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Research Background: low-
medium scale application
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Research Background: Scope of
Smart Grid Concerns
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A smart grid uses digital
technology to improve
reliability, security, and
efficiency (both economic and
energy) of the electric system
from large generation, through
the delivery systems to
electricity consumers and a
growing number of distributed-
generation and storage
resources

Adapted from: Smart grid system report, DOE, 2009



Demonstration of Li—ion battery in electricity
storage

http://www.altairnano.com http://ww.byd.com.cn

Altairnano 1 MW, | ] BYD, 1 MW,
Single cell: LiFePO,/C
Single cell: LiMn,0,/Li,TisO,, Voltage: 3.25V
Voltage: 2.5V Capacity: 200 Ah
Capacity: 50 Ah Weight: 6.7 kg

Weight: 1.6 kg



Challenge issues of large-scale energy
storage by electrochemical power sources

Characteristics in large scale
storage.:

Scalable ( "MW > GW )
Long—1ife( > 300000 cycles),
Safe,

Low—cost,

Fast—-response and environmental—-friendly



Some challenge issues

* It is not easy to scale up electrochemical power
sources (for single cell, normally low voltage, <
5V single cell..), thus uniformity , assembling and
management of battery system is more important
supposing the system is defined

* For single cell, chemistry( or electrochemistry )
should be considered carefully according to
above-mentioned factors

 In a defined system, materials is one of
determining factor for good performance.



Systems and Materials Aspects:
Problems

» Redox-flow cells: Stability of Electrode
/current collector/membrane, high
electrolyte concentration and stability...??,

» Na-S battery: Stability of current collector,
sealing/safety, cost, ...

 Li-ion battery: Long cycle life, safety, low-
cost and large-scale....



The energy storage challenges for
Chinese economic growth

China 1s becoming an important energy consumers in the last thirty years
and will be an important player in the energy consumption in the next
thirty years

Renewable energy will be a fastest growing ratio in the energy
consumption of China, thus electrochemical energy storage is important
way to realize.

China have setup several national programs to develop electrochemical
energy storage for EV and smart grid, either in Li-ion battery or redox
flow battery and Na-S battery

For example, China plans to spend 500billion RMB to develop electric
vehicles(PHEV or EV), and 1 billion RMB for battery R&D in High-tech
program in the next five years...



Chinese vehicle fleet projected to grow rapidly through
2050, with a corresponding growth in oil demand
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Source: “Projection of Chinese Motor Vehicle Growth, Oil Demand, and CO2 Emissions through 20507,
Argonne Mational Lab, 2006.

Newest News: China is becoming the No.1 car-maker country in the world in 2009,

car-consumption in China also increase sharply in recent years.



China is the third largest oil importing country
after US and Japan

Top Ten Net Qil Importers, 2008°
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 How about the system we studied...

 How choose the next energy-storage
system beyond Li-ion battery,

Li-based battery ??



Li-air battery: a possible to way to get
high energy density

» High voltage: ~ 2.8V (non-aqueous system)

» High capacity of both cathode (O,, > 1000mAh/g ) and anode materials (Li, >
4000mAh/g)

» Easy to get reactant such as O, from air directly, may combine with advantage
of fuel cells and batteries...

Questions and Problems:

High performance of oxygen electrode performance ( rate performance,
reversibility of the reaction, and reaction mechanism is not very clear) .

Rechargeability of Li anode, and SEI ...



Electrochemical study of oxygen
reduction in non-aqueous solution

Cathode: carbon + binders; Anode: Li, Reference Ag/AgCI

Electrolytes: Different salts system as indicated




The effects of types of carbon on the oxygen
electrode performance
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The effects of the binder on the oxygen electrode performance
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Figure Discharge curves of the oxygen electrode with: a)
different kinds of binders; b) different content of PVDF.



TG-MS experiments of the
cathode after discharging
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The weight loss
between 50°C and
150°C is attributed to
the decomposition of
LiO2 and ROCOOL,,
and the loss between
330°C and 450°C is
due to the produced
gas of H,0,CO and
CO2 coming from the
reaction of Li,O, and
PVDF.



XPS analysis of surface species on
the cathode materials

Intensity a.u. Intensity a.u.
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The results indicate
that the main
discharge product
is Li202, though
there are some
ROCOOLi and
Li2CO3 due to the
reaction between
the oxygen radical
and the solvent
during the
discharge process.



Reversible Single electron reduction of oxygen:
TBAPF;/ MeCN
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corrected), scan rate: 100 mV/s




Good cyclic stability of oxygen reduction in TBAPF;/ MeCN

10_ _
81 in0.1MPa0, -
6L
4L
'E 0__ —_—
© oL
< 4}
£ 5l ]
<[O8f — st
0 "
12 ]
M T 2 T T 0 1 2
E /V (vs. Ag/AgCI) E/V (vs. Ag/AgCl)

CV curves for ORR at a GC electrode in 0.1M
TBAPFz/MeCN electrolyte ( iR uncorrected), scan rate:
100 mV/s



Diffusion-controlled reaction of oxygen reaction
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CV curves of oxygen reduction at GC electrodes at different
scan rates in 0.1M TBAPF;/MeCN; the inset shows the
relation of peak currents and square roots of the scan rates.



RRDE experiments of oxygen reduction process
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Fig. a) RDE of GC rotating disc electrode at various rotation speeds; b)
RRDE plots for the electrochemical process of oxygen at the rotating rate
of 900 rpm in 0.1 M TBAPF4;/MeCN, sweep rate: 100 mV/s.
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Tafel-Plot of oxygen reduction in 0.1M TBAPF;/ MeCN
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NMR detection of reactive intermediates
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13C NMR spectra of electrolytes of 0.1M TBAPFsMeCN: (a) before reduction of
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Cation effects on the oxygen reduction:0.1MLIPF;/ MeCN
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Fig. a) CVs for the reduction of oxygen at a GC electrode, b) RRDE
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The effects of solvents: carbonate solvents -- PC
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Fig. a) Cyclic voltammograms for the reduction of oxygen at a GC
electrode in 0.1M TBAPF4/PC electrolyte, scan rate: 100 mV/s.;
right: CV curves at different scanning rates



RRDE experiments in 0.1M TBAPF/ PC
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The CV curves in the mixed solvents
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Reaction mechanism of oxygen
reduction in TBA+-based electrolytes
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* In Li*-based organic, the reduction of oxygen
IS not reversible and complex



Some other battery systems with
high energy density

 Li—F, battery ~ 06V, 5000Wh/kg

* Li— MF, battery

* Li— CF, battery
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Multi-electron Displacement Reactions
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* Lithinm anode cyclability and safety are serious issues to overcome



Fluoride electrode materials

* We have built up a quite convenient
synthetic system for synthesis of
fluoriated compounds, thus it make us
to make different MFx, CF, and so on.
And it can be scalable up ....

 Some results about CF,



XRD patterns of graphite before and
after fluoriation
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Conclusions

In the non-aqueous electrolyte solution, either
solvents or electrolytes has big effects on the
reduction of oxygen reduction. If we want use
these electrolytes in the future Li-air battery, we
must consider their side effects and choose/design
good electrolyte system.

Fluoride systems have very high energy density,
some fluoride systems should be investigated as
potential reversible system, e.g. carbon fluorides.






