S

Frfrrrredr

A
||||

Present Research and Future Directions of the
Batteries for Advanced Transportation Technologies
(BATT) Program

Venkat Srinivasan
Staff Scientist
Lawrence Berkeley National Lab

ORNL Meeting
October 7, 2010



S

Frreoeeer ‘m

Requirements for vehicle batteries
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e For PHEVs to be commercial, need batteries with lower cost ($/kWh)
® or battery EVs to be commercial, a doubling of energy density needed

® [n addition, safety and life (cycle and calendar) of Li-ion batteries remain a challenge
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DOE battery research portfolio

Vehicle

Technologies 1 Cost-shared development activity with

USABC Activity iIndustry leading to full battery systems
1 Benchmark and assess existing and
candidate battery technologies

Advanced Battery Research 1 Assist battery developers to overcome
for Transportation barriers for high power Li-ion batteries

rarias for A . /s 4 Innovative, cutting-edge long-term research
S e to understand and solve life and performance
Transportation Technologies o , ,
limitations of next-generation batteries

L

Energy Frontier Research

 High-risk, high-reward research to identify
new battery chemistries

Centers (EFRC)

Basic Energy
Sciences
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The BATT Program

e Focus on the fundamentals to solve the performance, safety, life, and cost challenges
that limit use of batteries in plug-in hybrid and electric vehicle applications

e Present emphasis is predominantly on Li-ion batteries

e Consists of 34 projects in universities, national labs, and one company
e 4 additional projects expected to start in January 2011
e DOE Program Manager: Tien Duong
e Participants represent some of the best-known (battery) researchers in North America

e Chosen using a highly-competitive proposal review process
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Solving applied problems using a fundamental approach_____—~|

Potential battery material identified

>
oghy

New battery developed for a PHEV
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Solving applied problems using a fundamental approach

BERKELEY LAB

Potential battery material identified

Understand limitations in the electrode -
10 um

Modify material/electrode to alleviate
limitations

New battery developed for a PHEV %
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Understand limitations in the electrode

Modify material/electrode to alleviate
limitations

Assess ability of system to perform under real world

New battery developed for a PHEV
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Understand limitations in the electrode

Modify material/electrode to alleviate
limitations

Assess ability of system to perform under real world

< Commercialization Roadmap

New battery developed for a PHEV
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Structure of BATT
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The LiIFePO4 Story
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The LiFePO4 Story —
Capacity [mAh/g]
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The LiFePO4 Story
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The LiFePO4 Story
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Finding new high-energy materials

M. Thackeray (ANL):
New, high-capacity / high-energy materials with
improved cycling ability through doping and coatings




FInding new high-energy materials
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New, high-capacity / high-energy materials with
improved cycling ability through doping and coatings
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FInding new high-energy materials
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Finding new high-energy materials
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Finding new high-energy materials
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Making batteries safer

More oxidizin

Oxygen Chemical Potential of Charged State (eV)

G. Ceder (MIT):
E - Ab initio calculations to identify safe materials that operate at
L high potentials

®oxides ©Ophosphates ®borates ®@silicates ©sulfates © carbonates
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Making batteries safer cecee) I

More oxidizin
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Making batteries safer

More oxidizin

Oxygen Chemical Potential of Charged State (eV)
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G. Ceder (MIT):

Ab initio calculations to identify safe materials that operate at
high potentials
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The Commercial side of BATT

=~

e Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo

Inc. —
==
[ {‘* e 1 i} e Advanced cathode materials (Manthiram) being commercialized by ActaCell.

Company has recently licensed an anode material developed under BATT
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The Commercial side of BATT

=~

e Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo

Inc. —
==
[ {‘* e 1 i} e Advanced cathode materials (Manthiram) being commercialized by ActaCell.

Company has recently licensed an anode material developed under BATT

e Simulation method for materials design (Ceder), partly funded by BATT, used |\l Computational

'Ry Modeling
by CMC, Inc. «C consultants,Inc.

e Novel manufacturing technologies and computational simulations (Sastry),
being used by Sakiti3

SAKTIZ I

e Molecular dynamics code (Smith), developed with BATT funding, basis of

| i |
company to simulate electrolyte properties asatch olecular

INCORPORATED
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The Commercial side of BATT el N\

BERKELEY LAB
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e Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo ———
Inc. —
==l
[ C e I I } e Advanced cathode materials (Manthiram) being commercialized by ActaCell.

Company has recently licensed an anode material developed under BATT

e Simulation method for materials design (Ceder), partly funded by BATT, used |\l Computational

yEmmN Modeling
by CMC, Inc. «C Consultants, Inc.

e Novel manufacturing technologies and computational simulations (Sastry),
being used by Sakti3

SAKTIS I&

e Molecular dynamics code (Smith), developed with BATT funding, basis of

' i W Wo | |
company to simulate electrolyte properties olecular

INCORPORATED

vvvvvvv

0 - e Numerous patents have resulted over the years, with some licensed
nanoe.-;3a o d to companies for commercialization

* ¢e.9., ANL “composite” material, MIT nanotube material
TODA KOGYO CORP.
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Requirements for vehicle batteries

1000 I | | LD | | ] L | | ] LG ] I ] 1T T T1T1]
T : Fuel Cell . ]
= - 100h - o EVeoal .- 1EV -  Electric Vehicle
S * : | HEV — Hybrid-Electric
= oo Vehicle
B 100 k/HHNgm = . . .
- o . L <0 1 PHEV- Plug-in Hybrid- Electric
2 aF NI'MH : 7] Vehicle
5 Lead -Acid i B
AS 2+ 1on HEY goa\lx -
Q D . ¢
=10 | . =
é 6§ Capacitors ;
S| 7 4 , . .
- _ . . .
g oL lh 0.1h 36s 16 )
. . » .0S
1 ) | | | L1111 ] : | | | 1 111 I. . | | | 1111 I. ) | | | L1 11
1 2 3 4
10" 10 10 10 10
Neceleration > Specitic Power (W/kg) Source: Product data sheets

e For PHEVs to be commercial, need batteries with lower cost ($/kWh)

e -or battery EVs to be commercial, a doubling of energy density needed

| How do we increase the energy density of batteries?
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ergy density of Li-ion batteries
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i,*—Two approaches (i () find new materials to increase theoretlcal energy and 1‘

Ji

S

(i) make a more “efficient” battery

H
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Approaches to improve energy density/reduce cost /\l

BERKELEY LAB

[ Moving the line higher j [ Bridging the gap j
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Approaches to iImprove energy density/reduce cost

Multifunctional
components

[ Moving the line higher j [ Bridging the gap j

Novel
electrode
processing

Inexpensive/
thinner separators
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Approaches to improve energy density/reduce cost

RFPs issued over last 2 years

Alloy anodes High voltage
electrolytes
[ Moving the line higher j [ ridaing the gan J

Systems

Novel cathode beyond Li-ion

RFPs next month
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Approaches to improve energy density/reduce cost

[ Moving the line higher j [ Bridging the gap j

Novel cathode

e

*, In addition to exploratory researoh BA
| focus area in oathooles
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Activities on the LiMn1 5Nio.s04 spinel system
Electrolyte 100 J. Cabana, LBNL
Oxidation? ) A. Manthiram, U. Texas
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® \/ery stable cathode that results in ~15% improvement in energy over Gr./NMC
® An ideal test bed for studying high voltage operation
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Activities on the LiMn1,5Nio.504 spinel system

Electrolyte . 100 J. Cabana, LBNL
Oxidation? L A. Manthiram, U. Texas
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® \/ery stable cathode that results in ~15% improvement in energy over Gr./NMC

® An ideal test bed for studying high voltage operation

® BAT T Management will oversee two program-wide milestones:
1. What are the side reactions in this system and how do we mitigate them?
2.What is the optimal particle size to minimize side reactions and achieve PHEV rates?

uestions over this fiscal year |

= — — S

7BATF will be focus on answering these two g
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Ni/Mn spinel focus area

® Are there any side reactions and if so what are they”?

1. Quantify side reaction rate and mechanism

® [eam consisting of electrode studies (Battaglia), diagnostics (Kostecki), and theory
(Smith/Borodin)

2. Propose and test techniques to decrease rate of side reactions

® Technigues include surface modification (Zaghib, Zhang, Manthiram), new
electrolytes (Kerr, Lucht, Angell), modifications to morphology of cathode (Chen,
/Zhang, Manthiram), and using binder/carbon free electrodes (Chiang)
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Ni/Mn spinel focus area

® Are there any side reactions and if so what are they”?

1. Quantify side reaction rate and mechanism

® [eam consisting of electrode studies (Battaglia), diagnostics (Kostecki), and theory
(Smith/Borodin)

2. Propose and test techniques to decrease rate of side reactions

® Technigues include surface modification (Zaghib, Zhang, Manthiram), new
electrolytes (Kerr, Lucht, Angell), modifications to morphology of cathode (Chen,
/Zhang, Manthiram), and using binder/carbon free electrodes (Chiang)

® |dentify the optimum particle size to meet PHEV power requirements while minimizing side
reactions.

® TJeam consisting of material synthesis (Manthiram, Cabana, Ceder, Chen), theory
(Ceder, Persson, Srinivasan), diagnostics (Grey), and electrode studies (Battaglia,
Chiang)

- BATT expects to use this team as a meansbf understanding |
| high voltage operation |
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Impact of BATT Li-ion research
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® [ i-ion has potential to change the energy landscape

® More research needed
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Beyond Li-ion

e BAT T views solving the Li metal problem (rate and dendrites) as a POLYPLUS
critical first step to enabling Li-S and Li-O2 o

e BATT has had a portfolio in Li metal systems for 2 decades

» Pioneering research at LBNL has led to different methods of —=
protecting lithium metal
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Beyond Li-ion

e BAT T views solving the Li metal problem (rate and dendrites) as a POLYPLUS
critical first step to enabling Li-S and Li-O2

=~

e BATT has had a portfolio in Li metal systems for 2 decades

» Pioneering research at LBNL has led to different methods of ——
ina lithi =EEC]
protecting lithium metal

e New project under OVT (Integrated Lab-Industry Research Project) combines the strengths of
LBNL and ANL to revisit the problem

» Project interacts with industrial partners to help enable use of Li metal at rates relevant to
vehicle operation at room temperature
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Seyond Li-ion

e BAT T views solving the Li metal problem (rate and dendrites) as a POLYPLUS
critical first step to enabling Li-S and Li-O2

-~

e BATT has had a portfolio in Li metal systems for 2 decades

» Pioneering research at LBNL has led to different methods of ——
A lithi =EEC]
protecting lithium metal

e New project under OVT (Integrated Lab-Industry Research Project) combines the strengths of
LBNL and ANL to revisit the problem

» Project interacts with industrial partners to help enable use of Li metal at rates relevant to
vehicle operation at room temperature

¢ |[n addition, BATT has nucleated projects in both sulfur and oxygen

e Focus on the sulfur cathode: Can we contain the soluble polysulfides and recharge the
insoluble ones”?

e Focus of the oxygen cathode: Can the oxygen reaction be made reversible in a non-aqueous
media?

— e ==

 As systems evolve, BATT will periodically evaluate need to increase emphasis |
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e BATT has been periodically evaluating the need to start research into systems beyond
lithium

¢ Justification for moving away from lithium still controversial

» Difficult to see sodium being higher energy than lithium or being lower cost

» Justification for sodium: “its not lithium”!

o BA

has nucleated one small theory/synthesis project on sodium batteries

» Hope is to see if materials exist that can react with sodium reversibly

e Research expected to inform BATT if further effort is appropriate

B e ;V‘-————‘j

- As system evolves, BATT will periodically evaluate need to
| . .
| INcrease emphasis
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The BATT portfolio in FY201 1 )
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Time to achieve success

1-3 years 2-5 years 5-8 years
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The BATT portfolio in FY201 el
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Ni/Mn Spinel cathode

Silicon anode

Time to achieve success

1-3 years 2-5 years 5-8 years
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The BATT portfolio in FY2011

Novel electrodes,
Ni/Mn Spinel cathode electrolytes, and
separators

Silicon anode Novel additives

Novel electrode
processing

Time to achieve success

1-3 years 2-5 years 5-8 years



The BATT portfolio in FY2011

Novel electrodes,
Ni/Mn Spinel cathode electrolytes, and Beyond Li-ion
separators

" Novel additives
Silicon anode Beyond lithium

Novel electrode
processing

Time to achieve success

1-3 years 2-5 years 5-8 years



Cathode request for proposals (RF

e All projects in BATT have a 4 year term after which they are officially stopped

» Applies to Universities, Industry, and National Labs

e RFP is issued in November of each year

°)
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» 1 page white paper is requested. White paper is reviewed and full proposals are
requested from a paired-down list. Full proposals are subjected to a “consensus review”

Process

* Anode RFP in 2009: BATT received 88 white papers of which 27 were asked to

submit full proposals. 8 projects are being funded

e |n 2010, focus will be on novel cathode materials for lithium batteries

e More specifics will be provided next month

e BAT T also accepts “unsolicited” proposals for consideration outside the RFP cycle

P




For more information...
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BERKELEY LAB

BATT website: http://batt.lbl.gov/

U8 DEPARTMENT OF

(&) ENERGY

anced Transportation Technologies

HOME ORGANIZATION PEOPLE |REPORTS ¥ FUNDING OPPORTUNITIES ¥ | THIS WEEK IN BATTERIES SEMINAR SCHEDULE

The BATT Program

The Batteries for Advanced
Transportation Technologies
(BATT) Program is the
premier fundamental research
program in the U.S. for
developing high-performance,
rechargeable batteries for
electric vehicles (EVs) and
hybrid-electric vehicles (HEVs).
This program is supported by
the U.S. Department of Energy
Office of Vehicle Technologies
(OVT) and is managed by the
Lawrence Berkeley National
Laboratory (LBNL) as part of
its Carbon Cycle 2.0

initiative. BATT investigators in @
top research universities and X
institutions work on six Task E :, NEWS

Areas: Anodes, Cathodes,

Electrolytes, Cell Analysis, BATT Program Awards More Than $8 Million for Innovative
Diagnostics, and deling Research Projects on Lithium Battery Anodes

Cell Analysis
Diagnostics,

The Batteries for Advanced Transportation Technologies
(BATT) Program has announced the funding of eight R&D
‘ projects on lithium battery anodes. BATT is funded by the

Iron Doping Improves Cathode Stability
Passivation of Spinel Cathode Surface through Self-Segregation of Iron

Department of Energy’s Office of Vehicle Technologies and is
managed by the Lawrence Berkeley National Laboratory as
nart of its Carhan Cvele 2.0 initiative.


http://batt.lbl.gov
http://batt.lbl.gov

1hank you


http://batt.lbl.gov
http://batt.lbl.gov

