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1. Introduction’ 
The objective of the Fossil Energy Advanced Research and Technology 

Development (ARKI’D) Materials program is to conduct research and development on 
materials for longer-term fossil energy applications as well as for generic needs of 
various fossil fuel technologies. These needs have prompted research aimed toward a 
better understanding of material behavior in fossil energy environments and the 
development of new materials capable of substantial enhancement of plant operations, 
reliability, and efficiency. 

The research program of the Materials Response Croup at Virginia Tech addresses 
the need for reliable and durable ceramic composites to perform in high temperature 
applications. Areas of current research are characterization of oxide/oxide hot gas filter 
tubes and dense Nextel/SiC tubes. The focus of this report will be on the characterization 
of the NexteVSiC tubes. In Section 2, we discuss the tube responses to axial tensile and 
compression loading as well as to torsional loading. Internal pressure test procedures are 
detailed and refinements are proposed. In Section 3, the elasticity theory model and 
nonlinear regression analysis currently being developed will be explained and 
preliminary results presented. 

Finally, we have been working toward the goal of developing models for the strength 
and toughness of fibril-reinforced composites. The first step toward this goal, described 
in the last report and summarized in Section 3, is to develop models for the bridging 
stresses in cases in which the bridging fibers are randomly oriented. This model has been 
extended to include the effect of fiber length, and is used to determine the apparent 
toughness of a fibril-reinforced composite. 

’ Research sponsored by the U. S. Department of Energy, Fossil Energy Advanced 
Research and Technology Development Materials Program, DOE/FE AA 15 10 10 0, 
Work Breakdown Structure Element VPI-1 
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2. Performance of NexteVSiC Composite ‘lhbes 
Improvements to fossil energy power facilities require the development of advanced 

materials to withstand the higher operating temperatures and harsh conditions needed to 
boost efficiency. Ceramic composites are a prime candidate since they offer excellent 
high temperature properties of monolithic ceramics with improved toughness needed for 
these applications. Fabrication of these materials has proved to be difficult, since the 
high temperatures needed to sinter the constituents can degrade the physical properties of 
the composite as a whole. More recently, methods have begun to rely upon chemical 
vapor infiltration (CVI) to deposit the matrix material into the fiber performs. This 
allows for the formation of several different matrix and fiber systems without requiring 
the high processing temperatures seen in other processes. Unfortunately, standard CVI 
procedures require infiltration times that can be too long to be considered economically 
feasible. 

Development of new processes has resulted in greatly reduced infiltration times, 
overcoming many of the problems of previous CVI techniques. The previous methods, 
such as isothermal/isobaric CVI, rely upon diffusion processes to deposit the matrix 
material. Low deposition rates were used to prevent large density gradients caused by the 
outer surfaces becoming fully dense, and not permitting infiltration to the inner portions. 
This results in the long deposition times or high porosity. Researchers at Oak Ridge 
National Laboratory (ORNL) have developed a new method to overcome the problems of 
long process times or large density gradients’“. The forced flow-thermal gradient 
process (FCVI) utilizes a temperature gradient to change the deposition rates from the 

.’ inner preform to the outer surface. The deposition times are reduced from a period of 
weeks to that of only hours, forming nearly dense composites without density gradients. 

The process has been used to fabricate planar samples, and it has been scaled-up 
to produce samples with a tubular geometry. To determine the effectiveness of the 
process, the completed materials have been sent out for material characterization. Much 
of the previous mechanical testing of composites made using the FCVI technique has 
been limited to relatively small g\ana.r samples. These test methods include flexure tests 
and some limited axial testing . With the larger sample size and different sample 
geometry, different tests need to be performed to characterize the mechanical properties 
of tubular samples. The Materials Response Group at Virginia Tech has performed 
testing on previous tubes supplied b 
Technologies, Inc., Lynchburg, VA) Y 

ORNL and Babcock and Wilcox (now McDermott 
-lo. That work focused on the mechanical properties 

of Nicalon/SiC and alumina/alumina ceramic composites of various designs and lay-ups. 
The materials were fabricated by different methods, ranging from using forced flow CVI 
for the Nicalon/SiC’” to sol-gel processing to deposit an alumina matrix for the 
alumina/alumina materials*‘g. 
Table. 1: 

The mechanical properties for these materials are listed in 

The approach used in this study will be modeled after that applied in Carter, et al 
for characterizing hot gas candle filter tubes”‘12. It is similar to the earlier work 
performed at Virginia Tech, in that, axial tension, compression and torsion are used to 
characterize the elastic ,response of the tubes. Internal pressurization tests have been 
devel~~~~~~~-~~~~~~~~~~~ further insight into the behavior of these materials. Internal 
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pressure and axial/biaxial tensile strength tests are used to characterize the strength of the 
composites under different loading conditions. 

Table I. Reported properties from previous tube samples 

2.1 Fabrication 
The composite tubes were fabricated using the forced-flow, thermal gradient 

chemical vapor infiltration technique at developed at Oak Ridge2’3. The preforms 
consisted of ten to twelve Nextel 610 (Nextel 312 for sample CVI-1173) braided sleeves 
stretched over a polyethylene mandrel. The green preform was infiltrated with a small 
amount of Borden Durite resin to provide some structural support prior to the silicon 
carbide infiltration. The preform was compressed by aluminum tube sections and 
allowed to cure. The cured preform was trimmed to a 35.5cm length prior to the Sic 
infiltration via the FCVI process. The FCVI process conditions were as follow: 1200°C, 
5 slm of hydrogen, and 1 slm of methyltrichlorosilane (MTS). The samples achieved 80 
to 90% of theoretical densities in about 36 hours. Once processing was completed the 
ends of the samples were removed to leave a 30-cm long sample. The final tube 
properties are listed in Table II. It should be noted that in this study, no fugitive carbon 
layer was deliberately deposited to improve composite toughness. A small amount may 
be present from the decomposition of the resin used to rigidize the preform, though none 
was noticed in the initial inspection of the tubes. 

Table II. Properties of the NexteYSiC composite tubes 



I 
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I 
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h, 

A cross section of the CVI-1173 tube can be seen in Figure 2-l. The light gray 
layer on the inner surface, is a SiC layer deposited during the FCVI process. This layer 
was less than 1 rmn ‘at the.ends of the tube, and approached 4 mm in thickness in some 
cross sections taken near the middle of the sample. 

Figure 2-1: Cross section of sample 1173 

The change in dimension creates problems in accurately calculating the stress in the 
material. The cross sectional area and polar moment of inertia used in this study were 
calculated from the average values of the outer diameter and tube thickness at each end of 
the sample. The average dimensions for the samples are in Table III. The’changes in the 
dimensions of CVI 1219, shown in the last two columns, are due to changes made to the 
sample during testing. An excess layer of Sic was deposited on the inner surface, and, 
after the m,ate+ strength exceeded the load capacity of the MTSsystem, it was 
machined out at ORHL. The ti&i’thick;;ess values for me sample aft&milling exhibits 
large variations, which is due to the inner surface not being concentric with the outer. 

Table III. Dimensions of the samples 

h 



2.2 Axial tests 
Axial tension, torsion and compression tests were performed on each of the 

samples using a MTS servo-hydraulic load frame with axial and torsional capabilities. 
The load ranges for the frame were 2246 kN (50 kip) in tension/compression and ti.3 
kN-m (20 in-kip) in torque. The Teststar II software from MTS handled system control 
and data acquisition. This allowed the recording of all loads, displacements, and strains 
from the strain gages, simultaneously. 

To increase the number of samples, CVI 1173 was cut in half to provide two axial 
samples approximately 15-cm in length. The later samples, CVI 1216 and 1219, were 
sectioned differently to provide internal pressure test samples. From each of the tubes, 
two 3.5 to 4.0-cm internal pressure test samples were cut from the initial sample, leaving 
a 23-cm sample for axial testing. For the CVI 1173 axial samples, the ends were initially 
potted in epoxy and machined down to acceptable tolerance for the MTS grips. The low 
stiffness of the epoxy proved insufficient to support the high compressive force in the 
grips. Both of the 1173 axial samples suffered grip-induced failures. For samples CVI 
1216 and 1219,6.25-cm long steel inserts were made to closely fit into the tube ends and 
were bonded in place with epoxy to provide support. Again, the outer surface was built 
up with epoxy and milled down to the tolerances required for the MTS grips. Grip 
related failures have not been observed on either sample using this configuration. 

Strain measurements were made using four strain gage rosettes equally spaced 
around the samples, as can be seen in Figure 2-2. The redundant measurements are made 
to account for any specimen misalignment, since small misalignments can generate 
significant stress/strain variations through the sample. In the elastic regime (below 
matrix cracking), these effects can be removed by averaging the stain values. A typical 
axial stress/strain curve is located in Figure 2-3. The plotted values are the average of the 
different strain components from each gage. The recording of the different strain 
components (axial, hoop, and shear) is important for the analysis being developed and is 
explained in Section 3. Table IV contains the measured mechanical properties of the 
tubes. The stiffness values are calculated from the strain data collected from the strain 
gages and the nominal stress values (calculated using the average values for the area and 
polar moment of inertia). 

Figure 2-2: Specimen configuration for axial tube testing. 

The two sets of elastic values listed for both CVI 1216 and 1219 are due to the 
changes made in the samples after the first series of tests, where neither sample failed in 
tension. For both samples, the SIC layer on the inner surface of the tube was relatively 
thick (on the order of 4-mm thick for CVI 1219), increasing the cross-sectional area, 
thereby decreasing the stress in the material during testing. Due to this, the strength of 
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the sample exceeded the load capacity of the MTS system (246 kN). The steel inserts 
were removed by burning off the epoxy layer by placing the sample in a furnace at 400°C 
for 1 hour. The Qower was turned off, and the system was allowed to cool over night 
before the sample was removed. The epoxy burned off leaving the samples coated in .., 
chaired epoxy resin and soot, but free of the inserts. The SiC ‘layer on CVI 1216 was too 

* 
! 

\ 
-Average Hoop 

Figure 2-3: Typical tensile test. 
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4% 

thin for effective machining without damaging the sample, so it was repotted and 
returned to testing. CVI 1219 was returned to ORNL, and the Sic layer was machined off 
the inner surface. For Sample CVI 1216 - AR is for As-Received and AHT’ is for After 
Heat Treatment. For Sample CVI 1219 - AR is for As-Reckived and AM for After- Milling. > x ,--.I*. 

The axial stiffness for CVI 1216 was not affected by the thermal exposure to 
remove the epoxy, while the torsional stiffness increased by 28%. The ‘torsional tests 
have been repeated, with little variation in the observed modulus. Investigation into what 
structural changes may have occurred has not been conducted at this point. The 
properties for CVI 1219 increased slightly with the removal of the SIC inner coating. 

The stress/strain curves for the tensile strength tests of the CVI 1173 samples are 
in Figure 2-4. The tensile strength values for the two 1173 samples are not indicative of 
the material since both exhibited grip induced failures. Both 1173’ samples exhibited a 
small amount of nonlinear behavior, as can be seen in the departure from the CVI 1216 
line. The fracture surface exhibited some fiber pullout, as can be seen in Figure 2-10. 
CVI 1219 failed in the gage section, and the tensile strength plot is in Figure 2-5. An 
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extension of the linear behavior of the material is included to illustrate the nonlinear 
behavior. 

Table IV: Mechanical Properties of the NextelISiC composite tubes ._ 
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Figure 2-4: Stress/ Axial Strain curves for tensile strength tests 
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Figure 2-5. Tensile Strength Pldt for CvI 1219. 

During the testing of samples 1216 and 1219 AR, the load profile reached the 
system limit before failure. The values listed are the largest nominal stress values applied 
before the 246 kN (55 kip) limit or prior to slippage of the sample. In order to test CVI 
1216 and 1219, the grip pressure was boosted to 38 MPa, from the normal setting of 20 
MPa, to prevent slipping at the higher loads. For CVI 1216 AHT, the load profile was 
altered so that torque would be applied when the axial load limit was reached. The load 
profile for CVI 1216 is in Figure 2-6. The axial force reaches 246 kN and an applied 
torque of 1422 N-m before the sample slipped out of the grips of the MTS frame. Later 
attempts to repeat the test to a higher level failed due to wear on the epoxy grip surface. 
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Figure 2-6. Load Profile for CVI 1216 

Figure 2-7 and Figure 2-8 are of the strain response to the different sections of the 
loading profile. Figure 2-7 has the pure tension results, while 2-8 contains the result for 
the torque ramp with a constant 246 kN axial load. 
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Figure 2-7. Strain response for the tension only portion of Figure 2-6 
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Photographs of the failed of samples CVI 1173-l and CVI 1219 are in Figure 2-9 
through Figure 2-12. The first two images show the grip-induced failure of the CVI 
1173-l. The failure originated in the region above the grip area, as can be seen in Figure 
2-9. Figure 2-11 and Figure 2-12 are of CVI 1219. All the samples exhibited fiber 
pullout, while CVI 1219 had delamination and pullout (highlighted in Figure 2-11). 

Figure 2-9. Grip induced failure of CVI 1173-1 

11 ,’ 
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Figure 2-10: Fractured tensile strength specimen CVI 1173-1 

Figure 2-11. SampIe CVI 1219 with large amounts of fiber pullout and 
delamination 
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2.3 Internal pressure tests 

Internal pressure testing is a common method used for characterizing composite 
tubes”“5. The method generates stress in the material primarily in the hoop direction of 
the sample. This provides-more information on the properties of the material when used 

a 
with axial tests. The procedure used the compressed rubber plug technique as described 

. ..-: . ._ ‘/_ . ..3.’ ., ., 

Compression 
Platen 

Composite 
Ring 

Elastomer 
Plug 

Figure 2-13: Schematic of internal pressure test with cross-section 

si in Singh, et aZ13. A schematic of the test is in Figure 2-13. By compressing the rubber 
plug, the Poisson expansion of the material will generate pressure on the inner surface. 
The internal pressure is calculated by the expression: 

h 
(2.1) 

Where Pi is the internal pressure, o,, Ep, aZ and vp are the compressive’ stress, Young’s 
modulus, axial strain, and Poisson’s ratio for the plug material. This expression is 
derived from an elasticity solution for an isotropic, linear elastic material. Due to the 
axisymmetric loading conditions, the radial and hoop stress are equal throughout the 
plug? With this information, Hooke’s Law can be rearranged into the expression above. 
It is important to note that due to the large deformations used for these tests (20 to 30% 
on average), true stress and strain values should be used for this procedure. These values 
are found from the engineering stress and strain values by: 

Irs _,. .’ 
E”=ln(ll-E) 
B=o(l+&) (2.2) 

where B and E” are the true stress and strain and G and’s are the engineering stress and 
strain’7. 

The elastomer compound used for these tests was Dow Coming Silastic silicone 
rubber (Silastic T-2). Initial work with this material was unsuccessful, due to the material 
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failing by shearing out around the compression platens. Later attempts used a urethane 
rubber compound, which exhibited better shear properties. Difficulties arose with 
accurately predicting the pressure generated due to the nonlinear elastic and viscoelastic 
properties of the urethane. The Silastic compounds were re-examined and found to 
exhibit linear elastic behavior with no appreciable viscoelastic effects. The compression 
platens were made to match the inner diameter of the sample more closely, which 
eliminated problems with the shear deformations and failure of the plug. 

A high-pressure lubricant is applied to the plug, platen, and inner surface of the 
sample to minimize compressive loads generated by friction and to generate a more 
uniform internal pressure. After each test, the plug and sample are inspected for any 
damage associated with the test. To date, the tests have not been run to a level sufficient 
to damage the Sic composites. New elastomeric compounds are being investigated, and 
the procedures are being improved in the hope of increasing the pressure above the 
strength of the material. 

To validate this procedure and check whether the pressure calculated and 
generated were the same, a pressure test was performed on a stainless steel sample. The 
steel used was an AISI Type 304 stainless steel with a Young’s modulus of 193 GPa. 
The pressure was calculated by linear elastic equations (Equations 2.1 and 2.2), by hyper- 
elastic equations, and by the Lame cylinder solution for a homogenous, isotropic 
material. There are several different equation to describe hyper-elastic materials, but the 
Mooney-Rivlin equations were found to adequately describe the behavior of the Silastic 
material’5’18, The Mooney-Rivlin equations describing the deformations of hyper-elastic 
materials are: 

(2.3) 

wherefis the force per unit unstrained area (cr,), Ci and C2 are material constants, and 
h2=( 1+&)2 . For the linear elastic and hyper-elastic equations, the stress value calculated 
is that for an unconstrained plug compression, which occurs early in the internal pressure 
test prior to contact with the sides of the sample. Assuming that the Silastic is 
incompressible and possesses a Poisson’s ratio of OS, once contact is made the axial 
stress in the plug is the unconstrained stress plus the pressure generated on the wall of the 
sample, or: 

This allows for the pressure to be calculated by removing the elastic stress contribution of 
compressing the plug from the measured applied stress. 

To apply the Lame cylinder solution, the frictional loading was neglected, and the 
hoop stress was calculated from the strain gage measurements (oa=E&s). The value of the 
hoop stress at the outer radius of the sample is: 

(2.5) 
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which can be rearranged to solve for pressure: 

P-6) 

x 

where ri and r, are the inner and outer radii, pi is the pressure, and os is the hoop stressr6. 
With this information, the test results for the stainless steel sample are in Figure 

2-14. The graph is of the pressure calculated vs. the compressive strain of the rubber 
plug. All methods find similar values for the pressure generated in the test. The flatter 
portion of the curves, between -0.14 to -0.18 strain, is believed to be due to friction 
between the sample and the plug, since the pressure is least accurate during that portion 
of the test. Different lubricants are currently being tested to reduce the friction effects. 

/-Lame Cylinder] 

2- 

l- 
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rq 
Figure 2-14. A comparison of the different method to calculate the internal pressure 

for a stainless steel control sample. 
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Figure 2-15. Stress and Pressure curves for an internal pressure test 

Another test of this method can be seen in Figure 2-15, which is an internal pressure test 
for a carbon/epoxy composite tube. This figure contains three different lines: one for the 
Free Compression Stress, the Applied Plug Stress, and the Pressure (calculated using the 
elastic equations). The free compression stress is the linear elastic curve of an 
unconstrained plug, while the applied plug stress is stress measured during the test (a 
constrained plug). The difference of the two is the pressure to the sample. In the graph, 
above 3% strain, the plug becomes constrained as it makes contact with the sample, as 
seen by the rapid rise in the applied stress. Around 9% strain, the sample fails, returning 
the applied stress to that of the unconstrained or free compression levels. The test 
reached a maximum of 14% compressive strain, and then returned to zero, with both the 
free compression and applied stress lines overlapping. 
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Figure 2-16. Measured strain vs. internal pressure for an internal pressure test 
(Sample CVI 1219). 

The results of the internal pressure tests are in Table V. The values are the slopes 
found by linear regression for the data, as shown in Figure 2-16 (Pressure/strain). Others 
in the literature have calculated the hoop stress in the cylinder due to the internal pressure 
by expressions from elasticity theory (Lame’s Cylinder solution)‘4. This assumes a 
homogenous, isotropic material behavior, which is not expected with these materials, but 
will be used here to describe the results. Work described in the next section is being 
developed to address the problem of finding a better method to represent the results to 
internal pressure tests, since these materials are neither homogenous nor isotropic. 

Table V. Slopes of the best-fit data for CVI 1219 “j... .,.‘.‘. j 
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3. Analysis of Data 
So far, the characterization of the composite tubes has focused on the global 

responses (axial stiffness and strength, torsional stiffness, and internal pressure burst 
tests). A better understanding of the material would come from knowing the ply-level 
elastic properties, but it is not possible to measure those directly for a composite tube. 
Current research is developing methods to determine the ply-level elastic constants (El, 
E2, Es, etc...) for a homogenous, orthotropic composite laminate. The first part of this 
section will review the elasticity solution for these structures subjected to axisymmetric 
loading conditions. In the second part, a nonlinear regression analysis will be detailed 
with some results. 

3.1 Elasticity or “Forward” Solution 
The derivation illustrated is from the work by Rousseau, et a119. The following 

expressions can be used to calculate the stresses, strains and displacements for a 
composite cylinder under axisymmetric loading conditions (axial tension, compression, 
torsion, internal pressure and uniform temperature change). By applying the Strain- 
Displacement relations to the Displacement equations, the different strain components 
can be calculated through the thickness of the tube. The strain values are related to the 
stress values by the Constitutive equations. 

Displacement Equations - u = axial displacement, v = tangential and w = radial 
displacement 

u(x) = &OX 

v(x, r) = yoxr 
w(r) = A/ + 48 + l?~‘r + Slyor + YrAT 

(3.1) 
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Strain-Displacement Equations 

h 
au ‘a+ v 

&, =s y&j =s-T’O 
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(3.2) 

*“c Constitutive Equations 
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(3.3) 
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,*.-. At ifi& point ~‘th-&g~p;;-~~~~;-for stress;‘;&n”-;~ &Yplacement-;;n be derived in 

terms of the transformed material stiffness matrix ( cV ), E’, y”, Ar and AZ. Since the 
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elastic properties and geometric considerations are known for a given structure, the cV 

values can be calculated for each ply. The remaining unknown terms - so, y”, Ar and AZ - 
need to be found using the boundary conditions. For a laminated structure composed of 
N layers, there will be 2N+2 unknowns - E’, y”, N Al’s, and N AZ’s The first boundary 
condition is a relation between the applied axial force and the axial stress. For a tube in 
axial tension, the applied axial force, F,, must be equal to the sum of the integrals of the 

c! 
axial stress through the thickness. The same applies to a tube with an applied torque, TX. 
The sum of the integrals of the shear stress must equal the applied torque. The 
expressions for these boundary conditions are: 

This gives two equations towards the 2N+2 unknowns. Two more come, from the 
pressurized cylinder condition. The pressure at the inner and outer surfaces must be 
equal and opposite to the applied pressures. These can be equated as: 
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-pi = 0; (Ri) 

-PO = a;N w, > 
(3.5) 

where pi and p0 are in the applied internal and external pressures, Ri and R, are the inner 
and outer radii, and the superscript on the stress expression is the layer of the material. 
The last two requirements for the tube are that of continuity of traction and displacements 
at ply interfaces, or: 

(3.6) 

This gives the last 2(N-1) equations needed to solve for the unknowns. Simultaneously 
solving the above equations will give the 2N+2 unknowns for the displacement, strain 
and stress equations. 

3.2 Nonlinear Regression Analysis or %versey Solution 
Now that an analytic expression exists, it is possible to develop a method using this 

model to back calculate the ply level properties. In a thesis by George, a nonlinear 
regression method was used to find the best ply level elastic properties to fit a set of 
experimental data2’. Figure 3-l illustrates the steps in the nonlinear regression analysis. 
In the first step, the sample geometry (number of plies, orientation, interfacial radii, 
etc...), guess values for the elastic properties (El, E2, Es, Giz, ~12, v 13, v 23, al, a 2 and a 
9, and the applied loads (F,, TX, Pi, PO, and any combinations of each) are entered into the 
elasticity solution. The strain response (a,, ~0 and ~~8) for each load condition is 
calculated. At this point, there are two sets of strain values, the experimental data and 
those calculated from the guess values. The goal of the program is to minimize the error 
function, Y, which is defined as: 

y=~p’=yJ-,(E, -EJ2 (3.7) 

Where Ed and sC are the measured and calculated strain values, and Y is the sum of 
square errors (SSE). 

If the system of equations were linear, a minimum in the error function would be 
found in one step. Since this is not, a nonlinear regression technique must be used. The 
difference is that the nonlinear method is an iterative process, with each successive step 
decreasing the SSE. A solution is found by declaring convergence criteria, which can 
range from calculating if the variables are no longer changing, or defining a fixed number 
of iterations for the system. Usually, more than one of the criteria will be employed to 
reduce computation time and determine the conditions at convergence. Other criteria are 
chosen to stop the program if the system is not converging to a solution. This is 
dependent upon the quality of the data and guess values. If either is not sufficient, the 
system may not converge to a meaningful solution. 
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Enter parameters 
E’s, Geometrv. Loads 

Adjust Cij 

Use Forward Solution to 
Calculate Strain &dc 

1 
Exceed , 

.I*,,?*: ., 

Y= SSE 
Y* = Acceptable error 

Eicak = E’x, 6, r’xe 

E’s = Elastic Constants 

Best-Fit Material Properties 

Figure 3-l: Schematic of Inversion Program 

At this point, C-H codes have been written for the Forward and Inverse solutions. 
In order to test the method, a fictitious composite laminate data set was created, and the 
Forward solution was used to generate the strain response. The guess values were altered 
and input into the Inverse solution. Table VI contains the guess values, solution values 
and the correct values for the test run. The maximum number of iterations was set to 25, 
with no other criteria used, to obtain a plot of the variation in the SSE with each iteration, 
as seen in Figure 3-2. After each iteration, the values are improved and the sum of 
squared error decreases until the solution is found (the line plateaus). The different lines 
are for the number of significant digits included in the strain values used as the 
experimental data set. Truncating the strain values before they were input into the 
analysis controlled the number of significant digits, illustrating the effects of error on the 
input values. The effect is not significant for exact values (4 or more significant digits), 
but does introduce large errors in some of the values in the cases of 2 or 3 significant 
digits. This is not unexpected, linear and nonlinear regression are sensitive to error in the 
input values. This sensitivity is not desirable since the accuracy of experimental 
measurement cannot be expected to these levels. 

^ 
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Table VI. Data set used in the Inversion Program (Input and Output are for 6 
significant digits). 

15 20 25 30 35 

0.01 - 

0.001 - 

O.OQOl- 

lE-G5 - 

1506~ 

lE-O7- 

1 l&06- 

lE-O9- 

lE-lo- 

lE-11 - 

lE-12 - 

1s13 - 

lE-14 - 

lE-15 - 

lE-16 - 

lE-17- 

lE-18 - 

Figure 3-2: Sum of Square Error values for each iteration 

The data described in Section 2 of this paper has been reduced for input into the 
analysis by fitting the linear elastic portions of the data with a best-fit line. The slopes of 
the data were used to calculate the strain response at the maximum and minimum load 
ranges for each of the tests (except for the internal pressure tests where one was taken at 
the maximum and second was taken at an intermediate pressure). The same number of 
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data points were included from each tests, so the results would not be biased towards one 
set of data. 

/ There, is .*a ~discrepancy between the model used and the experimental samples. 
T&model was designed to describe the deformations in a laminated structure composed 
of orthotropic layers of various orientations. The experimental samples are a laminated 
structure with woven plies. To approximate the behavior of the woven plies, each layer 
is modeled as 2 cross ply layers. The resulting geometric structure inputs for CVI 1219 
are in Table-VII. The experimental inputs, loads and strains, are in Table VIII. The load .” , _I “.II I..“.. . . .I “._._._ L.;I ._ ., ), .~_ .. --w.. &..A; .j” ‘i”,. .,.., .-I.-d.-. .” conQtlons used for the analysts, ‘&2.“c’iei;;ld and /iiri;a .,.. ~;&g,.~%k@;-,~izd pi), axial 

tension and compression, and axial torque. 
observed strains are input as well. 

For each of the loading conditions, the 

)_ / I )‘ “1 ,. , : ” I : ,‘S,.> *,,_,rC. ., i*i. ‘..~. i :. .1 I. I ,e I*” 

Table VII. Geometric inputs for CVI 1219 
,. 

Inner radius- cm (in) 2.5 (0.98) .- ~ .’ 
Outer radius - cm (in) 2.95 (1.16) 

Number of Layers 16 
Layer Thickness - cm (in) 0.47 (0.187) 

Orientation A45 

Table VIII. Experimental Applied Loads and Measured Strains 

If 
Strain _ ]I I 

II w V 

(< i. ,I’. 9 ,.I ‘,‘ I.‘(’ “ :;. i, .: ^ ,;*Iji,, (,..,_, &;): ,a,. .; .) 

The results for different sets of start values are in Table Ix. The values in Set 1 
are rough estimates of the measured stiffness values listed in Table IV and Table V, while 
those in Set 2 ,are rough estimates calculated using micromechanics models for El and E2: 

-ii1 = VfEf + (1 -VJE, (3.8) 

.; ‘ 
(3.9) 
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where Ef and E, are the modulus of the fiber and the matrix and Vf is the fiber volume 
fraction. The modulus values used for the SIC and the Nextel 610 fiber are 414 and 372 
GPa*, respectively, and a fiber volume fraction of 0.32 was used. The input values used 
in Set 3 were solutions from another optimization technique using the values from Set 1 
as start values. 

Table IX. Input and output values for CVI 1219 

The output values are different for each set of starting values. The only value that 
is consistent is the shear modulus value. The other in-plane values (l-2 values) are 
calculated with a range of values that are acceptable, while the out-of-plane values are 
not. The through-thickness stiffness (Es) ranges in value from 155 GPa to 4964 GPa 
(22.5 Msi to 720 Msi), while the two Poisson’s ratios (vi3 and ~23) range from -0.67 to 
0.58. These values are well outside the expected ranges for these values (EszE2 and 
~12-13), and at this time no start values have been found that return all values in the 
expected ranges. This is not indicative that analysis has failed. Figure 3-3 through 
Figure 3-5 are the graphs of the experimental data plotted with the calculated results. In 
each graph, the experimental strain measurements are plotted as data points, while the 
model predictions are the lines. In all cases the model matches the data very closely, with 
the possible exception of the shear strain values in Figure 3-5. 

At this point, the analysis is finding material properties that generate strain values 
that minimize the error between the measured and predicted values, but the properties are 
not all falling within accepted values. The largest single reason for this is the lack of data 
used in this method. As with linear regression work, nonlinear regression functions 
better with larger data sets. This current work is being performed on essentially 9 data 
points to optimize 7 variables. With the lack of data, error in the experimental values can 
cause large error in the optimized values, which is believed to be what has happened to 
the out-of-plain values. 

The procedures are being adapted to increase the amount of new data by 
recording the surface strains on the inner surface of the sample as well as the outer. This 
will double the data recorded for the axial tests (both tension and torsion), and should 
allow for improved differentiation between the results as to which set better describes the 

* Values taken from reports on the 3M website 
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br 

data. Other possible problems are the difference in the structure (cross-ply layers 
approximating woven structures) from the model to the experimental samples and the 
existence of damage. Matrix cracking might cause the structure as a whole to deform in 
an inconsistent fashion to what would be predicted by all the elastic properties being 
within the acceptable ranges. These ideas are currently being researched in the hope of 
improving confidence in the solution values. 
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03001 

n Axial Expetirnen~l 

l Hoop Experimental 

0 Shear Erperimenta~ 

-Axial Model 

‘.’ -Hoop Model 
ml25 

-Shear Model 

Figure 3-3. Axial tension and compression results - the data points are the 
experimentally observed values and the lines are themodel predictions 
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torsion results- the data points are the experimentally observed 
values and the lines are the model predictions 
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Figure 3-5. Internal pressure results - the data points are the experimentally 
observed values and the lines are the model predictions 
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4. Effect of Randomly Distributed Fibers on the Toughness of Fibril- 
Reinforced Compdsite Materials 

4.1 Introduction 
Fossil environments will require materials that tolerate 1250 C and possibly higher 
temperatures. The mechanical properties of Nicalon and Nextel fibers deteriorate 
significantly at such temperatures. There has been a large effort to develop higher- 
temperature fibers. Unfortunately, these efforts have not been very successful. However, 
high-strength fibrils can be fabricated by the techniques such as the VLS techniques 
developed at Los Alamos National Laboratory2’. The critical stress for extension of short 
(non-steady-state) matrix cracks bridged by continuous fibers parallel to the applied load 
and perpendicular to the crack has been thoroughly analyzed using fracture mechanics 
principles by Marshall et al.22, McCartney23, Majumdar et al.24. In their analysis, authors 
proceed by equating the effective stress intensity factor obtained for the matrix crack, i.e., 
the stress intensity factor obtained by superposing the contributions of the far field stress 
and of the crack bridging fiber tractions with an effective fracture toughness of 
composite. The computation involves three key steps: 

1. Development of a relation between traction applied by the crack-bridging fibers 
and the crack-opening displacement; 

2. Use the force displacement relation in an iterative numerical scheme to obtain a 
self-consistent crack opening profile and crack-bridging tractions at ‘a given 
applied stress; 

3. Use of the self-consistent fiber tractions to calculate the effective stress intensity 
factor and the critical stress based on an appropriate fracture criterion. 

In this work, we extend the Marshall et al.22 approach to the analysis of inclined and 
randomly distributed fibers within a composite specimen. 

4.2 Crack Closure Pressure for an Inclined Fiber 
The mechanics of fiber pullout can be conveniently analyzed by applying tractions Tm 
and Tf equal and opposite to the stresses in the matrix and fibers along AA’ at the end of 
the slipped region (as shown in Figure 4-l), and removing the section AA’CC’. If we 
neglect the effect of shear stresses above AA’ (i.e., assume that it represents an isostrain 
plan) these tractions are related: 

* ., 

. . . . 
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Figure 4-1: Analysis of fiber pullout for an inclined fiber 

T Tf L?L=- 

% Ef 
(4.1) 

where, 

Tm and Tf are the tractions within the matrix and the fiber respectively; 
E,,, and Ef are the modulus within the matrix and the fiber respectively. 

Equations relating the stresses and displacements are obtained by considering the 
equilibrium of the matrix and fiber separately and also calculating the extensions 6 and 
&II of the matrix and fiber Marshall et al.22. 

Matrix equilibrium: 
T,A,,, cosly = 2n Rzcos v (4.2) 

Fiber equilibrium 
T Af cosy=Tf Af cosy+2~Rzcosly (4.3) 

Matrix elongation: 
s ZRl7 =- 

1 cosy A,E, 

Fiber elongation: 

s u Tf nRlz =--+- 
lcosy + Zcosy Ef A,E,,, 

where, 

(4.4) 

(4.5) 

y =j?ber angle 
A ,,, = area of matrix perfiber 
Af = fiber cross-sectional area Af = n$ 
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R = fiber radius 
1 = sliding length 

= shear stress 
i = elongation 
u = crack opening 

From Equations (4.1) and (4.2), we have 
lc‘.e* 2 ./ <%*,a r <; L s*.. bl_. ‘“--A”. ^” ..,,_ \ _/I i _ lo>>./ “.S<. Tf-L,2nRlrE, 

4,E, 

From Equations (4.3) and (4.6), we have 

A 3 =Y[lf”] 

with 

EA f f Af Yf 

h ?=E,%-E,v, 

If we substitute Equations (4.4) and (4.6) into Equation (4.5) we find: 

u 2nRl~~os(y+ -= nRlzcos~ zRlzcoqu 
4% 1 4 Em Af Ef - 4 J% 

After some simplification, we can find the sliding length 1: 

l2 = uREs 

h , \.:: j r(l+~)cos~ 

.a”* 

Finally, by combining Equations (4.7) and (4.11) we obtain the traction T: 

4.3 Extension to Randomly Distribhd Fibers 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
. 

(4.12) 

4.3. I No Possible Fiber Pull-Out 
We now seek to extend the solution for the closure traction to the analysis of cracks that 
are bridged by randomly oriented fibers. These fibers are assumed to be sufficiently long 
that pullout does not occur. For such a case, the probability density function describing 
the orientation of fibers in the matrix is defined as (with the normalization condition) 
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If we consider f(@ = constant (so that the distribution is completely random), we find 
that: 

f(Y)=? (4.14) 

Following Jain and Wetherhold25, we introduce the auxiliary variable y’, which 
represents the signed distance from fibers’ center of gravity to the crack plane. The 
required probability density is: 

where 
p[J% E21 

El =y’~ [y’,y’+d y’] 

E2=W4/v+Wl 

(4.15) 

Figure 4-2: Illustration of the definition of the auxiliary variable y’ 

Using the Bayes’ theorem for non-independent events Ei and E2 we can write: 

p[E, E21=p[EA2] p[ E21 (4.16) 

The second probability is well defined by Equation (4.14). For the events El the only 

values of y’of interest are those which intercept the crack, i.e. Y’E 
[ 

-1, lf - 
2 coswTos y - 1 

Under the assumption that the fiber center of gravity is uniformly distributed in y 

direction fY (y) = i , y E [0 , h] 1 , we can say that y’ is also uniformly distributed 

y’ E D-h, D] . We may study y’~ 0 1 [ +osyr] and multiply that 

probability by 2. 
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The probability density that a single fiber bridges an arbitrary crack plane y’= I1 with 
events El and E2 is thus: 

_. 

(4.17) 

A 
The number of fibers crossing the crack plane with events El and E2 is defined as: 

Nf~%j+cardydy’ 
0 0 (4.18) 

where, 
h = width of the composite plate 
Nf = total number offiber in the sample. 

h 

A&V, N, =- 
- :. .*,.A : .:.,: .” -,. * i ., . 

The closure pressure is &fi&&‘\s’~” “““‘“’ . **~ ” ’ 
Aflf “. 

where, 

(4.19) 

h Yfc Aflf =-Nfc j ““’ -fv 
- Volume fraction of the fibers that bridge the crack plane II with 

events EI and E2. 

h 

By taking into account Equation (4.18) and Equation (4.19) we can write: 

(4.21) 

Thus, if the crack is large enough that bridging fibers are randomly distributed, the 
approximate closure pressure as a function of position is given by 

A.. __.. 

where 

(4.23) 

After integration we have 
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P(Y) = BT’(y)~j$/=i+v (4.24) 

where 

(4.25) 

If we evaluate the integrand numerically, we obtain the final result 

4u(y)Ef++v) v 
R I 

f (4.26) 

So that for the case in which the length of the fibers is the same as the width of the 
composite, the average bridging stress is roughly half that which would be expected if the 
fibers were aligned with the loading direction. 

4.3.2 Possible Fiber Pull-Out 

Using the geometric relationship shown in Figure 4-2, y’= cosy, where 

1, represents the embedded length. For the embedded length 1, defined as: 

lf Y’ 1, = --- 
2 cos?) 

(4.27) 

We have the following conditions: 

i 

if 4 21 P’P(Y) 
if l,<E p=O 

(4.28) 

Taking into account these conditions in Equation (4.21), changing the inner boundary 

limit of integration to cos r+~ and integrating on 1 rather than y’ the expression of 

the crack closure pressure with possible pullout is: 

P(y) = 0.457 $1 i Ii qY)Ef++rl) v 
R I 

f (4.29) 

where 1 is the sliding length defined by Equation (4.11). 
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Once the crack closure pressure is obtained, it is possible to determine the crack shape 
and the stress intensity factor at the crack tip as a function of the global applied load. 

4.4 Crack Opening and Stress Intensity Factor 

The crack-opening displacement, u(Y), at any position is determined by the entire 
distribution of surface traction2? 

u(Y) =q; 
so_-P(t) 

( 
s2 -;2)do ( 

S 
2 _ t’)“dtds 

where 

,r.l- c = 
4(1-V2)C 
” -,. 

‘&EC 

(4.30) 

(4.3 1) 

V = Poisson’s ratio 
= half crack length 

LC = composite module 
Y = normalized position coordinate, y/c 
a, = far field stress 
P= crack closure pressure 

By superposing the contribution of the far field and the crack closure pressure, we obtain 
the expression of the stress intensity factor as follows [26]: 

(4.32) 

It is essential to ensure that the crack-opening displacement and the crack closure 
pressure are self-consistent with each other before any computation of the stress intensity 
factor. This can be achieved using numerical techniques. In this paper we used the same 
numerical procedure as Marshall et al.22. 

4.5 Numerical Procedure ___._ . . . - “‘I- ,,\. 
Equation (4.30) is solved numerically using an iterative procedure. The value of the crack 
opening is used to compute the corresponding crack closure pressure, which will give the 
value of the crack opening for the next iteration. The value of u(Y) was computing at 

Y = sin 
( 1 
g , where i varies from 1 to n and n is the number of interval in y. We 

consider that the convergence to self-consistency achieved as follows: 
If the value of the crack opening, u; ; used at iteration n to compute led to the 

value, ul, then the value to be tried at the iteration (n+l) was au, + (1- a)ui 
where the damping coeficient & is- set to 0.5 for short cracks and higher for 

,,i ,* 4arger cracks. This process was continued till the diflerence between the values of 
two successive iterations is less than a tolerance fixed by the user. 
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Figure 4-3 and 4 show examples where the crack opening u and the crack closure 
pressure P are compared with those when the fibers are straight. 

Crack Opening for Crack Size 2c~274.4 microns 

0.0 0.2 0.4 0.6 0.8 1.0 

Distance from Center of the Crack, tic 
I 

Figure 4-3. Crack opening displacement for composites reinforced with aligned 
fibers and randomly oriented fibers. 
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Crack Closure Pressure for Crack Sue 2c = 274.4 microns 

0.0 0.2 0.4 0.6 0.8 1.0 

Distance from Center of the Crack, x/c 

---------Straight Fibers 

~ Random Fibers 

Figure 4-4. Crack closure pressure for composites reinforced with aligned fibers 
and randomly oriented fibers. 

The sample dimension and the matrix and fiber properties used in the analysis are 
summarized in Table 10 and Table 11. In Figure 4-4, we see the strong influence of the 
fiber orientation on the crack closure pressure- a direct measure of the effectiveness of 
the fiber reinforcement. 
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Table 10: Dimensions Used in Analysis 
Length (cm) Width (cm) Thickness (cm) 

15 2.5 0.25 

Table 11: Summary of Fiber and Composite Properties 
Property Fiber Matrix 
E(MPa) 428 222 

V 

Rb4 

Volume 
Fraction 

0.2 0.24 

72 

0.21 0.79 

m . . ” r(MPo*&) N/A 2.7 

Finally, we examined the effect of fiber length in the case of possible fiber pullout. As 

e? 
we expected the longer the fiber is the bigger the closure pressure is. These results are 
represented in Figure 4-5 for three different lengths. 

h 

h 

h 

,. 

“.. . . Fiber Length = 7.20e3 m 

0 0.2 0.4 0.6 0.8 1 

Distance from Center of the Crack, x/c 

I 

Figure 4-5. Crack closure pressure for composites containing randomly oriented 
short fibers as a function of fiber length. 

The results of the analysis can also be used to determine the apparent toughness of the 
composite as a function of crack size. Such a result is shown in Figure 4-6. 
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Figure 4-6. Critical stress intensity factor as a function of crack size. 
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5. Summary 
In this report, we have provided mechanical assessment of structural tube 

components fabricated using the FCVI process. Failed specimens exhibited fiber pullout. 
Those failed samples that did not fail in the grips also exhibited non-linear stress-strain 
behaviors. Strengths exhibited by these tubes were superior to those measured previously 
for Nicalon/SiC and alumina/alumina ceramic composites of various designs and lay-ups. 
In addition, we have developed a modeling approach for extracting ply-level properties 
from the tests conducted on tubular materials. These properties may then be related to 
local details (such a porosity) to gain a greater understanding of the factors affecting the 
tubular performance. 

Our analysis of the composites reinforced by fibrils shows that the fibrils can be 
effective in increasing the toughness of the composites through “crack bridging and 
eventual pullout. We find that the fibrils (as expected) are most effective when aligned ., xi ,. ,_,. * 4 qIlir, 1 1 
with the directidn of loading, but that then can still“l$ovide an?ncrease in “apparent 
critical stress intensity factor when randomly oriented. 

The above accomplishmenfs provide the Fossil Energy program, and other industrial 
developers of CMC’s with (i) a solid base of knowledge of the mechanical properties of 
composite tubes fabricated-using the FC\iI technique, (ii) an analysis ‘for “developing the 
ply-level properties of such tubular composites based upon the global performance; and 
(iii) a model for assessing the efficacy of randomly oriented fibrils for-improving the 
toughness of CMC’s. Each of these advances are important steps in the path from 
successful material processing to component design and component performance that are 
required forthe ultimate development of’operating ceramic components in fossil energy 
applications. 

,< , : _.. . . . 
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