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ABSTRACT 

Transient numerical modeling of high-temperature, high-pressure systems requires 
thermophysical properties correlations that are continuous and well behaved. This report 
documents the development of such correlations for application to the simulation of uranium 
hexafluoride (UF,) cylinders engulfed in fire, and it compares estimated property values to data. 
With modifications, the Lee-Kesler equation of state and its related methods are recommended 
for estimating density, enthalpy, and heat capacity of UF, vapor and liquid phases. Other liquid 
and vapor properties correlations evaluated include vapor pressure, surface tension, viscosity, and 
thermal conductivity. Curve fits to available solid phase data are presented for density, enthalpy, 
heat capacity, and thermal conductivity. Selected derived properties are also presented. This 
report covers thermophysical properties of UF, up to reduced temperatures of 3.0 and reduced 
pressures of 3.0. 

..* 
Xl11 



Rerdel correlation x Oltver’s data 

5000 

4500 

\~_\ 4000 

3500 
- 
5 3000 

s 
g 2500 

CL 

1000 

500 

0 

lemperature (K) 

Fig. 3.1. Vapor pressure of UF’,. 



This report is one of several ddcumenting the development of a transient heat 
transfer/stress analysis model of UF, cylinders engulfed in fire. Another report documenting heat 
transfer correlations for such models is being issued coincident with this report13; reports 
describing and benchmarking the model are future activities. Such modeling requires accurate 
thermophysical properties of UF6 qver a wide range of temperature and pressure: reduced 
temperatures (T, = T/T,) may range from 0.6 to 3.0, while reduced pressures (P, = P/P,) may 
range from 0.01 to 3.0. Property data for UF, around and beyond the critical point is practically 
nonexistent; therefore, correlations must be developed to predict the thermophysical properties 
of UF, over these ranges. Since the correlations will be used in numerical models, special care 
must be taken to ensure that the correlations are continuous over the stated ranges to avoid 
convergence problems. It is also important to match correlated values with the limited data 
available. 

The primary references utilized in this effort are the prior compilation of UF, 
thermophysical property data and correlations by Dewitt’ and the Third and Fourth Editions of 
Z7ze Properties of Gases and Liquid.?*3 which document numerous correlation methods. The 
earIier work of Williams’ was also useful. These references led to the other sources subsequently 
identified when additional information was required to understand and apply specific correlations 
and methods. The correlations presented in this report have been converted to metric units; 
conversion factors to other common units are provided in Appendix A. 

Table 1.1 provides a summary of the correlations and methods considered in the course 
of this modeling effort and highlights the recommended methods. The Lee-Kesler equation of 
state and its related methods for estimating enthaipy and heat capacity, as modified herein, are 
the recommended methods for obtaining density, enthalpy, and heat capacity. The primary issues 
addressed by the modifications were numerical difficulties for P, C 1 .O when 0.95 < T, < 1 .O 
and discrepancies between Lee-Kesler estimates and data. The approaches developed to address 
these issues could be easily applied to obtain property sets for other substances. 

Table 1 .l Summary of Correlations and Methods Considered 
for Estimating UF, Thermophysical Properties 

(Recommended methods are hi&lighted bv bold tvoe.) 

Property 

Critical Properties 

Vapor Pressure 

Acentric Factor 

Equation of State/ 
Density 

Phase 

Vapor 

Correlation or Method 

Riedel 

Pitzer 
Lee-Kesler 

Second Virial Coefficient 
Redlich-Kwong 
Malyshev 
Benedict-Webb-Rubin 
Lee-Kesler 

Section Comments 

2. 

3. 

4. 
4. * 

5.1.1 
5.1.2 
5.1.3 
5.1.4 
5.1.5 

I 

1 
i c 



Property Phase Correlation or Method Section Comments 

Equation of State/ Liquid Rackett (saturated liquid) 5.2.1 
Density Thompson et al. (subcooled liquid) 5.2.2 

Chueh-Prausnitz (subcooled liquid) 5.2.2 
Hoge and Wechsler (saturated liquid) 5.2.3 Note 1 
Williams (saturated liquid) 5.2.3 Note 1 
Lee-Kesler 5.2.3 Note 1 

Solid Williams 5.3 

Enthalpy Vapor Williams (low pressure) 6.1 
Yen-Alexander 6.2.1 
Lee-Kesler 6.2.2 Note 2 

Liquid Yen-Alexander 6.3.1 
Lu-Hsi-Poon 6.3.2 
Lee-Kesler 6.3.3 Notes 2 and 3 

Solid Kirshenbaum 6.4 

Heat Capacity Vapor Williams (low pressure) 7.1 
Lee-Kesler 7.2 Note 2 

Liquid Lee-Kesler 7.3 Notes 2 and 4 

Solid Kirshenbaum . 1.4 

Surface Tension Liquid Williams 8. 
/ 

Viscosity Vapor Chung et al. 9.1 

Liquid Orrick and Erbar 9.2 
Chung et al. 9.2 

Thermal Conductivity Vapor Chung et al. 10.1 
Owens and Thodos 10.3 

Liquid Latini 10.2 
Chung et al. 10.2 
Owens and Thodos 10.3 

Solid Williams 10.4 

1. Use of the Lee-Kesler equation of state for liquid density requires adjustment to match available 
liquid density data and a supplemental interpolation scheme to obtain reliable results for P, < 1.0 
when 0.95 C T, < 1.0. 

2. Use of the Lee-Kesler method for estimating vapor and liquid enthalpies and heat capacities requires 
a correction coefficient to the departure function. 

3. Use of the Lee-Kesler method for estimating liquid enthalpy requires a supplemental interpolation 
scheme to obtain reliable results for P, < 1.0 when 0.95 < T, < 1.0. 

4. Use of the Lee-Kesler method for estimating liquid heat capacity requires that the derivative of the 
liquid enthalpy be determined numerically for those conditions identified in Note 3. 

2 



The &Cal properties of uranium hexafluoride are presented in Table 2.1. Dewitt 
recommends a critical temperature of 503.3 K and a critical pressure of 4.610 MPa (45.5 atm).’ 
The value of critical density recommended by Dewitt is 1375 kg/m3.’ The value of critical 
compressibility (0.2821) presented in Table 2.1 is calculated as 

(2.1) 

where PC = critical pressure, 
M&J = molecular weight, 
PC = critical density, 
R = universal gas constant, 

r, = critical temperature. 

The acentric factor, w, is assumed to have a value of 0.09215 (see Ch. 4). A value of 
352.025 kg/km01 is taken as an average molecul’ar weight for UF 6.2 The triple point temperature 
and pressure values presented in Table 2.1 were recommended by Dewitt.’ 

f Table 2.1. Properties and Critical Constants of Uranium Hexafluoride 

Characteristic Value 

Molecular weight I 352.025 

Acentric factor 

Triple point temperature 

0.09215 

337.2 K 

Triple point pressure 

Critical temperature 

152.0 kPa 

503.3 K 

Critical pressure 

Critical compressibility 

4.610 MPa 

0.2821 

Critical density 1375 kg/m3 

/ 

3 
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. 
The vapor pressure data of Oliver’ were fit to the Riedel vapor pressure equation. The 

form of the Riedel equation is! 

i hp=A+: 
T 

+ ClnT + DT6, (3.1) 

where P is the pressure, T is the temperature, and A, B, and C are constants. 
To improve the fit, the data were fit over three ranges of temperature. The first range 

was from 273.15 to 337.35 K (the triple point); the second range was from 337.35 to 469.17 K; 
and the third range was from 469.17 K to the critical temperature (503.3 K). The point of 
demarcation between the second and third ranges was varied to improve the fit. The results of 
these fits are 

Range I: 273.15 K I T < 337.35 K 

P = 2.3425exp[ 28.957 - 29.022 (y) - 7.1656+-&) 

(3.2) 

Range II: 337.35 K < T I 469.17 K 

P = 1.5268xldexp[15.063 - 15.087(F) - 4.5612Ln( A) 

+ 7 , (3.3) 



Range III: 469.17 K < T I 503.3 K 

P = 2.7303x103exp[631.57 - 645:83 (y) - ,.,,,(A) 

6l , (3.4) 

where T = temperature (K), 
P = pressure @Pa). 

The maximum errors over the three ranges were 0.26, 0.14, and 0.60%, respectively. 
The vapor pressure of UF, is shown graphically in Fig. 3.1. 
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4. ACENTRIC FACTOR 

The Pitzer acentric factor represents the acentricity or nonsphericity of a molecule and 
is a pure component constant. The Pitzer acentric factor was developed by comparing the 
differences in the slopes of the reduced vapor pressure versus reduced temperature plots for 
monatomic gases versus other substances. From this comparison , the acentric factor (w) was 
defined as3 

o = -logP,(@T, = 0.7) - 1.0 , (4.1) 

where PVP = vapor pressure, 
T, = reduced temperature. 

Equation 4.1 yields an acentric factor value for UF6 of 0.2842 . This value seems 
unusually high since uranium hexafluoride is a symmetrically shaped molecule with no net dipole 
moment. An alternative computation of the acentric factor has been found to be useful. Lee and 
Kesler have found that the compressibility at the critical point,(&) is related to the acentric factor 
by4 

z, = zy + oz,(‘) , (4.2) 

where ZCfo and ZCr” are determined from the tables or correlations of Lee and Kesler (see Section 
5.1.5). 

Inserting the critical compressibility value of 0.2821 and appropriate values of 2,” and 
ZC”) into Eq. 4.2, a value of 0.09215 was obtained for w. Using this value of w with the Lee- 
Kesler method for determining the compressibility of uranium hexafluoride yields values that are 
close to values of compressibility computed from the virial equation of state truncated to contain 
only the second virial coefficient, as well as the Redlich-Kwong, Benedict-Webb-Rubin, and 
Malyshev equations of state (see Table 5.1). 

9 





5.. EQUATIOM 0% STATE A.NB DENSITY 

Several equations of state are examined and their applicability to UF, is determined. 
Correlations are also presented for calculating the density.of all phases of UF,. 

/* 5.1 EQUATIONS OF STATE 

Many equations of state are available in the literature. Some are generic in nature and 
others are derived for specific fluids. Among the equations of state considered for UF, are the 
second virial coefficient,‘Redlich-Kwong, Malyshev, Benedict-Webb-Rubin, and Lee-Kesler. 

5.1.1 Second Virial Coefficient Equation of State 

The virial equation of state, derivable from statistical mechanics, is explicit with respect 
to pressure and is a polynomial series in inverse volume . It can be written as3 

(5.1) 

where P = pressure, 
R = gas constant, 
T = temperature, 
V = specific volume. 

The constants B, C, etc. are called second, third, etc. virial coefficients and for pure fluids are 
functions only of temperature. Aziz and Taylor have retained only the second virial coefficient 
and have determined B as a function of temperature using intermolecular potential functions5 
Their results are 

B = I x10-3[T%(lnT)exp(l/Q] , (5.21 

where B = second virial coefficient (m3/kmol), 
T = temperature (K). 

The constant G in Eq. 5.2 is defined as 

/ 
/ ! 

i / 

11 



G = -0.101520x106 + 0.613665x10s(ln7) - O.l39355xl0s(ln7)* 

+ 0.140852x104(lnZJ3 - 0.534487~1O*(l.n7)~ . (5.3) 
-; 

If T and V are specified, P can be calculated explicitly from Eq. 5.1 and the : 

compressibility (Z) can be computed from 
! 

z=g.. (5.4) 

If T and P are specified, then Eq. 5.1 can be rearranged to yield 

p-z-BP4 
RT 

(5.5) 

This equation can be easily solved for Z using the quadratic formula 

z = 0.5 + 0.5 (5 -6) 
I I- 

However, BP/RT must be greater than -0.25. The equation can also be solved implicitly for Z 
using root seeking algorithms available on hand calculators or solver packages available on 
personal computers. If P and V are specified, then T must be iterated upon using Eq. 5.2 to 
compute B until suitable closure on Eq. 5.1 is obtained. 

Table 5.1 shows that the compressibility of uranium hexafluoride calculated from the 
truncated virial equation agrees well with values calculated by other methods. 

5.1.2 Rediich-Kwong Equation Of State 

The Redlich-Kwong equation is one of the simplest equations of state. This equation is’ 

pYAz-- a 

V-b T1/LV(V + b) . 
(5.7) 

The quantities a and b can be determined by requiring that 

12 

P. 



=O a& =o, (5.8) 

L f = T, 

. 
at the critical point. This yields the following results for a and b in terms of PC and T,: 

0 4278R2T2” a= * c 

PC ’ 
(5.9) 

b= 
0.0867RTc 

PC ’ 
(5.10) 

l 

where r, 7 critical temperature, 
PC = critical pressure. 

If the specific volume, V, is eliminated from kq. 5.7 using the definition of 
compressibility , the. following equation is obtained that relates the compressibility of uranium 
hexafluoride with temperature and pressure: 

z .- 1 + a 

1-E 

=o. 

ZRT 
(5.11) 

For specified values of T and P this equation can be solved implicitly for 2. 
If P and V are specified and Z is desired, then T can be eliminated using the definition 

of compressibility. This result is 

z-I/+ 
aZ 1.5Ro.5 

V-b P”V”(V + b) 
=O. (5.12) 

If T and V are specified, P can be solved explicitly from Eq. 5.7, and then Z determined 
directly from the definition of compressibility. 

Values of compressibility of UF, calculated by the Redlich-Kwong equation of state are 
presented in Table 5.1. 

c 
i 
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Table 5.1. Compressibility of Gaseous Uranium Hexafluoride 

r, 

II 

p, 
0.01 0.05 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 

0.70 

0.9895 0.9457 
0.9876 0.9380 
0.9873 0.9397 
0.9907 0.952 1 

Lee-Kesler 
Second Virial Coefficient 
Magnuson 
Redlich-Kwong 
Benedict-Webb-Rubin 
Malyshev 

0.9931 0.9648 0.9274 
0.992 1 0.9607 0.92 14 

0.80 0.9915 0.9588 0.9208 
0.9936 0.9672 0.9325 
0.9926 0.9614 0.9201 
0.9925 0.9615 0.9194 

0.9952 0.9759 0.9509 0.8974 0.7697 
0.9947 0.9734 0.9469 0.8937 0.7875 

0.90 
0.9954 0.9766 0.9524 0.9009 0.7799 
0.9950 0.9738 0.9464 0.8884 0.7524 
0.9952 0.9758 0.9503 0.8946 0.7534 

. 
0.9960 0.9797 0.9588 0.9150 0.8152 0.6865 
0.9955 0.9777 0.9554 0.9109 0.8217 0.7326 

0.95 
0.9960 0.9800 0.9594 0.9163 0.8193 0.6972 
0.9958 0.9780 0.9552 0.9076 0.8021 0.6755 
0.9960 0.9791 0.9587 0.9138 0.8092 0.6668 

0.9966 0.9829 0.9653 0.9287 0.8483 0.7534 0.6299 0.2820 
0.9962 0.9811 0.9622 0.9244 0.8587 0.773 1 0.6974 0.6218 

1.00 -: 
0.9966 0.9828 0.965 1 0.9286 0.8489 0.7564 0.6383 0.3085 
0.9967 0.9829 0.9653 0.9291 0.8520 0.7630 0.6252 0.2794 
0.9966 0.9828 0.9651 0.928 1 0.8459 0.7479 0.6198 0.2765 

I . , --‘. -.-. .- -- ,- 
, I 



. . t 

0.9971 0.9854 0.9704 0.9396 0.8735 0.7993 0.7127 0.6046 0.3173 0.3412 0.3969 0.4527 
0.9968 0.9838 0.9676 0.9352 0.8704 0.8056 0.7408 0.6760 0.5140 0.3521 0.1901 0.2810 

0.9970 0.985 1 0.9699 0.9386 0.8720 0.7982 0.7134 0.6097 0.3489 0.3797 0.4320 0.4876 
0.9972 0.9851 0.9698 0.9387 0.8742 0.8048 0.7206 0.6203 0.3114 0.3423 0.3957 0.4523 
0.9971 0.9854 0.9704 0.9396 0.8732 0.7989 0.7137 0.6113 0.3169 0.3422 0.3957 0.4524 

I .os 

1.10 

1.50 

2.00 

2.50 

3.00 

0.9972 0.9860 0.9719 0.9426 0.8801 0.8106 0.7308 0.6339 0.3692 0.3614 0.4105 0.4596 
0.9972 0.9860 0.9720 0.9441 0.8882 0.8322 0.7763 0.7204 0.5806 0.4408 0.3010 0.1611 

0.9974 0.9870 0.9738 0.9469 0.8905 0.8299 0.7639 0.6908 0.4832 0.4312 0.4636 0.5099 
0.9975 0.9869 0.9736 0.9466 0.8918 0.8355 0.7745 0.7121 0.5078 0.4153 0.4374 0.4812 
0.9976 0.9877 0.9751 0.9495 0.8953 0.8368 0.7732 0.7034 0.505 1 0.4125 0.4363 0.4819 

0.9992 

0.9990 

0.9957 

0.9951 

0.9916 

0.9903 

0.9833 

0.9806 

0.9666 

0.9616 

0.9502 

0.9429 

0.9340 

0.9247 

0.8813 

0.8699 

0.8494 

0.8340 

0.8303 

0.8106 

0.811 I 

0.7982 

0.9183 

0.9072 

0.9825 

0.9722 

0.9998 

0.9997 

0.9990 

0.9984 

0.9979 

0.9968 

0.9958 

0.9937 

0.9885 

0.9822 

0.9853 

0.9770. 

0.9768 

0.9620 

0.9735 

0.9546 

0.9738 

0.9501 

0.974 1 

0.9485 

0.992 I 

0.9878 

1.0005 

0.9970 

t; 

l.moO 

0.9999 

1.0000 1.0000 

0.9996 0.9992 

1.0001 

0.9984 

1.0010 1.0018 1.0027 I .0061 1.0107 1.0172 1.0236 

0.9958 0.9948 . 0.9941 0.9931 0.9936 0.9954 0.9985 

I0177 I .0252 I.0339 I .0425 

1.0058 1.0093 1.0136 1 SO186 

1.0001 

l.OOoO 

1.0005 

1.0001 

1.0009 

1 a002 

I.0019 

I BOO4 

I .0039 

I .0008 

1.0062 

I a015 

I so085 

I JO22 

1.0109 

1.0031 

. I  
. -  . . _  .  -  . - -  _ - -  -  .  
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51.3 Malyshev’s Equation Of State 

Malyshev formulated an equation of state of the following form’ 

2 = 1 + i $ b&&L 4”) , (5.13) 
m=l t=o 

i. 
; , 

v 

where = T/504.5, 
= PJP, 

T = temperature (K), 
PC = critical density (see Table 2. l), 
P = density. 

Values of the coefficients b& are given in Table 5.2. It should be noted that a value of 504.5 K 
is assumed as the critical temperature of UF, in Malyshev’s equation of state (Eq. 5.13). This 
value differs from the one used in this report. Values of UF, compressibility calculated from Eq. 
5.13 are presented in Table 5.1 as a function of reduced temperature and pressure. 

I 

Table 5.2. Values of the Coeffkients 6,, in Malyshev’s Equation of State 

k 
m 

0 1 2 3 

1 18.5047 -53.7362 50.9308 -16.8987 

2 -62.5084 180.0905 -169.897 52.5947 

3 137.0865 -409.5977 404.1463 -131.0337 

4 -104.4291 318.0347 -320.6823 106.5173 

5 25.1350 -77.1556 78.6106 -26.4359 

Source: Malyshev, V. V., Experimental Study of Compressibiliry of Uranium 
HexafIuoride Over a Broad Range of Parameters of State, Teplofizicheskie 
Svoistva Gazov [The Thermophysical Properties of Gases], Moscow, Nauka, 
1973, pp. 142-147. 
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5.1.4 Benedict-Webb Rubin Equation Of State 

The Benedict-Webb-Rubin equation of state, written in terms of reduced compressibility 
(ZJ, is I 

where 

Ql -w DA wr =-+-+-, 
T ti J-f 

a2 

-D,P,2 D5P,! . 

=-+T-* 7-2 

where pr = reduced pressure, 
T, = reduced temperature. 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

As seen from Eqs. 5.15 - 5.19. use of the Benedict-Webb-Rubin equation of state requires eight 
constants (0, - Da). To solve for these eight constants, eight sets of values of reduced 
temperature, pressure, and compressibility are needed to yield eight equations and eight 
unknowns. The set of eight constants were solved for three distinct temperature-pressure regions. 
The regions are defined as follows: 

17 



Region I: T, 5 1.0 , 

Region II: T, > 1.0 , 
P, 2 1.0 , 

Region III: T, > 1.0 , 
P, < 1.0 . 

The sets of reduced temperature, pressure, and compressibility that were used for each region are 
presented in Table 5.3. The compressibilities at each temperature-pressure combination were 
calculated using Malyshev’s equation of state. At the time the Benedict-Webb-Rubin constants 
were calculated it was thought that Malyshev’s equation of state was a correlation of actual data 
and best represented the compressibility of UF,. Later, it was determined that the Lee-Kesler 
method was the best means of calculating the compressibility of UF,. Table 5.4 contains the sets 
of constants (0, - D,) for each region defined above. 

Once the constants D, - D, are known, a compressibility can be calculated for any value 
of temperature and pressure from Eq. 5.14. Values of UF, compressibility calculated from the 
Benedict-Webb-Rubin equation of state are given in Table 5.1 as a function of reduced 
temperature and pressure. 

5.1.5 Lee-Kesler Compressibility Method 

The Lee-Kesler method computes the compressibility of the vapor phase as4 

z = z(O) + (&7y . (5.20) 

The acentric factor, w, is an indicator of the nonsphericity of a molecule’s force field. Zfo’ 
applies to spherical molecules, while the 2”’ term is a deviation function. Values of Z@’ and 2” 
have been tabulated as functions of reduced temperature and pressure.4 

In addition to tabulated values, the density of UF, vapor at any temperature and pressure 
can be calculated using the following correlation recommended by Lee and Kesler:4 

vr z=-= B C D I+-+-+-+ 
T, v, v2 vs r r 

-&[P + --#o--$] , (5.21) 

where 

B = 6, - b2/Tr - bJ7-f - b,lT;1 , (5.22) 

i 
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Table 5.3. Data Used in Benedict-Webb-Rubin Equations 

* 

._I/ , .ex _i .*a- I .,“., I -,i_ - 

i 

T, p, 6 

Range I 
2 

0.7929 0.1089 3.218 

0.8325 0.2179 2.965 

0.8722 0.3268 2.768 

0.9118 0.4;57 2.624 

0.9514 0.3268 3.018 

0.9911 0.2179 3.257 

0.9911 0.6536 2.496 

1.0 1.0 1.0 

Range II 1 _.... . ..,. i.., . ..“e-... -.I 

1.031 1.0893 1.701 

1.0704 1.7429 I .262 

1.1100 2.3965 1.563 

1.1497 3.0501 1.881 
P 

1.0109 2.8322 1.483 

1.0505 2.3965 1.364 

1.0902 1.5251 1.640 

1.1298 1.0893 2.537 

Range III 

1.0109 0.3268 3.129 

1.0307 0.8715 2.280 

1.0505 0.4357 3.052 

1.0704 0.7625 2.678 

1.0902 0.5447 3.005 

1.1100 0.6536 2.935 

d -*’ 1.1298 0.3268 3.279 

1.1497 0.8715 2.835 

. . i 
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Table 5.4. Benedict-Webb-Rubin Constants 

c = c, - c2/Tr + c,/T; , 

D = d, + 4/T,. 

(5.23) 

Values of the constants b,, b,, b,, b,, c,, c2, cj, d,, and d2 are presented in Table 5.5. 
To calculate the density at a given temperature and pressure, the following procedure 

should be used. 

1. Using the simple fluid constants in Table 5.5, solve Eq. 5.21 for V:@ at the 
reduced temperature and pressure of interest. It should be noted that since Eq. 
5.21 is implicit with respect to V,, an iterative solution technique is required (see 
Appendix B for solution hints). 

2. Calculate Z@‘, the simple fluid compressibility as 

P,V,‘” 
2’0’ = - . 

T, 
(5.25) 

J 
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Table 5.5. Values of Constants Used in Lee-Kesler Cotielations 

. 

~. . i _ ..,. , 
Constant Simple fluids Reference fluids 

b, 0.1181193 0.2026579 

b2 0.265728 0.331511 

b3 0.154790 0.027655 

. b, O.OjO323 0.203488 
/ 

Cl 0.0236744 0.03 13385 

cz 0.0186984 0.0503618 

c3 0.0 0.016901 

0.042724 0.041577 i; c4 

d, x lo4 0.155488 0.48736 

d2x 10“ 0.623689 0.0740336 

P 0.65392 1.226 

Y 0.060167 0.03754 

Source: Lee, B. I., and Kesler, M. G.. A Generalized ‘13termodynamic Correlation Based 
on Three-Parameter Corresponding States, AIChE Journal, Vol. 2 1, No. 31 May 
1975, pp. 510-527. 

. 
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3 

4. 

5. Calculate the compressibility at the temperature and pressure of interest as 

Calculate Vrm from Eq. 5.21 using the reference fluid constants in Table 5.5 and 
the same T, and P, values as in Step 1. 

Calculate Z”’ as 

(5.26) 

z = z(O) + -$ [Z”’ - Z(O)] , 

where wfrJ = 0.3978.4 

(5.27) , 

Tabulated values of 2” discussed previously in this section are defined as 

(5.28) m 

Values of UF, compressibility calculated by the Lee-Kesler method are presented in Table 5.1 
as a function of temperature and pressure. Some hints on solving the Lee Kesler compressibility 
equation (Eq. 5.21) are presented in Appendix B. Amphlett, Mullinger, and Thomas measured 
the density of UF, vapor at 322.4 K and various pressures.’ 
along with the values predicted by the Lee-Kesler method. 

This data is presented in Fig. 5.1 

5.2 LIQUID DENSITY 

The density of UF, liquid can be determined by several different methods. First, a 
method is presented for calculating the specific volume (density) of saturated liquid. Next, the 
Thompson et al. method, which applies a correction factor to the saturated liquid density, and the 
Chueh and Prausnitz methods are discussed. The Lee-Kesler method, discussed in Section 5.15 
for the vapor phase, can also be used, with slight modification, to predict liquid densities. 

5.2.1 Rackett Equation for the Estimation of Specific Volume of Saturated Liquids . 

The Rackett equation for the estimation of specific volumes of liquids at saturation is’ 

22 



Lee-Kesler method X Amphlett, Mull~nger, and Thomas data 

6 

2 

20 30 40 50 60 711 

Pressure (kPa) 

Fig. 5.1. Density of UF, vapor predicted by the Lee-Kesler method (T = 322.4 K). 



J 

v, = vrRzf , (5.29) 

where vp = specific volume at saturation at the reference temperature, 
Z, = compressibility at the critical point, 

and E is defined as 

E = (1 - T,)*” - (1 - TrR)*” . (5.30) 

To ensure a good fit near the critical point, the Rackett equation can be written with the 
critical point as the reference point. This result is 

v, = v, zcc , (5.31) 

with i 

E = (1 - T,)*” . (5.32) / 
I 

I 

If good agreement with data is not achieved over the entire range of temperature of interest, the 
Rackett equation may be written for multiple temperature ranges using reference points other than 
the critical point. 

5.2.2 Estimation of Specific Volume in the Subcooled Region 

Thompson et al. have developed a method for estimating the specific volume of subcooled 
liquids by applying a pressure correction factor to the specific volume of the saturated liquid at 
the desired temperature .3 Their pressure correction factor depends upon the acentric factor, the 

I reduced temperature, the critical pressure, and the vapor pressure. Their correlation is 
/ 

v= Vjl -c$y;]], (5.33) 

where 

p = P,[182.4422163(1 - TJm - 1 - 9.07217(1 - TJ’# + 62.45326(1 - TJm 

- 135.1102(1 - TJ] , (5.34) 
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and c = a constant, 
P = total pressure, 

P, = vapor pressure. 

This equation is limited to a maximum value of reduced temperature of approximately 0.95. For 
values of T, greater than 0.95 and high pressures and low temperatures, the logarithmic term can 
become negative. 

For reduced temperatures between 0.95 and 1 .O, the method of Chueh and Prausnitz may 
be used.8 Their equation for estimating the specific volume of subcooled liquids is 

i 

v= ‘5 
f. 9ZJqP - P,) I”9 ’ (5.35) 

where N is a quantity defined by 

N = (1.0 - 0.89u)exp[6.9547 - 76.2853Tr + 191.3b60Trz 

. - 203.5472Tr' + 82.7631Tr4] . (5.36) 

f . The value of the constant c in Eq. 5.33 can be determined by setting Eqs. 5.33 and 5.35, 
evaluated at T, = 0.95, equal to one another. This results in the following correlation for c: 

gzcNT, = 0.9dP - Pvp,T, = 0.95) 

C= 

(5-37) 
1+ 

Defining c in this way forces the two methods to be equal at the switch point resulting in a 
continuous curve for liquid density. The equations in this section can be used with any consistent 
set of units. 

. 

The density of UF, liquid predicted by the Thompson et al. and Chueh-Prausnitz methods 
is shown graphically in Fig. 5.2 along with the available liquid density data. Since it is unclear 
at what pressure the density data were taken, values were calculated at both saturation and high 
pressure (P, = 3.0) using the ThompsonKhueh-Prausnitz method and are shown in Fig. 5.2. 
The upper curve represents the high pressure state and the lower curve represents the saturated 
state. 
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al. method 

Thompson et x Hoge and 
al. method Wechsler’s 
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data al. 

ison et 
data 
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Fig. 5.2. Density of UF, liquid predicted by Thompson and Chueh-Prausnitz methods. 
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52.3 L&e-Kesler Compressibility Method 

The Lee-Kesler compressibility method described in Section 5.1.5 can also be used to 
determine the density of UF, liquid. If tabulated values are used, care should be taken since the 
saturated lines in the tables prepared by Lee and Kesler do not necessarily correspond to those 
of UF,. If the correlation is used, Appendix B should be referred to for solution hints. Upon 
close investigation of the Lee-Kesler compressibility correlation, it was discovered that reliable 
liquid compressibility values could not be obtained for reduced temperatures between 0.95 and 
1.0. Therefore, an interpolation scheme was developed to calculate liquid densities at reduced 
temperatures ranging from 0.95 to 1 .O. Basically, the density is determined at five known points 
(pA, pe, pc, pD, and p& and the density of interest (pF) is calculated as 

PF = P” + (P, - PA) PD - PC 
( 1 , PE - PC 

(5.38) 

where PA = saturated liquid density at T, and Pr.M, 
PB = liquid density at T, and P, = ‘1 .O, 
PC = liquid density at T, = 0.95 and Pr.yy, 
PD = liquid density at T, = 0.95 and P,, 
PE = liquid density at T, = 0.95 and P, = 1 .O. 

The interpolation scheme used for liquid density is illustrated in Fig. 5.3. The saturated liquid 

density of UF6 (p,) is determined from the following correlation: 

PA = 1375 + 244.8( TC - T)In - 9.045 (T, - T) , (5.39) 

where PA = saturated liquid density (kg/m3), 
T, = critical temperature (K), 
T = temperature (K). 

Eq. 5.39 is a curvefit of three saturated UF, liquid densities (T, = 0.948, T, = 0.95, and T, = 
1.0) predicted by the Lee-Kesler method. 

The density of saturated UF, liquid predicted by the Lee-Kesler method as described 
above was compared with the available liquid density data. The liquid densities predicted by the 
Lee-Kesler method were consistently lower than the data. The saturated liquid density data can 
be represented by the following correlations: 

/ 
337.2 5 T s 423.6 K : 

F Pf = 4042 + 3.373T - 1.360x10-2 T2 , (5.40) 

. 
I 
I 

27 
I . 



D 
v-, 

I \ 
c@- . 

\ 

P, 
\ 

\ I 
7 

I I I 

T, = 0.95 T, T, = 1.0 

Fig. 5.3. Schematic representation of density i.nterpolation scheme. 



T > 423.6 K : 

pl = 1375 + 224.6(T, - T)lr2 - 4.426(T, - T) , (5.41) 

where T = temperature (K), 
r, = critical temperature (K). 

Equation 5.40 is modified from the correlation of Hoge and Wechsler’ and is the result of unit 
conversion of a similar correlation presented by Williams.* Since Eq. 5.40 is not applicable at 
temperatures approaching the critical temperature, Eq. 5.41 was formulated to calculate liquid 
densities in this higher temperature range. 

In order for the saturated density predicted by Lee-Kesler to match the data, the following 
density difference is calculated 

(5.42) 

where pl.sm = saturated liquid density predicted by Eqs. 5.40 and 5.41, 
Pl.LK.Wl = saturated liquid density (i.e., at T and P,) predicted by the Lee-Kesler \ i 

correlation. 

* Therefore, the density at the temperature and pressure of interest is calculated as 

PI,L-K&j = Pl,L-K + AP ’ 

where P1.LK = the density at the temperature and pressure of interest calculated by the 
Lee-Kesler correlation. 

The density of saturated liquid UF, predicted by the Lee-Kesler method with the suggested 
modification discussed above is shown in Fig. 5.4 as a function of temperature along with the 
available liquid density data. It should be noted that Fig. 5.4 is basically a plot of Eqs. 5.40 and 
5.41. 

5.3 SOLID DENSITY 

. 

Dewitt has surveyed the literature and has reported that the relation between density of 
solid UF, and temperature is linear.’ Three data points corresponding to temperatures of 20.7, 
25.0, and 62.5”C were listed. Williams fit these data to a correlation, which after unit 
conversion becomes* 
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: 8. 

p = 6611 - 5.19oT, (5.4) 

. where P = density (kg/mj). 
T = temperature (K). 

with the 
The density of solid UF, predicted by Eq. 5.44 is shown graphically in Fig. 5.5 along 
available soIid density data. 

5.4 DENSITY RECOMMENDATIONS . 

The Lee-Kesler correlation (Eq. 5.2 1) should be used to calculate the compressibility, and 
hence density, of both the vapor and liquid phas,es of UF,. 
requires the modifications outlined in Section 5.2.3. 

The calculation of UF, liquid density 
The density of solid UF, can be determined 

by Eq. 5.44, a curvefit of available solid density data. The density of UF, calculated by the 
recommended .methods is shown graphically in Fig. 5.6 as a function of temperature and 
pressure. 
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, 
6. ENhIALPY ’ 

A comprehensive set of correlations for predicting enthalpies of all phases of UF, is 
presented in this chapter. Where appropriate, multiple methods are discussed and 
recommendations are made based on the applicability to UF,. 

e 
6.1 LOW PRESSURE ENTHALPY OF VAPOR 

The low-pressure enthalpy of UF, vapor is determined by 

Ho = Hi: + aT + .!$! +$ + dTIJ 
1.5 + elnT +f(ThT 

where w = low-pressure vapor enthalpy ‘(H/kg), 
T = temperature (K), 

flit = constant of integration @J/kg). 

(6.1) 1 

Values of the coefficients a-h as well as a value of the integration constant are given in Table 6.1. 
Eq. 6.1 was obtained by integrating the low-pressure heat capacity expression whose derivation 
is discussed i? Chapter 7. The value of the integration constant, H”,, is determined by 

Hi = H,,rd - (CF)(H - H”),-K,re, - (Ho - H;), , (6.2) 

where H, ,rf = saturated enthalpy of UF, vapor at the triple point &J/kg), 
& = correction factor for Lee-Kesler discussed in Section 6.2.2, 

W - H”L.rr/ = enthalpy departure at the triple point predicted by the Lee-Kesler method 
W/kg). 

CH" - flic)r,/ = (H” - ITiJ evaluated at the triple point determined by Eq. 6.1 @J/kg). 

The value of Hv,re is calculated as 

H v,ref = o~5[(AHs,rcj + Hs,rcf) + (AHv,ref + Hl,rcf)l * (6.3) 

where w* mf = heat of sublimation at the triple point measured by Masi (135.9 Id/kg), 
H s.rtf 

AH”! rt, 
= enthalpy of UF, solid at the triple point calculated by Eq. 6.23 @J/kg), 

H 
= heat of vaporization at the triple point measured by Masi (81.58 kJ/kg), 

I. rc, = enthalpy of UF, liquid at the triple point calculated by Lee-Kesler method (H/kg). 
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Table 6.1. Values of the Coeffkients in the Low-Pressure Vapor Enthalpj Correlation 

Constant 

a 

b 

C 

d 

e 

f 

g 

h 

Hi,” 

Value 

1.7043E+06 

-170.5 

3.90E-03 

2.951 lE+O4 

-1.6430E+07 

-4.0663E+O5 

5.736E+O5 

189.1 

186.2 
. 

‘No experimental data on the low pressure enthalpy of UF, vapor could be located in the 
literature. 

6.2 HIGH PRESSURE ENTHALPY OF VAPOR 

The enthalpy of high pressure vapor can be determined by several different methods. 
Among those considered for UF, are the Yen-Alexander and Lee-Kesler methods. 

6.2.1 Yen-Alexander Method 

Yen and Alexander have obtained generalized relations for enthalpy departure of vapors.’ 
They recommend the following correlation for enthalpy departure of a superheated vapor 

i 

'r 

Ho - H = 
mP,l -x 

0 (6.4) 

T, exP[-C,P,2lY + c, + C,P, + c,pr” ’ 

Y = 1 - c, - c, - C,P, + c, Lan(cj 
[ 

- C,P,, + 0.5 * ) .I (6.5) 
x 

c 

. 

where P, = reduced pressure. 
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The variables C,, C,, C,, C,, C,, C,, X0, and m are dependent on the values of reduced 
temperature and critical compressibility (2,). Correlations for calculating these variables are 
presented in reference 8 for discrete values of 2, = 0.23, 0.25, 0.27, and 0.29. Interpolation 
is required if 2, lies between these values; however extrapolation to 2, values less than 0.23 or 
greater than 0.29 is not recommended .* Yen and Alexander recommend the following correlation 
for saturated vapor 

Ho - H = D,p,D2 

T 1 * D&-lr~@~ 
, (6.6) 

where D,, D,, Dj, and D, are dependent on the value of 2, (see Reference 8). It should be noted 
that the Yen-Alexander correlations have several discontinuities at various values of reduced 
temperatures, which could lead to numerical difficulties. For this reason, the Yen-Alexander 
method will not be considered further. 

6.2.2 Lee-Kesler Method 

The enthalpy of high-pressure UF6 vapor can also be determined using the method of 
Lee-Kesler.“ The following equation for enthalpy departure is used 

H - Ho = -T&Z - 1 - 
b2 + 2bJTr + 3bJf 

RT, TrY- 

4 + - + 3E) , 
5TrVrs 

where H = high-pressure enthalpy, 
R = gas constant, 

r, = critical temperature, 
T, = reduced temperature, 
2 = compressibility, 
v, = reduced volume. 

=2 - 3c,/T,z 

2TrV, 

(6.7) 

The variable E is calculated as 
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where values of the constants b,, b,, b,, c,, c,, c,, p, and y are given in Table 5.5. 
To calculate the enthalpy departure at a given temperature and pressure, the following 

procedure should be followed. 

1. Determine ZfoJ and Z”’ for the simple fluid as described in Section 5.1.5 at the 
reduced temperature and pressure of interest. Using Eq. 6.7 and the simple fluid 
constants in Table 5.5, calculate [(H - H’)/RTJfo’. In this calculation, Z is ZfoJ 
and V is VfoJ determined as r r 

T Z(O) v,‘o’ = 2-- . 
Pr 

(6.9) 

2. Repeat step 1, using the same T, and P,, but this time using the reference fluid 
constants from Table 5.5. Using Eq. 6.7, calculate a value of [(Z-l - Zf’)/RTJ”‘. 
In this calculation, Z is Z”’ given by 

z”’ = ,qy) + z”, , (6.10) / 

where z”’ and Z”” are calculated from the Lee-Kesler correlation as described in 
Section 5.1.5 and ufO 3 0.3978. V, in this calculation is Vrfo given by 

(6.11) 

I 

3. The enthalpy departure function at the T, and P, of interest is determined from ! 

I 

Masi has tabulated several values of the heat of vaporization of UF,.’ The Lee-Kesler 
method was used to calculate the heat of vaporization at the same temperatures as Masi’s data. 
These data are presented in Table 6.2. The ratio of Masi’s data to values predicted by the Lee- 
Kesler method were calculated and an average ratio of 1.20650 was obtaimed. Therefore, the 
enthalpy of UF, vapor can be calculated as 

!” 
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. 

H = Ho + 1.20650(H - HO),-, . (6.13) 

Use of the above equation forces the heat of vaporization values calculated by the Lee-Kesler 
method to agree with Masi’s data. 

Table 6.2. Heat of Vaporization Values 

Temperature 
(K) 

AK W/kg) 

Masi (AEI&. Lee-Kesler (AEJ,+J 

337.21 81.58 67.68 1.20537 1 

340 81.08 67.29 1.204844 

350 79.34 65.88 1.204223 

. 360 77.70 64.41 1.206321 

370 76.16 62.86 1.211719 

1.20650 (Avg.) 

* Dewitt, R., Uranium Hexafluoride: A Survey of the Physico-Chemical Properties, GAT- 
280. Goodyear Atomic Corporation, Portsmouth, OH, 1960. 

6.3 ENTHALPY OF LIQUID / I 

Several methods are available for predicting liquid enthalpies. Among those considered 
for UF, are the Yen-Alexander, Lu-Hsi-Poon, and Lee-Kesler methods. 

6.3.1 Yen-Alexander Method 

Yen and Alexander have obtained generalized relations for enthalpy departure of liquids.8 
They recommend the following correlation for enthalpy departure of a subcooled liquid 

1 
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Ho -H 

T, 
= FJP, + F2) + F,(T, + F,) + F,(T, + F$ + F,(P, + F,)(T, + F,) 

+ F,,hP, + Fll(~Pr)(~Tr) + F12(~Pr>(~Tr)2 + F13 , (6.14) 
LI 

where FI - F,, are dependent on the value of critical compressibility (Z,). Values of these 
constants are presented in reference 8 for discrete values of Z, = 0.23, 0.25, 0.27, and 0.29. 
Interpolation is required if Z, lies between these values; however extrapolation to Z, values less 
than 0.23 or greater than 0.29 is not recommended.’ Yen and Alexander recommend the 
following correlation for saturated liquid 

Ho-H= G, + G,(-~xIP,)~' 
(6.15) 

Tc 1 + G,(hPj ' 

where G, - G4 are dependent on the value of Z, (see Reference 8). The Yen-Alexander method 
was not investigated in detail since the correlations contain several discontinuities at various 
values of reduced temperature, which could lead to numerical difficulties. 

6.3.2 Lu-Hsi-Poon Method 

The enthalpy of liquid UF, can be calculated using the following correlation 
recommended by Lu, Hsi, and Poon:9 

Ho-H= 'Ho -H 

RT, RT 

where 

‘\ i 1 Ho -H'O'=A 

RT, 
0 

and 

! 1 Ho - H'"=B 

RT 
0 

0% H“ _ H (l) +W 1 1 RTc ' 

+ A,P, + A,P,2 , 

(6.16) 

+ B,P, + B,P,2 . (6. IS) _ 

i” 
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The coefficients A,, A,, A,, B,, B,, and 8’ a$ k%ions’bf reduced temperature and are defined 
as 

. 
Ai = A,, + Ai, T, + Ai2Tr2 , (6.19) 

* and 

Bi = Bio + B,, Tr + Bi, T,” . (6.20) 

Values of the coefficients A, and B,, are given in Table 6.3. The enthalpy of the ideal gas, W, 
is calculated from Eq. 6.1. 

Lu, Hsi and Poon recommend that the method described above be used for reduced 
temperatures less than 0.8 .9 The enthalpy of liquid UF, predicted by the Lu-I&i-Poon method 
is shown graphically in Fig. 6.1 along with the available liquid enthalpy data. Enthaipies 
predicted by the Lu-Hsi-Poon method were calculated at the saturated state. 

Table 6.3. Lu-Hsi-Poon Coefficients 

.,, ,, 

A, 
* 

j =,0 j=l j=2 

i=O 5.742533 0.743206 -3.003445 
% 

i= 1 0.075271 -0.500988 0.443336 

i=2 -0.017460 0.054554 -0.045077 

B, 

j=O j=l j=2 

i= 0 17.334961 -18.851639 5.325703 

i=l 0.092967 -0.244039 0.158373 

i=2 0.004468 0.001513 -0.002061 

Source : Lu, B. C.-Y ., Hsi, C., and Poon, D. P. L., Generalized Correlation of 
Isothermal Enthalpy Departures for Liquids at Low Reduced Temperatures, 
AIChE Symposium Series, No. 140, Vol. 70, pp. 56-62. 

i 
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Fig. 6.1. Enthalpy of UF, liquid predicted by Lu-Psi-Poon method. 



6.3.3 Lee-Kesler Method 

The enthalpy of UF, liquid may be calculated by the Lee-Kesler method as described in 
Section 6.2.2 for the vapor. Since the enthalpy correlation contains compressibilities and since 
accurate values of compressibility are unobtainable from the Lee-Kesler compressibility 
correlation in the liquid range 0.95 < T, C 1 .O (see Section 5.2.3), an interpolation scheme is 
used for 0.95 < r, < 1.0. The enthalpy is calculated in a similar manner as was the liquid 
density in this range (see Section 5.2.3). Basically, the enthalpy is determined at five known 
points (HA, HB, H,, H,, and HE) and the enthalpy of interest (HF) is calculated as 

HF = HA + (H, (6.21) 

where HA = saturated liquid enthalpy at T, and Pr,ti, 
HB = liquid enthalpy at T, and P, = 1 .O, 
f-f, = liquid enthalpy at T, = 0.95 and PrasIy, 
HD = liquid enthalpy at T, = 0.95 and P,, . 
HE = liquid enthalpy at T, = 0.95 and P, = 1.0. 

The saturated UF, liquid enthalpy (H,,) is determined from the following correlation: 

HA = 2.690x1@ - 4.561x103( TC - T)l’a - 247.8( 7” - T) , (6.22) 

where HA = saturated liquid enthalpy (J/kg), 
r, = critical temperature (K), 
T = temperature (K). 

Eq. 6.22 is a curvefit of three saturated UF, liquid enthalpies (T, = 0.948, T, = 0.95, and T, = 
1 .O) predicted by the Lee-Kesler method. 

The enthalpy of liquid UF, predicted by the Lee-Kesler method is shown graphically in 
Fig. 6.2 along with the available liquid enthalpy data. Values predicted by the Lee-Kesler 
method correspond to the saturated state. 

6.4 ENTHALPY OF SOLID 

The enthalpy of solid UF, may be calculated using the following correlation which is 
accurate within 0.01% from 265 K to the triple point (337.2 K): 
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Fig. 6.2. Enthalpy of VF, liquid predicted by Lee-Kesler method. 



$ 
:$ i 

\ _/ i. 

H = 1.173~105 - 238.!iT + 9.609x10-*T* - 1*24F107 , (6.23) 

5 
where H = enthalpy (J/kg), 

T = temperature (K). 

The form of Eq. 6.23 was suggested by Kirshenbaum who fitted the enthalpy values calculated 
by Brickwedde, Hoge. and Scott .* 

; 
Williams identified several typographical errors in the solid \ 

enthalpy correlation presented in Dewitt.’ Equation 6.23 incorporates these corrections and has 
been converted to SI units. 

The enthalpy of UF, solid predicted by Eq. 6.23 is shown in Fig. 6.3 along, with the 
available solid enthalpy data. 

6.5 HEATS OF VAPOFUZATION AND HEATS OF SUBLIMATION 
, 
/ 
4 

Masi has measured five values of the heat of vaporization of uranium hexafluoride from 
337.21 to 370 K (see Table 6.2).’ These data were utilized to adjust the values of enthalpy 
departure predicted by the Lee-Kesler method as described in Section 6.2.2. The Lee-Kesler 
method may be used to calculate the heat of vaporization by calculating the vapor and liquid 
enthalpies and taking the difference between the two values. Alternatively, the Watson 
correlation may be used to predict heat of vaporization values. The Watson equation relates the / 

heat of vaporization at a reference condition to the reduced temperature. Masi’s data at the lower 
and upper limits were used to determine the exponent in the Watson equation for estimation of I 
the temperature dependence of the heat of vaporization. The Watson equation is3 

(6.24) 

were the subscript 1 denotes the reference conditions. Using the lower limit as the reference 
temperature, the Watson equation for uranium hexafluoride becomes 

(6.25) 

where AH, = heat of vaporization &J/kg). 

. 
Masi also measured the heat of sublimation of uranium hexafluoride over a temperature 

range of 273.16 to 337.21 K.’ In a similar fashion these data have been-fitted to the Watson 
equation. The result is 

P 
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Fig. 6.3. Enthalpy of UF, solid. 
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0.1561 

AH, = 143.0 , (6.26) 

i where AH, = heat of sublimation (kJ/kg). 

6.6 ENTHALPY RECOMMENDATIONS 

The enthalpy of UF, vapor should be- determined by the Lee-Kesler correlation .for 
enthalpy departure (Eq. 6.7) with the correction factor discussed in Sec!ion 6.2.2. The enthalpy 
of liquid UF, should also be determined by the Lee-Kesler correlation for enthalpy departure (an 
interpolation scheme is recommended for reduced temperatures from 0.95 to 1 .O as discussed in 
Section 6.3.3). The enthalpy of solid UF, can be estimated by Eq. 6.23, which is a-curvefit of 
available data. The enthalpy of UF, calculated by the recommended methods is shown 
graphically in Fig. 6.4 as a function of temperature and pressure. The heats of vaporizatiqn and 
sublimation should be determined by taking the difference between the vapor enthalpy and the 
liquid or solid enthalpy predicted by the Lee-Kesler method and the curvefit results. 

. 
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7. HEAT ‘CAPACiTY 

A comprehensive set of correlations is presented for predicting the heat capacity of all 
phases of UF,. Where available, comparisons are made to available data. 

i 7.1 LOW PRESSURE HEAT CAPACITY OF VAPOR 

The low-pressure heat capacity of UF, vapor is calculated as 

e,” 
T =a+bT+cT2+dTo.‘+~+fltlT+g~ctan--, 

T h 

where Go = low-pressure vapor heat capacity &J/kg), 
T = temperature (K). 

The values of the coefficients u-h are given in Table 6.1 and were obtained by a curvetit of 
available heat capacity data.‘*‘0 Attempts to fit the data to simpier third-order polynomials proved 
unsuccessful since two temperature ranges were required and a “glitch” was evident at the 
transition temperature. 

c 
The low pressure heat capacity of UF, vapor is shown graphically in Fig. 7.1 along with 

the available low pressure vapor heat capacity data. 

. 7.2 HIGH PFtESSURE HEAT CAPACITY OF VAPOR 

The heat capacity of high-pressure UF, vapor can be determined using the method of Lee 
and Kesler.4 The following correlation is used for the heat capacity departure function 

0 
C 

P -cP = 
C 

v 
- c,” 

R R - 

where % = high-pressure enthalpy, 
R = gas constant, 

r, = reduced temperature. 

The partial derivatives in Eq. 7.2 are given by 

(7.2) 
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Fig. 7.1. Low pressure heat capacity of UF, vapor. 



i 4 2% -- 
+ 7 T,‘V,’ 

and 

3 
where v, = reduced volume. 

The constants B, C, and D are given by the following expressions 

. 
B = b, - b,lT, - b,lc - 6,/T, , 

C = c, - cJT, + c,/T;3 , 

D = d, + d,/T, . 

The isochoric heat capacity departure function appearing in Eq. 7.2 is defined as 

c, - c,” 2 (b3 + 3b,/T,) 
R = T2V 

35 
---6E, 

r r T,3 V,! 

where the variable E is calculated as 

(7.5) 

(7.6) 

(7.8) 
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(7.9) 

Values of the constants b,, b,, b,, b,, c,, c,, c,, c,, d,, d2, 0, and y are given in Table 5.5. 
To calculate the heat capacity at a given temperature and pressure, the following 

procedure should be followed. 

1. Determine Z’@ and Zf” for the simple fluid from the Lee-Kesler correlation as 
described in Section 5.1.5 at the reduced temperature and pressure of interest. 
Using Eq. 7.2 and the simple fluid constants in Table 5.5, calculate [(c, - 
c,“)/R]‘~‘. In this calculation, Z is Zfo’ and V, is V,“’ determined as 

Tp-)’ v,‘” = - . 
‘r 

(7.10) 

2. Repeat step 1, using the same T, and P,, but this time using the reference fluid 
constants from Table 5.5. Using Eq. 7.2, calculate a value of [(c, - c,“,/R]~“. 
In this calculation, Z is Z”’ given by 

z(r) = ,(r)zU) + z(O) , (7.11) 

where Zfo’ and 2” are obtained from the Lee-Kesler correlation described in 
Section 5.1.5 and w”’ = 0.3978. V, in this calculation is VrfrJ given by 

T,Z(‘) v” = - . r 
‘r 

(7.12) 

3. The heat capacity departure function at the T, and P, of interest is determined 
from 

The heat capacity of UF, vapor is calculated as 
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cp = c; + (c P - CJLeK 

where 
. 

= 1.20650 . 
mg 

(7. i4j 

(7.15) 

For details on how the average heat of vaporization ratio was determined, see Section 6.2.2. No 
experimental data on high-pressure heat capacity of UF, was found in the literature. 

.‘ 
7.3 HEAT CAPACITY OF LIQUID 

The heat capacity of UF, liquid can also be calculated by the Lee-Kesler method as 
described in Section 7.2. However, since the heat capacity correlations (Eq. 7.2 - 7.9) contain 
compressibilities (implicitly) and since accurate values of liquid compressibilities are unobtainable 
from the Lee-Kesler compressibility correlation (Eq. 5.21) in the range 0.95 < T, < 1.0 (see 
Section 5.2.3). an alternate method must be used for 0.95 < r < 1.0. The heat capacity of 
liquid UF6 in this range can be approximated as 

(7.16) 

where H = liquid enthalpy. 
AT = small temperature difference. 

The enthalpy of UF, liquid is calculated as described in Section 6.3. 
The heat capacity of liquid UF, predicted by the Lee-Kesler method is shown in Fig. 7.2 

I along with the available liquid heat capacity data. The lower curve in Fig. 7.2 is the specific heat 
at constant pressure (P, = 3.0) while the upper curve represents the specific heat evaluated along 
the saturation curve. It is unclear at what pressure the specific heat data were taken. Fig. 7.2 
indicates that the data are bounded by the specific heats calculated by the Lee-Kesler correlation 
at constant pressure and calculated as AH/AT along the saturation curve. 

7.4 HEAT CAPACITY OF SOLID 

Kirshenbaum developed a correlation for calculating the heat capacity of solid UF, based 
on experimental data.’ Williams identified several typographical errors in this correlation 
presented by Dewitt .* After incorporating these corrections and performing unit conversion, this 
correlation becomes’ 
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; 
._ 

cp = -238.9 + 1.922T + 1.246~10~ 

T2 ’ 
(7.17) 

. 

c 
where 5 = heat capacity (J/kg-K), 

T = temperature (K). 

The above correlation is accurate within 1% between 250 K and the triple point. The heat 
capacity of UF6 solid predicted by Eq. 7.17 is shown in Fig. 7.3 along with the available solid 
heat capacity data. 

I 

,. : 

The heat capacity for both the vapor and liquid phases of UF, should be calculated from 
the Lee-Kesler correlation for heat capacity departure (Eq. 7.2) with the modifications discussed 
in Sections 7.2 and 7.3. The heat capacity of solid UF, can be determined from Eq. 7.17, a 
curvefit of available data. The heat capacity of UF, calculated by the recommended methods is 

c 

shown graphically in Fig. 7.4 as a function of temperature and pressure. It should be noted that 
the value of heat capacity approaches infinity at the critical point. 

j. 
I 

1 

. 

L 
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8. SURFACE TENSION OF LIQUID 

. 
The surface tension of liquid UF, is given by 

o = 3.246x10-’ (Tc - T)1*232 , (8.1) 
. 

where 
T” 

= surface tension (N/m), 

> 
= critica temperature (K); 
= liquid temperature (K). _ 

Eq. 8.1 is a curvefit of data from Dewitt’ taking into account the fact that the surface tension 
reduces to zero at the critical point. The surface tension of UF, liquid is shown as a function of 
temperature in Fig. 8.1 along with the available surface tension data. 

. 
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Correlations are presented for calculating the dynamic viscosity of both vapor and liquid 
UF,.~, Values predicted by the recommended correlations are compared to available data to ensure 
accuracy. 

. 
9.1 VISCOSITY OF VAPOR 

The viscosity of both low and high-pressure vapor may be determined by using the Chung 
et al. method.3 Their correlation, in slightly revised form incorporating a temperature dependent 
leading constant, is 

(9.1) 

where p = vapor viscosiry (micropoise),’ 
T = temperature (K), 

Mw = molecular weight (g/gmol). 
r, = critical temperature (K). 
v, = critical volume (cm’/gmol). 

The variable p* in Eq. 9.1 is defined as 

CI l - 
- $F& 

+ &Y)l + cI** , (9.2) 
" 

where 

F, = 1 

T' = 1.25931; , (9.3 

0.27560 + 0.059035p; + K , (9.4) 

PVC 
y=-, (9.5) 

6 
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G = 1 - 0.5Y 
1 

(1 - Y13 ’ 

(9.6) 

Y 

. 
G, = 

El [I1 - expW,y)lly] + E2Glexp(E5y) + E3G, 
, P-7) 

ElE4 + E2 + E3 

. . 
CL = E,y’G,exp[E, + EJ’-’ + &,~‘~*1 . (9.8) 

and r, = reduced temperature, 
w = acentric factor, 

PL, = reduced dipole moment, 
K = association factor, 
P = vapor molar density (mol/cm’). 

* Values of the coefficients E,-E,, are calculated as 

Ei = ai + bp + c.p 4 + diK . I r (9.9) 
II 

Since UF, is nonpolar, the reduced dipole moment and the association factor are assumed to have 
values of zero, and therefore, 

Ei = ai + bp , (9.10) 

where values of a,. and bj are given in Table 9.1. 
The vapor viscosity collision integral, Q,. is defined as 

B, = [ 1.16145T’-0.‘4874 + 0.52487 [ exp (-0.773203 l )] : 

+ 2.16178[exp(-2.437873*)] . (9.11) 

The constants CO and C,, in Eq. 9.1, were employed in order to curvefit the method of Chung 
et al. to existing vapor UF, viscosity data.” Values of C, and CO are 
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Table 9.1. Values of the Coefficients Used in Chung’s Viscosity Correlation 
I.. ;., 

i a, bi ci 4 

1 6.324 50.412 -51.680 1189.0 

2 1.2.1 OE-3 -l.l54E-3 -6.257E-3 0.03728 

3 5.283 254.209 -168.48 3898.0 

4 6.623 38.096 -8.464 31.42 

5 19.745 7.630 -14.354 31.53 

6 -1.900 -12.537 4.985 -18.15 

7 24.275 3.450 -11.291 69.35 

8 0.7972 1.117 0.01235 -4.117 

9 -0.2382 0.06770 -0.8163 4.025 

10 0.06863 0.3479 0.5926 -0.727 

Source: Reid, R. C., Prausnitt, J. M., and Poling, B. E., The Properties of Gases and 
Liquids, 4th ed.. McGraw-Hill Book Company, New York, NY, 1987. 

c, = 

and 

(9.13) 

where r, = low temperature at which viscosity data is available (K), 
G = high temperature at which viscosity data is available (K). 
t(L = vapor viscosity at the low temperature (micropoise). 

P’(TL’ tw5 

= vapor viscosity at the high temperature (micropoise), 
= pL’ evaluated at T, and atmospheric pressure, 

P-G? pad = p’ evaluated at T,, and atmospheric pressure. . 
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The viscosity of UF, vapor is shown graphically in Fig. 9.1 along with the available vapor 
viscosity data. The viscosities predicted by the Chung et al. method correspond to low pressure 
(P, = 0.01). . 

9.2 VISCOSITY OF LIQUID 

The viscosity of liquid UF, is calculated by one of two methods based on the value of 
reduced temperature. For low reduced temperatures (T, < 0.75), the method of Orrick and 
Erbar is used for liquid viscosities. 3 They recommend the following correlation 

!J, = p,M,ev[A + Bll’l , (9.14) 

where Pl = liquid viscosity (centipoise), 

ll4; 
= liquid density at 20°C (g/cm3). 
= molecular weight, 

T = temperature (K). 

The constants A and B in Eq. 9.14 are calculated using available liquid viscosity data (p, = 0.924 
cp @ 67.9”C and pI = 0.752 cp @ 99”C).’ 

and 

(372.15)(341.05) 1 = 840.60 . 
372.15 - 341.05 

(9.15) 

(9.16) 

-. 

At reduced temperatures exceeding 0.75, the liquid viscosity should be calculated by the Chung 
et al. method as recommended by Reid, Prausnitz. and Poling (see Section 9.1).3 Chung’s 
correlation for the liquid is 

. tc, + C,T) KMWJJ’p 
P’r = P 

VU3 c 
(9.17) 

The variable p* is calculated by Eq. 9.2 with the exception that the density is taken as the liquid 
density rather than the vapor density. The constants C, and C, in Eq. 9.17 are determined such 
that 1) the values of viscosity match at the switch point (T, = 0.75), and 2) the liquid viscosity 
equals the vapor viscosity at the critical temperature. 
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(9.18) 

(9.19) 

where PC = viscosity at the critical temperature (micropoise). 
p’(T,, PC) = p* evaluated at the critical point, 

khigh = viscosity of liquid at &, (switch point) calculated by Orrick and Erbar’s 
method (micropoise), 

~*(Thishs p) = p* evaluated at Thigh (switch point) and pressure of liquid, 
T,,, = temperature at which Orrick and Erbar’s method becomes invalid and Chung’s 

method becomes applicable (K). ’ 

The viscosity of UF, liquid predicted by the Orrick-Erbar and Chung et al. methods is shown 
graphically in Fig. 9.2 along with the available liquid viscosity data. A slight change in slope 
is noticeable at the transition temperature (r, = 0.75) between the two correlations; however, the 
overall curve is continuous. 

9.3 VISCOSITY RECOMMENDATIONS 

The viscosity of UF, vapor should be calculated using the method of Chung et al. (Eq. 
9.1). The viscosity of UF, liquid should be calculated by the methods of Orrick-Erbar or Chung 
et al. depending on the temperature (see Section 9.2). The viscosity of UF, vapor and liquid 
calculated by the recommended methods is shown graphically in Fig 9.3 as a function of 
temperature and pressure. 
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10. THERMAL CONDUCTIVITY 

Several methods are available for calculating the thermal conductivity of the vapor and 
liquid phases of a fluid. Among those examined for applicability to UF, are the Chung et al., 
Latini, and residual thermal conductivity methods. In addition, a correlation is presented to 
calculate the thermal conductivity of solid UF,. Where available, values predicted by the 
correlations are compared to the experimental data. 

10.1 TJBXMAL CONDUCTIVITY OF VAPOR 

The thermal conductivity of both low and high-pressure vapor can be determined by the 
method of Chung et al .3 Their correlation for estimating the thermal conductivity is 

k,, = + B,y) + qB,y’T,“c, , (10.1) 

’ where k = vapor thermal conductivity (W/m-K), ’ 
PLO = low pressure gas viscosity (N-s/m*), 
Y = YJVW, 
T- = reduced temperature, 
V, = critical volume (cm3/gmol), 
V = vapor molar volume (cm3/gmol), 

M” = molecular weight (kg/gmol). 

The constant I/, in Eq. 10.1 is defined as 

+=l+a 
0.215 + 0.28288a - 1.061p + 0.266652 

0.6366 + 02 + 1.061a 0 1 , (10.2) 

where = cJR - 1.5, 
; = 0.7862 - 0.7109w + 1.3168~~ 

C” = heat capacity at constant volume (J/gmol-K), 
R = gas constant (8.315 J/gmol-K), 

z 
= acentric factor, 
= compressibility. 

The constant q appearing in Eq. 10.1 is calculated as 
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4’ 
3.586~1O-~(T$4,)‘~ 

Vy3 
, (Jo.31 

c 

where T, = critical temperature (K). 

The constant G2 is defined as 

where 

1 - ewC-B,y)] + &+w@,y) + B,G, (10.4) 

BP4 + B2 + B3 
, 

(10.5) 

The coefficients B, - B, are functions of the acentric factor (w), the reduced dipole moment (CL,), 
and the association factor (K). 

0 

Bi = ai + bp + ci(! + diK . (10.6) 

Since the reduced dipole moment (p,) and the association factor (K) of UF, are assumed to have 
values of zero, 

Bi = ai + bp , (10.7) 

where values of a, and bi given in Table 10.1. 
Values predicted by Chung’s method (Eq. 10. I) were consistently higher than the data. 

Therefore, a multiplication factor of 0.8397 was applied to Chung’s method in order to obtain 
good agreement with experimental data. The thermal conductivity of UF, vapor predicted by the 
Chung et al. correlation with the modification discussed above is shown in Fig. 10.1 along with 
the available vapor thermal conductivity data. The thermal conductivities were calculated in the 
saturated state. It should be noted that as the temperature approaches the critical temperature, 
the value of thermal conductivity calculated by the Chung et al. correlation also becomes very 
large. This is due to the fact that Eq. 10.1 indirectly contains specific heat (which becomes 
infinite at the critical point). 
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Table 10.1. Values of the Coeffkients Used in Chung’s Thermal Conductivity Correlation 

E 

,., ,~ . . “._. ,. (.., -_,i, 
:,; ,,, ,.>,<“.., _ 1 ..,>.“2 : ;,: “<S *.x4,*2 -i;.‘.-.‘-‘. 7‘ -- 

i ai bi ci 4 

1 2.4166E+O 7.4824E-1 -9.1858E-1 1.2172E+2 I 

2 -5.0924E-1 -1.5094E+O -4.9991E+ 1 6.9983E+ 1 

3 6.6107E+O 5.6207E+O 6.4760E -t 1 2.7039E+ 1 ! 

4 1.4543E+ 1 -8.9139E-t0 -5.6379E+O 
! 

7.4344E+ 1 / 

5 7.9274E-1 8.201bE-1 -6.9369E-1 6.3173E+O 

6 -5.8634E+O 1.2801E+ 1 9.5893E+O 6.5529E + 1 

7 9.1089E+ 1 1.2811E+2 -5.4217E+ I 5.2381E+2 , 

Source: Reid, R. C., Prausnitz, J. M., and Poling, B. E., The Properties of Gases and 
Liquids, 4th ed., McGraw-Hill Book Company, New York, NY, 1987. 

10.2 THERMAL CONDUCTIVITY OF LIQUID 

. 
The thermal conductivity of liquid UF, can be determined by Latini’s method, which 

writteh in slightly revised form is’ 

k, = 
(Co + C,T,)(l - T,)“.38 

Tr’16 
(10.8) 

Dewitt documents one data point for liquid UF, thermal conductivity - at 72°C. the thermal 
conductivity of liquid UF, was found to be 3.83 x lOa Cal/cm-s-“C.’ Reid, Prausnitz, and Poling 
recommend that if the liquid is at a reduced temperature greater than about 0.8, high-pressure 
vapor correlations (i.e., Chung et al.) should be used to calculate the thermal conductivity of the 
liquid.3 Therefore, Latini’s correlation can be used to predict the thermal conductivity of liquid 
UF, at reduced temperatures lower than 0.75 and Chung’s correlation can be used for reduced 
temperatures exceeding 0.75. 

The constants C, and C, in Eq. 10.8 should be calculated in order to match Dewitt’s data 
point as well as produce a continuous function by matching the values predicted by Latini and 
Chung at the switch point (T, = 0.75). The constants are therefore defined as 

k 
c, = Dewa 

T’l6 
r. Dcwr 

- T, Dew&1 ’ (10.9) 
(1 - T, DcwuOo.38 ’ 

I 
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and 

3 

where k,,, 
T r, DeWiff 

k Chmg 

Tr, switch 

Cl = 

k T’16 Dcm? r. Dcwi k 

(1 - Tr, Dcwm)o.38 - 

Chvng Tr$dch 

(1 - T,, swirch)o.38 

tTr, DeWin - =r. swid 

(10.10) 
, 

1 

= value of liquid UF, thermal conductivity provided by Dewitt, 
= reduced temperature corresponding to Dewitt’s data point, 
= value of liquid thermal conductivity predicted by Chung at the switch 

temperature, 

I 

= reduced temperature corresponding to temperature at which Latini’s method 
becomes invalid and Chung’s method becomes applicable. 

I 

Chung’s correlation for liquid thermal conductivity, which will be used for reduced I 
temperatures exceeding 0.75, is j 

k I = %m&-l + B;y) + qB,y2TjRG2 . (10.11) 

All variables in Eq. 10.11 .are as defined as in Section 10.1 with the exception of the molar 
volume, V, which is taken as the liquid molar volume rather than the vapor molar volume. The 
leading coefficient, C, is defined as 

1 

(10.12) 

where kc = thermal conductivity at the critical point (W/m-K). 

All variables in Eq. 10.12 are evaluated at the critical temperature. By calculating a value of C 
in this manner, the liquid thermal conductivity is forced to be equivalent to the vapor thermal 
conductivity at the critical point. 

Making the leading coefficient in Latini’s correlation a function of temperature allows the ’ 
liquid thermal conductivity of UF, to be represented by a continuous function. It should be noted 
that the low temperature thermal conductivity is assumed to be independent of pressure, whereas 
the high temperature thermal conductivity is a function of pressure. 

The thermal conductivity of liquid UF, predicted by the Latini and Chung et al. methods 
is shown in Fig. 10.2 along with Priest’s data point. The thermal conductivities were calculated 
in the saturated state. The transition between the two correlations (T, = 0.75) is evident in Fig. 
10.2. It should also be noted that the thermal conductivity becomes very large at the critical 
temperature. 
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10.3 METHOD OF RESIDUA& THERMAL CONDUC’TIVITItiS ’ 

Since most correlations for thermal conductivity include specific heat as a variable (i. e., 
Chung’s method discussed in the two preceding sections), any spikes or discontinuities in the 
specific heat curves are also present in the thermal conductivity curves. In order to avoid any 
numerical problems or difficulties that might arise from non-smooth thermal conductivity curves, 
a method based on a residual thermal conductivity vs density relationship $11 be investigated. 
Such a method which produces smooth, continuous thermal conductivity curves is proposed by 
Owens and Thodos for inert gases.12 

Low pressure vapor thermal conductivities of UF, vapor are presented in Dewitt over 
a limited temperature range (0 - 125”(Z).’ -Low pressure (P, = 0.001) vapor thermal 
conductivities were calculated using Chung’s method discussed previously (see Section 10.1). 
Values of low pressure thermal conductivity calculated by Chung’s method over the range of 
interest (0.6 1 T, 2 3.0) were used to obtain the following correlation for low pressure UF, 
vapor thermal conductivity in W/m-K: 

k0 = -3.316~10-~ + 1.791x10-* T, - 2.085~10-~ T,” . (10.13) 

I 

The next step in the method of Owens and Thodos is the formulation of a correlation 
between the residual thermal conductivity and the density. Chung’s method with the appropriate 
correction factor (see Section 10.1) was used to calculate values of saturated vapor thermal 
conductivities at reduced temperatures of 0.6 to 0.9. With both the saturated and low pressure 
thermal conductivities known, residual thermal conductivities (k - w) can be calculated. A 
residual thermal conductivity can also be calculated for the single liquid data point presented in 
Dewitt.’ Using the Lee-Kesler method, saturated densities were calculated which correspond to 
each of the residual thermal conductivity data points. These data are represented by the following 
correlation for residual thermal conductivity in W/m-K as a function of density: 

k - k” = -9.OO7x1O-6 + 9.945xlO+p + 9.089x10-9p2 , (10.14) 

where P = density (kg/m3). 
1 

If the temperature and pressure are known, the low pressure thermal conductivity can be 
calculated from Eq. 10.13 and the density can be obtained by a method such as Lee-Kesler. The 
residual thermal conductivity can then be obtained from Eq. 10.14. Finally, the thermal 
conductivity at the temperature and pressure of interest can be determined from the values of 
residual and low pressure thermal conductivities. 

k = (k - k”) + k” . (10.15) 

Y The method described above applies to both liquids and vapors. 
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The thermal conductivities of JJF, vapor and liquid predicted by the residual thermal 
conductivity method are shown in Figs. 10.3 and 10.4 along with the available data. The thermal 
conductivities were calculated in the saturated state. As seen in Figs. 10.3 and 10.4, the curves 
are smooth and continuous and have finite values near the critjcal point. 

10.4 THERMAL CONDUCTIVITY OF SOLID 
I) 

The thermal conductivity of solid UF, is given by the following correlation derived by 
Williams2 

k, = -3.645~10-~ + 1.895x10-3T, (10.16) 

where k, = thermal conductivity of solid (W/m-K), 
T = temperature (K). 

Equation 10.16 is a linear fit of two solid thermal conductivity data points documented by 
Williams.2 

10.5 THERMAL CONDUCTIVITY RECOMMENDATIONS .i 

The method of residual thermal conductivities (see Section 10.3) is recommended for 
calculating the thermal conductivities of both vapor and liquid UF,. The thermal conductivity 
of solid UF6 can be estimated by Eq. 10.16. The thermal conductivity of UF, calculated by the 
recommended methods is shown graphically in Fig. 10.5 as a function of temperature and 
pressure. 
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11. ADDITIONAL THERMODYNAMIC PROPERTIES 

Several additional thermodynamic properties of UF, can be derived from properties 
discussed in earlier chapters. These derived properties include the kinematic viscosity, Prandtl 
number, thermal diffusivity, and the coefficient of expansion. 

I 

11.1 KINEMATIC VISCOSITY 1 I 

The kinematic viscosity (v) is defined as 

P “Z- 

P ’ 
(11.1) 

where P = dynamic viscosity, 1 
P = density. /. 

The kinematic viscosity of UF, vapor and liquid is shown graphically as a function of temperature 
and pressure in Fig. 11.1. The viscosity and density were calculated by the methods 
recommended,in Sections 9.3 and 5.4, respectively. 

t 
11.2 PRANDTL NUMBER 

* The Prandtl number (Pr) is defined as 

pr = 5$, 

where CD = specific heat, 

I 

(11.2) 
i 

/ 

ic = thermal conductivity. 

The Prandtl number of UF, vapor and liquid is shown graphically as a function of temperature 
and pressure in Fig. 11.2. The specific heat, viscosity, and thermal conductivity were calculated 
by the methods recommended in Sections 7.5, 9.3, and 10.5, respectively. 
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11.3 THERMAL DIFFUSIVITY 

The thermal diffusivity (CY) is defined as 

k a=-. (11.3) 

The thermal diffusivity of UF, vapor and liquid is shown graphically as a function of temperature 
and pressure in Fig. 11.3. The thermal conductivity, density, and specific heat were calculated 
by the methods recommended in Sections 10.5, 5.4, and 7.5, respectively. 

11.4 COEFFICIENT OF EXPANSION 

The coefficient of expansion (0) is defined as 

/ 
I 
I . , 
I 

P =-I aP -- 
( 1 p ar/ 

(11.4) 

where 
I 

P = density, I 
T = temperature, ? 

/ P = pressure. 
I 

11.4.1 Vapor Coeffkient Of Expansion 

The coefficient of expansion of UF, vapor (6,) can be estimated as 

(I 1.5) 

where Pr, P = density evaluated at T, 
T = absolute temperature, 

PT+AT, P = density evaluated at T+AT, 
AT = small temperature increment. 

In determining the vapor coefficient of expansion, a small temperature increment is added to the 
reference temperature to ensure that the fluid is still in the vapor state. The coefficient of 
expansion of UF, vapor is shown in Fig. 11.4 as a function of temperature and pressure. 
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11.4.2 Liquid Coefficient Of Expansion 

The coefficient of expansion of UF, liquid (P,) can be estimated as 

* 

p, = 1 PT,P -- 
I 

- PT-AT, P 1 PT, p T - U--Al) ’ 

(11.6) 

where &.Ar P 
= density evaluated at T-AT (kg/m3). 

In determining the liquid coefficient of expansion, a small temperature increment is subtracted 
from the reference temperature to ensure that the fluid is still in the liquid state. The coefficient 
of expansion of liquid UF6 is shown in Fig. 11.4 as a function of temperature and 
pressure. 

11.4.3 Solid Coeffkient Of Expansion . 

The coefficient of expansion of UF, solid can be estimated as 

p = 5.190 
5 

ps ’ 
(11.7) 

where 4 = solid coefficient of expansion (l/K), 
PS = solid density (kg/m’). 

Equation 11.7 was obtained by differentiating Eq. 5.44 and substituting the result into Eq. 11.4. 
The density of solid UF, can be determined using Eq. 5.44. The coefficient of expansion of solid 
UF, is shown in Fig. 11.4 as a function of temperature. 
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Table A.l. Conversion Factors for Thermophysical Properties 

Coefficient 
of 

Expansion 
l/K I/K 1.0 1I”R 1.8 

Density 

Dynamic 
Viscosity 

kg/m’ 

N-s/m* 
or 

kg/m-s 

J/kg 

Pa 

Nk’ 

J/kg-K 

mzls 

m’lkg 

N/m 

g/cm” 

g/cm-s 

Cal/g 

atm 

Cal/g-“C 

cm?/s 

cm’lg 

g/s2 

1 .OE-O3 

l.OE+Ol 

Ib,/ft’ 

Ib,/ft-hr 

6.2428E-02 

2.4191E+O3 

Enthalpy 

Pressure 

Heat 
Capacity 

Kinematic 
Viscosity 

Specific 
Volume 

Surface 
Tension 

‘2.3885E-04 Btdlb, 4.2992E-04 

9.8692E-06 psia I .4504E-O4 

2.3885E-04 Btu/lb,-“F 2.3885E-04 

l.OE+04 ft2/hr 3.8750E+O4 

1 .OE+03 fi’/lb, 1.6018E+01 

1.OE+03 Ib,/ft 6.8522E-02 

calls-cm-K 2.3901E-03 Btulhr-fi-“F 5.7779E-01 

cm’ls 1 .OE+04 ft21hr 3:875E+O4 

Source : ASTM Standardfor Metric Practice, E380-79, American Society for Testing and 
Materials, Philadelphia, PA, 1980. 
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Lee-Kesler Compressibility Correlation Solution Hints 

As mentioned in Chapter 5, the Lee-Kesler compressibility correlation is implicit with 
respect to reduced volume. Therefore, in order to solve Eq. 5.21 for reduced volume, an 
iterative solution technique is required. One such technique which proved successful was the 
Reguli-Falsi method. This method requires solution of the following equation: 

@. 1) 

The first step in solving Eq. B. I is to obtain a fixed value of V,, which we will call Vrt A first 
guess of reduced volume, V,,.s, is also required. Equation B. 1 should be evaluated at both Vr./ and 
V,, to obtain the two values frV,, and f(V,J. A new guess for reduced volume is calculated as 

V 
v, = y., - m, ,I 

- ?‘r/ 
’ fey,.“,; - f&J * 1 03.2) 

The new value of V, calculated from Eq. B.2 is then substituted for Vr,g in Eq. B. 1 to obtain 
f(v,,). This procedure is repeated until convergence is obtained. 

After thoroughly investigating the Lee-Kesler compressibility equation, it was discovered 
that the correlation has multiple roots (as many as three) for some combinations of temperature 
and pressure. Therefore, care must be taken in selecting values of the fixed point and first guess 
for the solution of accurate and reliable compressibilities. The following values which are in 
some cases functions of temperature were determined by a trial and error procedure and seem 
to produce reliable compressibility values. 

If P, I 1.0 and T, I T,, (i.e., liquid), 
V r*f = O.lSST, - 0.035, 
V r.g = 0.14291). + 0.05714. 

If P, 5 1 .O and T, > T,,, (i.e., vapor), 
V rf = 55.0, 
V r.g = 54.0. 

IfP,> 1.0, 
vi,,, = O.l85T, - 0.035, 
V,,, = O.l429T, + 0.05714. 
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