Skip to main content
SHARE
Publication

Aligning lithium metal battery research and development across academia and industry

Publication Type
Journal
Journal Name
Joule
Publication Date
Page Numbers
1 to 6
Volume
8

Successful integration of metallic lithium anodes into secondary batteries could enhance energy density and enable new forms of electrified transportation. However, the outlook for widespread lithium metal adoption in energy storage devices remains mixed. This comes in part from existing gaps in our understanding of the relationships connecting the initial state of lithium, its evolution with cycling, and end-of-life state. It remains important to develop standardized protocols for material and cell characterization, cycling performance, safety, and recycling procedures for lithium metal-based batteries. In February 2023 a cohort of scientists and engineers from academia, national laboratories, and industry gathered to converge on a list of critical challenges and action items to provide better understanding of lithium metal evolution and to enhance academic, governmental, and industrial partnerships to address these challenges. Here, we highlight the major discussion topics revolving around the manufacturing of lithium metal, its related metrology and integration into battery form factors, and best practices testing its electrochemical performance relevant to automotive applications. We introduce a power-controlled discharge testing protocol for research and development cells, in alignment between major automotive stakeholders, that may reveal lithium metal battery dynamics closer to practical driving behavior.