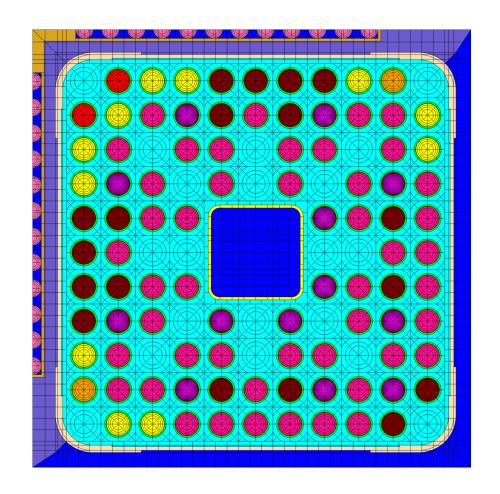


ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Polaris in 6.3.0

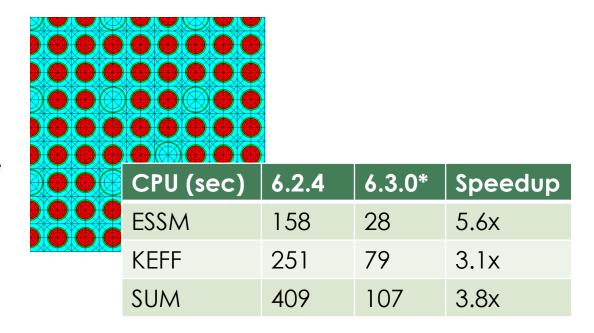
Product Owner: Matthew Jessee

Contributors: Kang Seog Kim, Shane Hart, Will Wieselquist, Jin Whan Bae, Ugur Mertyurek, Andrew Holcomb


Major Features

- Enhanced calculation archives
 - Reactor Libraries (F33) new in 6.3
 - Nuclide Inventories (F71) enhanced in 6.3
 - FG Nodal Cross sections initial HDF5 in 6.3
 - Improved output summaries for each
- Run-time improvement (>3x)
 - Faster transport solver (Next Slide)
 - New cell-based self-shielding method

Other improvements


- Enhanced BWR geometry modeling (channel geometry)
- Time-dependent operating history with depletion
- Easy to use input options for ATF materials
- Improved Geometry robustness

All 6.3 enhancements driven by HALEU/HBU/ATF

Polaris Speedups in Detail

- Polaris use cases investigated
 - 10-100 statepoint calculations for depletion/source term analysis
 - 100-1000 statepoint calculations for two-step core neutronics analysis
 - Statepoint: Self-Shelding (ESSM) + Eigenvalue (MOC) + Depletion (ORIGEN)
- Speedup investigations findings:
 - ESSM calculation takes too long
 - MOC calculation anisotropic source treatment could be optimized
- Resolution
 - Modified ESSM inner iteration to use fixed number of source iterations rather than BICGSTAB
 - Modified anisotopic source treatment to compute angular flux source pre-sweep

Additional 6.3 Improvements

- Spurious geometry error defect has been resolved
- Unnecessary BiCGSTAB warnings have been removed
- Cell-based ESSM implemented (~30X speedup in ESSM) is implemented but not the default until library improvements

Beyond 6.3

- Additional reduction of energy groups on the fly (KEFF runtime reduction of 3X-5X
- Octant symmetry (2X)
- Branch-level parallelism

ORIGEN in 6.3.0

Product Owner: W. Wieselquist

Contributors: S. Hart, A. Holcomb, S. Skutnik,

Major Features

- Sensitivity coefficient
- Overhaul of COUPLE (modernization)
- Recoverable energy data updates

Other improvements

- Read ENDF decay/fission product yield data directly
- OBIWAN command line utility
- Isotopics interface file
 (e.g. for downstream MELCOR simulations)

Recent use in NRC Projects/Applications

- Decay heat for non-LWR severe accident
- Decay heat, activity during decay for HALEU+HBU+ATF
- Internal depletion solver for TRITON and Polaris

Sensitivity coefficient response table of change in number of atoms of Pu239 at EOL

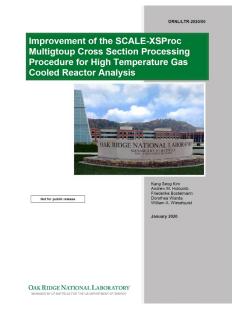
Parent	Daughter	MT	Туре	Sens. Coeff.
Pu239	-	18	XS	-0.69
U238	Np239	102	XS	0.54
U239	-	-	decay	0.47
Pu239	Pu240	102	XS	-0.39
Pu238	Pu239	102	XS	0.02

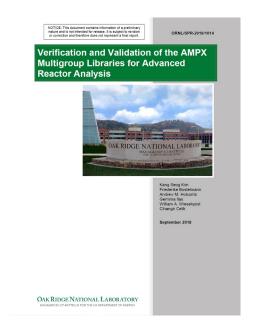
- A 1% increase in Pu239 fission cross section leads to a 0.69% DECREASE in Pu239
- A 1% increase in the total (n,g) for U-238, leads to a 0.54% INCREASE in Pu239

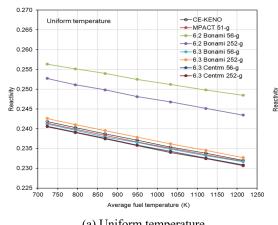
XSProc in 6.3.0

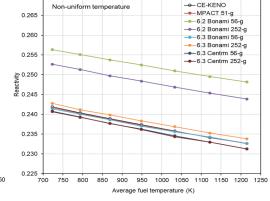
Product Owner: Kang Seog Kim

Contributors: Andrew Holcomb, Dorothea Wiarda, Rike Bostelmann, Will Wieselquist, Matthew Jessee

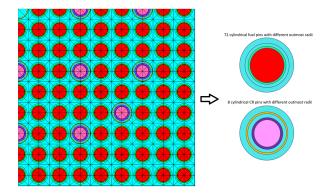

Major Features


- Enhanced accuracy
 - High temperature gas cooled reactor analysis
- Multigroup library for advanced reactors
 - 1597-g library (all) & 302-g library (fast)
 - ENDF/B-VII.1 1-g library for MCDancoff
 - MADRE benchmark suite
- Cell-based ESSM (>x30 speedup) next slide


Other improvements


- Intra-pin self-shielding method in BONAMI
 - M&C 2021 paper

- Pebble system depletion for HTGR/FHR
- FHR special annular pebble



(a) Uniform temperature

(b) Nonuniform temperature

Cell-based Self-Shielding Speedups in Detail

- Cell-based ESSM (Embedded Self-shielding)
 - Dancoff calculation for fuel and control rods
 - Decompose Domain into 1D cylindrical cells to have same Dancoff factors

- Solve the ESSM equations using 1D cylindrical collision probability
- Intra-pin self-shielding method
 - Same as the BONAMI intra-pin method
- Cell-based ESSM + Intra-pin self-shielding method
 - Precise intra-pin self-shielded cross sections

		Polaris							
Case	CE-KENO	l.	A 1.	Time(sec)		le Ale	A I.	Time(sec)	
		k _{eff}	Δk	ASSM-ESSM	transport	k _{eff}	Δk	CELL-ESSM	transport
vera_ornl_1a	1.18700	1.18548	152	0.69	2.77	1.18550	150	0.05	2.68
vera_ornl_1b	1.18214	1.18050	164	0.58	2.61	1.18062	152	0.04	2.62
vera_ornl_1c	1.17144	1.17005	139	0.59	2.60	1.17017	127	0.04	2.78
vera_ornl_1d	1.16258	1.16108	150	0.62	2.73	1.16120	138	0.04	2.48
vera_ornl_1e	0.77127	0.77078	49	0.64	10.19	0.77079	48	0.05	9.36
vera_ornl_2a	1.18187	1.18097	90	128.40	222.00	1.18105	82	1.40	169.10
vera_ornl_2b	1.18323	1.18202	121	162.50	209.00	1.18216	107	2.35	199.50
vera_ornl_2c	1.17362	1.17248	114	157.00	163.40	1.17263	99	2.27	208.70
vera_ornl_2d	1.16556	1.16427	129	137.40	162.60	1.16442	114	2.06	153.40
vera_ornl_2e	1.06953	1.06869	84	130.70	168.00	1.06871	82	1.66	179.20
vera_ornl_2f	0.97569	0.97528	40	167.70	214.70	0.97525	44	1.72	170.20
vera_ornl_2g	0.84766	0.84784	-18	109.70	230.00	0.84548	218	2.19	208.20
vera_ornl_2h	0.78793	0.78615	178	141.40	171.80	0.78646	147	2.02	207.40
vera_ornl_2i	1.17962	1.17877	85	122.80	159.40	1.17885	77	1.53	173.00
vera_ornl_2j	0.97496	0.97452	44	162.30	216.10	0.97449	47	2.20	170.30
vera_ornl_2k	1.01977	1.01922	55	138.40	150.90	1.01914	63	1.97	170.50
vera_ornl_2l	1.01868	1.01694	174	134.20	601.00	1.01700	168	1.69	612.40
vera_ornl_2m	0.93855	0.93679	176	116.20	589.60	0.93684	171	1.54	568.00
vera_ornl_2n	0.86944	0.86774	170	155.50	629.10	0.86779	165	1.87	619.50
vera_ornl_2o	1.04717	1.04615	102	106.00	196.90	1.04651	66	1.48	190.80
vera_ornl_2p	0.92670	0.92586	84	95.53	162.70	0.92642	28	1.31	151.30

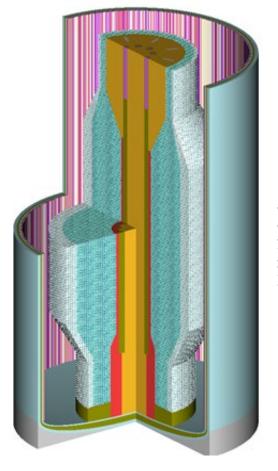
TRITON in 6.3.0

Product Owner: Rike Bostelmann Contributors: Kursat Bekar, Brandon Langley, Shane Hart, Greg Davidson, Ben Betzler, Brian Ade, Ugur Mertyurek, Matt Jessee, Will Wieselquist

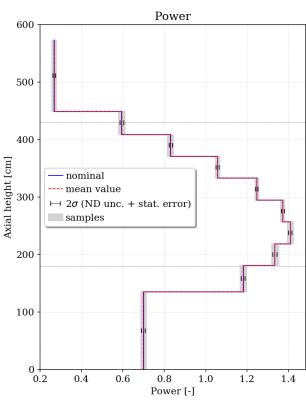
Major Features

- TRITON-Shift transport and depletion (CE and MG)
- TRITON-Shift nodal data on cartesian mesh and global hexagonal mesh
- Transport-only calculation

Other improvements


- Initial capability for feed and removal for MSR systems
- Flexible, user-friendly tallying of flux, fission rate in TRITON-Shift with different (cartesian) meshes and group structures
- Minor changes to parameter defaults

Recent use in NRC Projects/Applications


Non-LWR depletion calculations in Severe Accident and Nuclear Data Performance Assessment projects:

- generation of representative isotopics
- power profiles

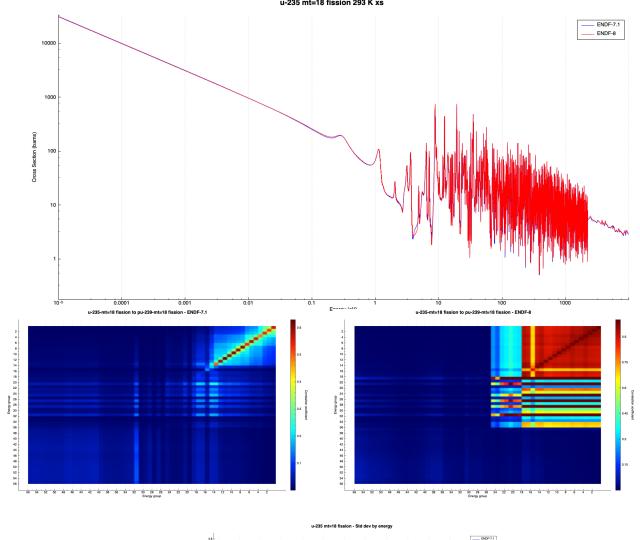
Berkeley pebble-bed FHR

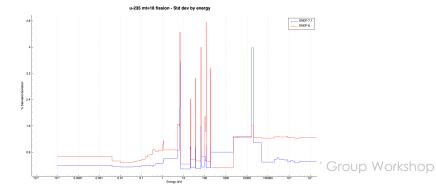
SCALE model

Axial power profile using transport-only

DATA in 6.3.0

Product Owner: Andrew Holcomb Contributors: Doro Wiarda, Rike Bostelmann, Kang Seog Kim


Major Features


- ENDF/B-VII.1 fixed probability tables
- ENDF/B-VIII.0 (CE, MG in 56, 252, 302, 1597 groups)
- Patched covariance data

Other improvements

- Migrating data resources to HDF5 format
- Coupled libraries (56n19g, 252n47g)
- Kinetics data with perturbations

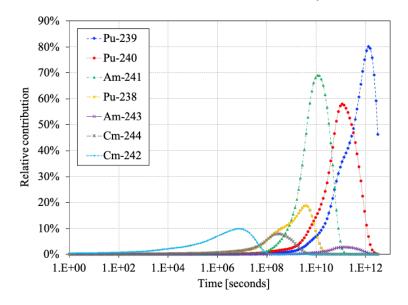
- Every SCALE application
- Sampler (estimate uncertainty in beta effective)
- Nuclear data gap analysis

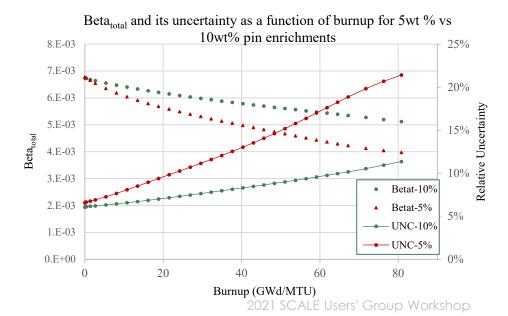
Sampler in 6.3.0

Product Owner: Ugur Mertyurek Contributors: Andrew Holcomb, Rike Bostelmann, Rob Lefebvre, Brandon Langley

Major Features

- Uncertainty quantification for kinetics parameters
- Sensitivity Index calculation
- Standardized distribution functions


Other improvements


- Multi-thread run capability (lost in 6.2.3)
- Fulcrum integration and input error checking
- Various parametric study improvements (mainly for NCSP applications)

Recent use in NRC Projects/Applications

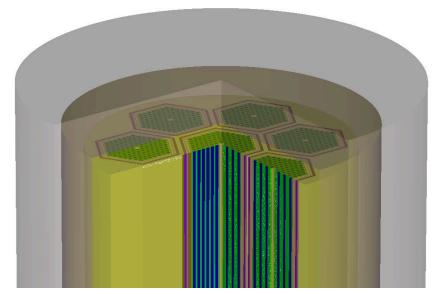
- RP investigations on HALEU/HBU fuel
 - Decay heat and kinetic parameter trends
- Regal RCA measurements
 - Uncertainty contributions to Gd isotopes C/M

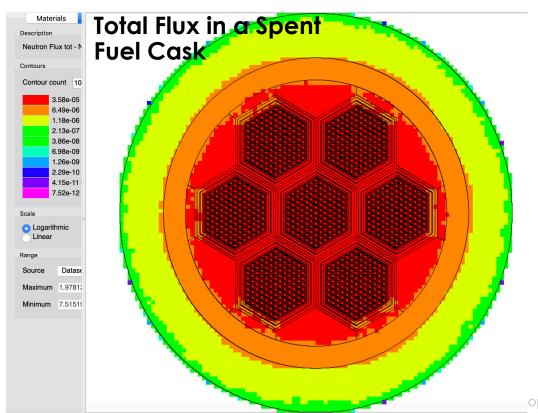
Relative contribution of actinides to decay heat.

CSAS in 6.3.0

Product Owner: Kursat Bekar

Contributors: Brandon Langley, Greg Davidson, B.J. Marshall


Major Features


CSAS_Shift transport (both MG and CE)

Other improvements

- Capability to support the specification and use of multiple energy group boundaries in KENO
- New input blocks to provide flexible/user-friendly tally specification (currently only flux, fission rate, fission source distribution mesh tallies are available) with both KENO and Shift
- Reaction tallies with Shift transport
- Diagnostic tallies with Shift transport

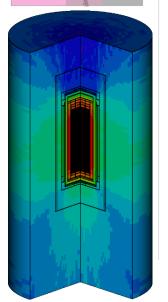
- NRC Non-LWR Severe Accident Modeling & HALEU/HBU/ATF
- NCSP experiment design

MAVRIC in 6.3.0

Product Owner: Cihangir Celik Contributors: Gregory Davidson, Kaushik Banarjee, Kursat Bekar, Brandon Langley, and more.

Major Features

- parallel processing via Shift


Other improvements

- expanded flux-to-dose conversion factors
- maintenance and bug fixes
- Fulcrum integration

Recent use in Projects/Applications

- UNF&STANDARDS
- storage and transportation of spent fuels
- HALEU/HBU/ATF

The MAVRIC-Shift Sequence in SCALE for Radiation Transport and Shielding Calculations with Automated Variance Reduction and Parallel Computing

Approved for public release.

Distribution is unlimited.

OAK RIDGE NATIONAL LABORATORY

Kaushik Banerjee Cihangir Celik Gregory G. Davidson Thomas M. Evans Bradley T. Rearden William A. Wieselquist

ORNL/TM-2019/1358

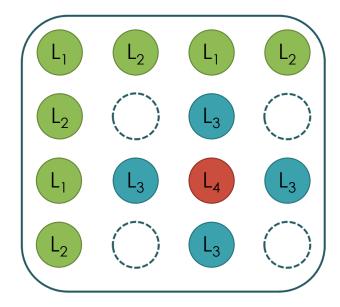
October 28, 201

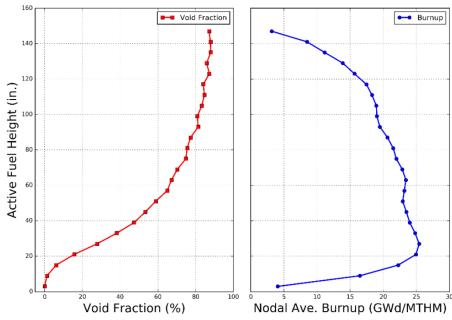
AOS-100 Dose Calculation Comparison

Caguanaa	Number of	Wall Time	FOM	
Sequence	Processors	(min)	(1/min)	
mavric	1	2340	1080	
mavric-shift	1	1941	892	
mavric-shift	4	967	436	
mavric-shift	16	190	586	
mavric-shift	256	18	372	

ORIGAMI in 6.3.0

Product Owner: Steve Skutnik


Contributors: Rob Lefebvre, Will Wieselquist


No major changes to ORIGAMI core

Related improvements

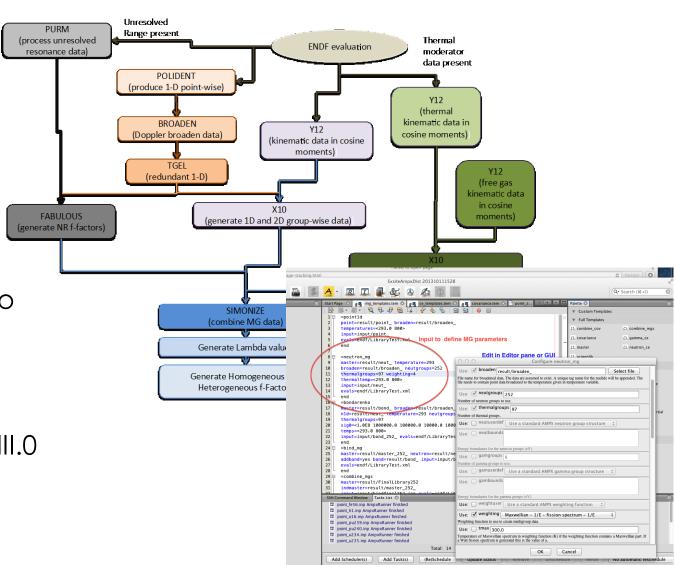
 New standard ORIGEN library format in HDF5, paving way for generality for LWR & non-LWR modeling

- OBIWAN is used to post-process standard ORIGEN "f71" output files into "Inventory Interface" files which provide streamlined data transfer to MELCOR
- ORIGAMI and OBIWAN are used by UNF-ST&NDARDS to add data to the database (using OBIWAN CSV output option)
- Polaris now generates ORIGEN libraries which may be used in ORIGAMI

Void fraction and discharge burnup profile for a representative BWR assembly (from NUREG/CR-7240)

AMPX in 6.3.0

Product Owner: Andrew Holcomb Contributors: Dorothea Wiarda, Cihangir Celik, Kang Seog Kim, Rike Bostelmann and more


Major Features

- Generate MG, CE and covariance libraries for use in SCALE
- Supports all ENDF formats
- GUI to add use in making input files

Other improvements

- Support for the new GNDS format
- Updates to covariance processing to correct for bad ENDF data
- Improvements for the f-factors

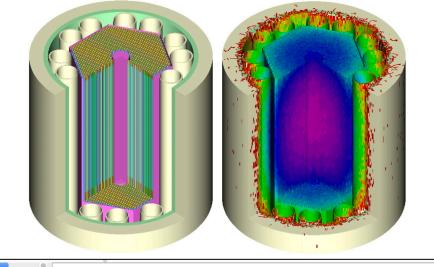
- Updated Data libraries for ENDF/B-VIII.0
- Updated covariance libraries

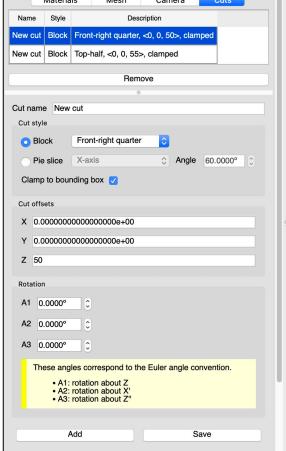
Fulcrum in 6.3.0

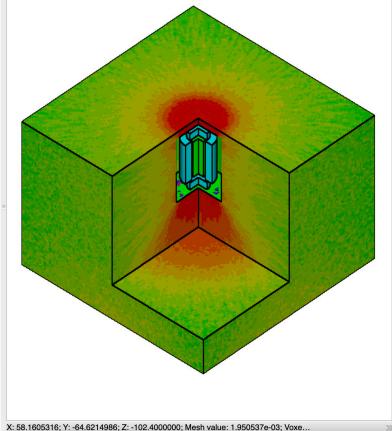
Product Owner: Rob Lefebvre

Contributors: Cihangir Celik, Andrew Holcomb, Brandon Langley, and Everyone else

Major Features


- 3D geometry and mesh data overlay visualization
 - Including geometry opacity and cut controls


Other improvements


- Interactive MAVRIC source distribution forms
- Data plotting usability improvements
 - Large MG library handling
 - Preserve plot ranges while adding/removing data
- Autocompletion of cross-section names
- Over a dozen bug fixes

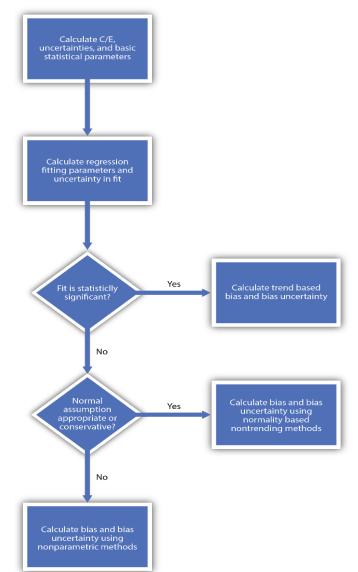
Recent use in Projects/Applications

 All the illustrative 3D geometry and mesh data plots

VADER in 6.3.0

Product Owner: Justin Clarity and Shane Hart Contributors: B. J. Marshall, Will Wieselquist, Seth Johnson

Major Features


- Maintains old USLSTATS functionality
- NUREG/CR-6698 trending methods
- Parametric and Nonparametric methods
- Chi-square Normality testing
- Written in C++ to improve extensibility
- TSUNAMI-IP produces VADER compatible inputs

Other improvements

- Expand the number of normality tests
- Trend significance testing

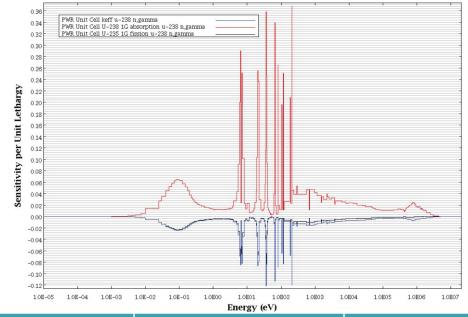
Recent use in Projects/Applications

- Incorporates a significant number of validation methods to align with report released last year


```
1 =vader
 41.9947003 0.97978 0.00666
 52.3125354 0.97862 0.00519
 62.0489823 0.98018 0.00559
 71.4951488 0.98123 0.00893
 81.6272778 0.98207 0.00697
 91.6992786 0.98000 0.00735
11 1.7664417 0.97843 0.00558
121.8082888 0.97523 0.00810
131.1019401 0.97965 0.00549
141.8500284 0.97295 0.00487
15 1.8733395 0.97805 0.00479
16
18 trend values=[-2.995732274 0 3.912023005]
20 methods {
    USL1=[confidence=0.95 proportion=0.95
           extrapolate=Yes1
    LTB=[confidence=0.95 proportion=0.95]
    LTL=[confidence=0.95 proportion=0.95]
25
26
27 tests{
      trend signicance[confidence=0.95]
      shapiro wilk[confidence=0.95]
30 }
31 end
```

TSUNAMI in 6.3.0

Product Owner: Jordan McDonnell Contributors: Kursat Bekar, Seth Johnson, B.J. Marshall, Rike Bostelmann, Travis Greene, Will A. Wieselquist


Major Features

- Sensitivity computations integrated into high performance Monte Carlo transport code, Shift
 - Distributed memory enables more accurate calculations with Iterated Fission Probability method

Other improvements

- Performance improvements
 - 45% speedup in TSUNAMI-IP
 - Reduced time-to-solution for TSURFER runs with large number of cases
- HDF5 format for Sensitivity Data Files

- Assessment of Existing Transportation
 Packages for Use with HALEU
- Nuclear Data Gap Analysis

Number of SDFs	TSURFER run time, 6.2.4	TSURFER run time, 6.3.0
128	14 min	13 min
512	3.5 hours	1.5 hours
929	47.5 hours	2 hours
1229	~10 days	7.25 hours

Summary

- Many thanks to all the developers and beta testers inside and outside of lab
- Final stretch is closing out QA and doing final performance testing & improvements

