Publication

Molecular Insights into Arctic Soil Organic Matter Degradation under Warming

by hongmei Chen, et al.

Abstract 

Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. Using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH4HCO3 from both the organic- and mineral-layer soils during incubation at both −2 and 8 °C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classes of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.

Read more

Download Publication

Access for Environmental Science & Technology subscribers only.

Publication Citation

Environmental Science & Technology 2018 May 22, 2018
DOI: 10.1021/acs.est.7b05469

Share