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Shao-Horn, Nat. Mat. 2002

Device Interfaces Grains Atoms
N. Dudney, JES 2001

• vacancies
• doping
• dislocations

Batteries: From ideal to real

• grain boundaries
• grain orientation 
• pores

• interfacial reaction 
kinetics

• electronic and ionic
transport

Structure and functionality in batteries on different length scales

Material choice vs. Material engineering

Courtesy of Edwin Garcia



• New microscopic and 
spectroscopic techniques 
spanning the atomic and 
mesoscopic scales.

• “These measurements are 
critical to achieving the ability to 
design EES systems rationally, 
including materials and novel 
architectures that exhibit optimal 
performance”.

Basic Research Needs for Electric Energy Storage



Real Battery Operation

E. Garcia, in print
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Realistic multiphase battery has complex micro-, meso- and macroscopic 
fields of potential and Li-ion concentrations.



The Approach: Divide and Conquer



Electrochim. Acta 52, 4572 (2007).

Electrochem. Comm. 6, 536 (2004).

J. Electrochem. Soc. 148, A1239 (2001)

Previous SPM-based Studies

Topography measurements:
high resolution, but difficult to interpret

Step-height measurements:
time consuming, non-local
Current measurements:
cannot distinguish Li and electronic currents
Potential measurements:
multiple mechnisms involved Nanotechnology 20, 445706 (2009) 



Challenge: Probing Li Diffusion on the Nanoscale

Huggins, Annu Rev Mat Sci. 1978 

Due to extremely slow ion dynamics and high equivalent impedance, current 
detection on the nanoscale is impossible. Are there alternatives?

Revolution in nanoscale imaging has come with the STM and related scanning probe methods. Can 
we have STM for Li diffusion?



ESM concept

Electrochemical Strain Microscopy
Concept: Investigate local Li-ion dynamics based on V = f(cLi) in SPM time regimes

Displacement

Li

CoO2

u = f(DLi, cLi)

Local ac bias
↓

Change local cLi profile
↓

Create local strain profile
↓

Surface displacement

SPM ac fields
(lock-in)

Electrochemical
strain 

Vac

Similar to Piezoresponse Force Microscopy

<10 s per
measurement
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ESM signal: analytical

SPM regime
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Analytical calculations to find frequency dependence of ESM signal
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LiCoO2 thin film

Electrode

Phase-Field Modeling of the PFM Dynamics
E. Garcia, Purdue UniversityPhase-field model
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Displacement Displacement (log-log) Signal/Noise

ESM signal: resonance enhancement

• stay away from 1/f noise
• mapping capabilities
• no sample decomposition 
(but also slowed down Li-ion dynamics)

→ Contact resonance enhancement



400nm400nm

• LiCoO2 thin film (500nm)
• Roughness around 100nm
• Grain size is hard to determine due to all the smaller substructures

Topography Deflection signal
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LiCoO2: Topography
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The Band Excitation Method: Dissipation Detection



4D data array size: ~0.3-1 GB, Acquisition time: ~ 1 hour

Band Excitation Electrochemical Strain Microscopy

SPM Entering the Terabyte Age

5D data array size (FORC, kinetics): ~3-30 GB, Acquisition time: ~ 12 hours
Fading or fatigue study: ~ 0.3 – 1 TB, Acquisition time: ~1-2 weeks

2008 winner
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Band Excitation PFM on LiCoO2
Topography

Resonance Frequency Response Amplitude

Electrochemical BE 
imaging with 2Vac on 
a 50x50 grid

Resonance frequency 
shows crosstalk with 
topography

Amplitude image show 
grains/areas with 
different 
electromechanical 
response!



120nm120nm

Can we manipulate Li concentration locally?

The bias pulse from an SPM tip can induce the redistribution of Li ions, while 
maintaining the step edges on the surface



120nm120nm

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-15

0

15

V
ol

ta
ge

 [V
]

Time [sec]

Amplitude

Phase

Amplitude

Phase

Time [msec]
0 260

120 nm 120 nm

Single point (voltage pulse applied to topo minimum)

Single point (voltage pulse applied to plateau)

Local Spectroscopy of Electrochemical Processes



Water droplet around tip acts as electrolyte

Cathode materials
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Li-ion Mapping in Layered Cathode Materials
N. Balke et al, Nature Nano, AOP



-V

Key: Lattice parameters of LiCoO2 are a 
function of Li-concentration

Method: Using a biased tip to locally change 
c(Li+) and detecting the strain response

Amatucci 1996

Anode

Cathode

Electrolyte

• Formation of a nanoscale battery with the biased 
tip and the water droplet on the cathode surface
• LiCoO2-LiOH system is (almost) reversible
• CoO2 layers are stable up to high degrees of 
delithiation

Imaging Electrochemical Reactions on The Nanoscale

Langmuir 21, 8096 (2005) 
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Cathode: LiCoO2
Electrolyte: Lipon
Anode: Cu, Sn, C, Si

Top view Cross section

Battery Heterostructure

600nm 600nm

Topography Deflection



Loops can only be measured on the complete battery stack.

ESM: Voltage spectroscopy
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200nm

Deflection (1um)

- GB are more active 
- hot spots within grains

Loop opening (2Pr)

High-resolution BEPS Maps at 15 V Bias Window

N. Balke et al, Nano Lett., AOP
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Evolution of Response with Bias Window

Different regions are activated at different biases!



Role of Electrochemical Reactivity

Bias
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Transport is linear in driving force (potential)
Reaction is exponential in overpotential (Volmer-Bultler)

Can we distinguish onset of reaction and activation energy for transport locally?

Reaction 
onset

Transport
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Decoupling Transport and Interfacial Reaction

Transport
Linear fit of loop opening as function of voltage to y = a + bx
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• The Li -activity can be mapped on the sub-10 nm 
scale in cathode and anode materials
• It may be feasible to distinguish transport and 
electrochemical reaction using multidimensional SPM
• Opens the road to probe these behaviors on a single-
defect level (link to theory and materials engineering)

Activation voltage

N. Balke et al, ACS Nano, AOP



X cycles

X+3*104 cycles

X+105 cycles

• Response evolution with cycling (32Vpp at 7Hz) 
• With increasing cycle number hot spots disappear 
and the grain boundaries become more active
• Charge state can be ascertained by macroscopic 
measurements

Response Evolution with Charging
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Charge: 0.1 mA,  
Capacity: 0.44 mAh

Charge: 0.2 mA, 
Capacity: 1.62 mAh



SummaryElectrochemical Strain Microscopy

• Measure local reversible ion dynamics - correlate dynamics to microstructure
• Separate transport and interfacial reaction
• Works for Li-ion and O-vacancy imaging
• Can be combined with ex-situ and in-situ STEM/EELS
• Need more theory
• Controlled electrochemical environments

What will it lead to:

• Understand and identify battery 
processes on the nanoscale 
• Role of defects in functionality
• Origins of battery failure 
• Mechanisms of electrocatalysis
• … and much more
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