivity feedback components
(e.g., temperature reactivity coefficients of fuel, moderator)
requires detailed thermal hydraulic analysis of core

e Strong coupling between neutronics & thermal hydraulics

 Approach: Using system isotherms

- All system materials adjusted to a fixed temperature
. e.g., 300, 600, 900, 1200 K

— Does not afford specific isolation of moderator / fuel temperature
coefficients

PBMR-400 total neutron flux, from
%OAK RIDGE SCALE/Shift 3D Monte Carlo Calculation
Nat
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Temperature feedback (2/2)
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Fresh core
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Flux shape shows a top-weighted distribution due to
pebble loading & depletion

Radial flux by elevation: E < 1.86 eV (thermal)
le—5

Radial flux by elevation: E> 1.86 eV (fast)
le—5
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Strong power peaking effects observed

gowRmee O graphite reflector regions (esp. interior)
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Fast : thermal flux ratio (specitral index) sensitive
to radial zone; relatively invariant axially

Axial Radial

Spectral index: Equilibrium core (1200 K) Spectral index: Equilibirum core
Central regions
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Major spectral shifts primarily occur across radial zones;
l.e., primarily need radial zone Origen libraries
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Radial, temperature effects drive differences in
ORIGEN library 1-group cross-sections

Temperature = 1200 Temperature = 900
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Radial zone effects far more prevalent than burnup
effects for pebble bed depletion

Outer regions
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Temperature (system isotherm) shows a large,
region-dependent effect on 1G removal XS

Outer regions

« Magnitude of XS 800
differences due to radial 200 .
location increases with . Nuclide
400 Central region — o U235
system temperature < 3 D
- Gap between “inner” ¢ 500 o PU-240
and “oufer” regions IS = = e PuU24]
grows with increasing o 400 Zone
temperature 8 300 La L " s ° iiEZ i;
- Implies a covariant . s Zone #3
relationship between Sl . . o Zone #4
location & temperature 100 ! o $ o Zone#s
400 600 800 1000 1200
Temperature
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Conclusions for pebble bed reactor ORIGEN
lilbrary development

- Modeling pebble-based coresin  « For ORIGEN library generation

SCALE ~ Burnup effects appear to be second-
. Mature cross-section processing order, roughly linear in nature
capabilities for doubly-heterogeneous - Radial distance from the reflector is @
systems first-order spectrum characteristic
- Derive ORIGEN depletion libraries from — Must be accounted for in library
spectral characteristics of the generation
equilibrium core — Temperature (system isotherm) also a
Known “a priori* or iteratively derived first-order effect
Further details: —Shows covariance with radial position
S. Skutnik, W. Wieselquist, “Assessment of ORIGEN _ Driven primarily by graphite (reflector)
Reactor Library Development for Pebble-Bed temperature

Reactors Based on the PBMR-400 Benchmark,”
ORNL/TM-2020/1886, July 2021
Available on osti.gov
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