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ABSTRACT

A brief proceedings of the two-day Workshop on Molecule Assisted Recombination and
Other Processes in Fusion Divertor Plasmas, organized by the ORNL Controlled Fusion
Atomic Data Center on September 8-9, 2000, is presented.  The conclusions and
recommendations of the workshop regarding the topics discussed and the collaboration of the
U.S. fusion research and atomic physics communities are also summarized.



1.  INTRODUCTION AND WORKSHOP OBJECTIVES

Under the sponsorship of the U.S. Department of Energy Office of Fusion Energy Sciences,
the ORNL Controlled Fusion Atomic Data Center (CFADC) organized on September 8-9,
2000, a workshop on “Molecule Assisted Recombination and Other Processes in Fusion
Divertor Plasmas.”  The workshop was attended by representatives from major U.S. fusion
laboratories actively involved in magnetic fusion plasma edge studies and divertor plasma
modeling, as well as by atomic collision physicists involved in atomic and molecular data
generation for the U.S. fusion research program.  The list of workshop participants is given
in Appendix 1.

The motivation for organizing the workshop was to provide a forum for stronger and direct
interaction of fusion edge plasma/divertor and atomic physicists. In particular, the aim was
to better understand the physics of the divertor plasma and related atomic and molecular
(A+M) (collision and radiative) processes through discussion of the atomic physics content
of current edge plasma and divertor modeling codes, the required A+M data (and their
availability) for enhancing the predictive power of these codes, and identification of the most
urgent A+M data related issues in divertor physics research.  The organization of the
workshop was in response to the presently widely recognized understanding that the
achievement of the desired performance of reactor relevant divertor systems critically depends
on the control of plasma conditions via atomic and molecular collision and radiative processes
taking place in divertor region.  Furthermore, it has been recognized that the strong
interaction and collaboration between divertor plasma and atomic physicists is of paramount
importance for resolving efficiently divertor optimization issues.  

The concept of the two-day workshop was to devote one of the workshop days to a detailed
discussion of the physics of Molecule Assisted Recombination (MAR) of divertor plasmas,
with particular attention to the completeness and quality of atomic and molecular physics
implemented in the MAR modeling codes.  The second day was devoted to a review of the
broader A+M data needs (including particle-surface collision processes) in divertor plasma
research and of the ongoing A+M data generation efforts in the U.S. (particularly those
sponsored by the DOE OFES) related to this research.  This concept was reflected in the
workshop program (see Appendix 2).

The specific workshop objectives regarding MAR were to:

a. determine the divertor plasma conditions in which MAR is the dominant plasma
recombination mechanism;

b. identify the sensitivity of MAR modeling results on the data accuracy of the reactions
involved;

c. analyze the completeness of MAR kinetics presently implemented in MAR modeling
codes and assess the quality (accuracy) of employed A+M data and the needs for their
improvement;

d. seek/discuss other MAR mechanisms for enhancement of volume plasma recombination
(additional to those included in the present MAR scenario).
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The workshop objectives regarding the broader scope of divertor A+M physics were to:

a. discuss and identify the A+M/surface data needs in divertor physics areas other than
MAR (such as divertor plasma radiative cooling, impurity generation and transport,
divertor plasma diagnostics, etc.);

b. review the status of present U.S. fusion-related A+M/surface data generation effort (in
particular its portion sponsored by the DOE OFES) in the context of its conformity with
the A+M/surface data priorities of the current U.S. fusion research program.

2.  WORKSHOP PROCEEDINGS

The workshop was opened by Dr. D. R. Schultz, Director of the ORNL CFADC, by a
welcome address and brief outline of the motivation and goals of the meeting.  Dr. R. K.
Janev, co-organizer of the workshop, then provided a more detailed account of the workshop
objectives, putting them into the context of the needs of present-day fusion research.  The
work of the meeting then proceeded in accordance with the adopted Workshop Program (see
Appendix 2).

2.1  Presentations on MAR

The presentations on MAR during the first day of the workshop are described below in the
abstracts provided by the participants.  We note that after the session, a general discussion
took place during which various issues related to the MAR kinetics and the data availability
(and their quality) were addressed.  The conclusions of this discussion are summarized in
Section 3.

Abstracts of Presentations

Molecular Activated Recombination: Mechanisms, Collision Processes 
and Plasma Conditions

S. I. Krasheninnikov
University of California, San Diego

San Diego, CA

In experiments with detached plasmas, the plasma recombines before it reaches the targets
and the recombination is the only process allowing the reduction of the plasma flux to the wall
in fusion experiments without strong impurity radiation loss.

In fusion related experiments there are two main paths for plasma recombination: i) e+A+ �A
which includes both two- and three- body recombination of electrons and positive ions and
where ions are not involved in any chemical transformations (electron-ion recombination
(EIR)), and ii) pathways involving negative ions (B-) and molecular ions (AB+) and going
through the channels H2(v)+e � H-+H followed by A++H- �A+H and A++H2(v) � AH++H
followed by AH++e �A+H (where H2(v) is the vibrationally excited hydrogen molecule). In
fusion studies the second path which cannot be initiated without impact of molecular
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hydrogen is called Molecular Activated Recombination (MAR). Notice that both paths
involve rather complex dynamics of the population of electronically excited states while the
second one can depend also on vibrational dynamics of the molecules involved. However, the
crucial distinction between EIR and MAR is that the EIR process does not require any extra
energy to start while MAR needs about ~2 eV to be pumped into vibrational levels of the
molecule before it proceeds.

While the importance of the EIR processes in plasma detachment is well accepted by the
fusion community, the role of MAR in fusion experiments is still under discussion and
different conclusions are made based on the analysis of different experiments. 

We analyze the role of EIR and MAR channels of plasma recombination in fusion related
experiments by using a scaling law approach. We find that for the model relevant for a well
baffled tokamak divertor geometry, the MAR effects can be important only within a rather
limited zone of dimensionless heat parameter, q, proportional to the ratio of the heat flux to
the plasma pressure in the upstream region in the range q <1. For an “optically transparent”
gas box model, relevant for divertor simulators and slot divertors, we find that the MAR
effects are important at q~1. Our findings may explain the differences in the experimental
results from the weakly baffled C-Mod inner leg, the divertor simulator NAGDIS-II, and the
well baffled ASDEX-U divertor.

Collisional Radiative Kinetics of Molecular Assisted Recombination
in Edge Plasma
A Yu. Pigarov

University of California, San Diego
San Diego, CA 

Recombination of hydrogen plasma in the divertor volume is a simple explanation for divertor
plasma detachment phenomena experimentally observed on many tokamaks.1  The presence
of vibrationally excited molecules in detached plasma provides an additional mechanism for
plasma recombination, the so-called, molecular assisted recombination (MAR).2 

The kinetics of cascade excitation of vibrational states of hydrogen molecule and molecular
ion, dissociation, and numerous reactions has been studied with the collisional radiative
atomic molecular data (CRAMD) code.2  This code solves a system of coupled rate balance
equations for: (i) vibrational levels of ground state molecule H2(x

1
�g

+); (ii) the few lowest
electronically and vibrationally excited states of H2 ; (iii) electronically excited states and all
vibrational levels of the ground state of molecular ion H2

+; (iv) the negative ion H-; and (v)
electronically excited states of hydrogen atom. A complete set of atomic physics data has
been developed. The quasi-stationary, quasi-homogenous plasma approximation is used.

The calculations show that the effective rate coefficient for MAR is about 10-10 cm3/s and it
exceeds the rate coefficient for usual electron-ion recombination (EIR) in a wide range of
plasma parameters. The dependence of the MAR rate coefficient on plasma parameters is
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discussed. A comparison of the MAR rate coefficient with rate coefficients for molecular
dissociation and ionization and EIR is given.

The sensitivity of the MAR rate on the accuracy and completeness of atomic physics data is
discussed. A three-times difference in predicted MAR rate coefficient was obtained under
different model assumptions on state-to-state cross sections for atomic-to-molecular ion
conversion. Completeness of the MAR model requires incorporation of detailed data on the
molecular ion, since the cross sections for ionization and dissociative recombination of H2

+

as well as the quantum state of dissociation products depend strongly on vibrational excitation
of the ion.

High concentrations of neutral atoms in detached divertor plasma cause strong re-absorption
of Lyman radiation. The effect of plasma radiation opacity on the MAR rate coefficient is
considered in terms of radiation escape factors. 

The results of the CRAMD modeling of Lyman and Balmer line intensities measured from
detached divertor plasma in ALCATOR C-Mod tokamak are presented. For a two-emission-
volumes model of the divertor plasma, the CRAMD code composes the line spectra from
different mechanisms for excited states population (MAR, EIR, and excitation of ground state
atoms).  The analysis shows that MAR should be involved in explaining the measured spectra
and that the contribution of MAR to the plasma particle sink in the divertor is significant.
________________
1S. I. Krasheninnikov, A. Yu. Pigarov et al, Phys. Plasmas 4, 1638 (1997).
2A. Yu. Pigarov, S. I. Krasheninnikov, Phys. Lett. A 222, 251 (1996).

A&M Database for MAR and Divertor Plasma Modeling in 
Neutral Particle Codes: Data Status and Needs

Daren Stotler
Princeton Plasma Physics Laboratory

Princeton, NJ

The collisional radiative model used to treat the H2 in the EIRENE Monte Carlo neutral
transport code is described by Greenland.1  The data used in this model are enumerated by
Greenland and Reiter.2  The paper by Fantz et al.3 gives a recent application of this model in
support of the measurement of the vibrational distribution of H2 in the ASDEX-Upgrade
tokamak experiment.

A key conclusion of Greenland1 is that establishing the validity of a given collisional radiative
model involves more than just examining the equilibrium timescales of the component
processes.  The application of this analysis to the case of electron impact on hydrogen reveals
that a valid collisional radiative model must treat all vibrationally excited states, 14 in the
paper, as “slowly evolving” species (i.e., their transport must be explicitly computed).  Doing
this has a significant impact on the results of neutral particle transport simulations, as is
demonstrated by the results shown by Fantz et al.3
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Investigation of the MAR reaction chain in experimentally relevant simulations with the
EIRENE and B2-EIRENE codes3 shows that the recombination contribution made by MAR
is a few percent in detached divertor conditions and less than 1% in attached operation.  The
results were shown to be insensitive to the vibrational distribution of molecules coming from
the walls.
________________
1P. T. Greenland (to appear in J. Nucl. Mater., 2000).
2P. T. Greenland and D. Reiter, “The role of molecular hydrogen in plasma recombination,”
Jul-3258 ISSN 0944-2952 (Forschungszentrum Julich) (1996).
3U. Fantz et al. (to appear in J. Nucl. Mater., 2000).

Dissociative Electron Attachment on Hydrogen Isotope Molecules: Status
Jo Wadehra

Wayne State University
Detroit, MI

At the Workshop on Molecule Assisted/Activated Recombination and Other Processes in
Divertor Plasmas, I presented theoretical cross sections for dissociative electron attachment
to H2 and its five heavier isotopic variants (HD, HT, D2, DT, T2).   The dependence of these
cross sections on the initial vibrational excitation of the molecule was also investigated and
presented.  Various cross sections and the corresponding rates were fitted to simple analytical
functions.   These functions can be included in the computer codes to assess the effect of the
electron attachment processes in the divertor modeling.  At the Workshop I also presented
the results of our calculations of cross sections for vibrational excitation and for pure
dissociation of H2.

Resonance Processes in e-H2/HD/D2 Collisions:  Dissociative Attachment and 
Dissociation from Vibrationally Excited States

Ilya Fabrikant
University of Nebraska

Lincoln, NB

Quasiclassical version of the non-local complex potential theory allows us to describe the
dissociative electron attachment to the rovibrationally ground and excited states of the H2

molecule and its isotopic substitutes.  The theory also allows us to calculate vibrational
transitions with the extension to the vibrational continuum (resonant dissociation). We find
that the rotational enhancement of the dissociative attachment process is much weaker than
the vibrational enhancement. The isotope effect is much stronger for lower vibrational states.
Both findings can be interpreted in terms of Franck-Condon factors and survival probabilities
of the intermediate resonant state of H2

-.
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Collisional-Radiative Model For Molecular Hydrogen
Takashi Fujimoto

Kyoto University, Kyoto, Japan

Keiji Sawada
Shinshu University

In the course of our spectroscopy of Balmer lines on our WT-3 tokamak plasma, we found
that the observed intensities of these lines were strongly influenced by the presence of
molecular hydrogen. We estimated the contribution from dissociative excitation of molecular
hydrogen to the atomic line intensities.  We thus succeeded in determining densities of atoms,
molecules and electrons from the three observed line intensities, i.e., Balmer alpha, beta and
gamma lines, as functions of the radial position. We also estimated the transport fluxes of
atoms and molecules. In our analysis, we effectively assumed that all the molecular hydrogen
was in its electronic, vibrational and rotational ground state. Obviously this assumption is not
correct, but our above analysis gave rather reasonable results.

For divertor plasmas, recombination processes should be included. Especially recombination
starting from molecular ions is a key to understanding of the overall picture of the
plasma. MAR is a kind of a "new face" of recombination mechanisms, and its effect should
be quantitatively evaluated.  For that purpose, we should have a good knowledge about (1)
the vibrational population distribution of neutral hydrogen when it is released from the wall,
(2) vibrational excitation cross section by electrons, (3) charge exchange cross sections
between neutral molecules and protons producing molecular ions, where vibrational states
should be resolved both for neutrals and ions, and (4) various cross sections concerning
molecular ions in all the vibrationally ground and excited levels.  Among the above, (2) was
addressed by Dr. Wadehra at the meeting, (3) was also done by Dr. Krstic.  Dr. Takagi has
comprehensive calculated data for (4).  Until now, rotational excitation and its effect on the
dynamics have never been addressed except for the Takagi's calculation. Since rotational
excitation of neutral and ionized molecules by atoms (molecules) and ions should be effective,
this problem should be considered seriously. 

Charge Transfer, Vibrational Excitation And Dissociation
In Slow Hydrogen Ion-Molecule Collisions

P.S. Krstic
Oak Ridge National Laboratory

Oak Ridge, TN

We presented extensive calculations of charge exchange, vibrational excitation and
dissociation in collisions of H+ with H2(v), obtained within the quantum-mechanical IOSA
model. The ab initio potential energy surfaces for the H3

+ ion were employed and the
corresponding coupled equations were solved for all 34 vibrational levels (corresponding to
the asymptotic arrangements H++H2(v) and H+H2

+(v)) and for 66 discrete continuum states.
We also described some of the underlying dynamical mechanisms for the above processes and
presented the relevant cross section results from the threshold to about 10 eV. The particle
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exchange (heavy particle rearrangement) channel, however, was not included in these
calculations which limits their validity to the region above 1.5 – 2 eV. Also, the full
convergence of the calculations seems to require a larger number of discrete continuum states.
Comparison of vibrational excitation cross sections agrees well with the existing experimental
data for low v-values, while the charge exchange cross sections in the energy range above 2
eV are in qualitative agreement with the recent classical-trajectory-surface-hopping (TSH)
of Ichihara. Inclusion of the particle exchange effects as well as improvement of the
convergence of the calculation by increasing the basis set is underway.

Hydrogen Atom, Ion, and Molecule Isotopomer Collisions:
Rearrangement, Electron Transfer, and Excitation

Phillip C. Stancil
University of Georgia, Athens

Athens, GA

A survey of existing data for collisions of isotopes of hydrogen atoms, ions, and molecules
was conducted.  The survey was limited to atom (ion) - diatom collisions and to energies less
than about 100 eV.  The processes included particle-rearrangement, electron transfer, and
rovibrational excitation, with a particular emphasis on state-to-state (or state-selected) data.
Since the last survey (Linder, Janev, and Botero, 1995), a small number of investigations for
deuterium ion-diatom systems have been performed, with only one involving state-resolved
data.  Data for the dissociative channel and for neutral atom-molecular ion collisions are rare,
while no data involving tritium ion-diatom systems was found.  For neutral atom-diatom
collisions, a number of recent state-to-state studies on both particle-rearrangement and
rotational excitation have been reported for deuterium, and in the former case, tritium
collision systems.  In summary, while some progress has been made since the last survey, the
database involving hydrogen isotope collisional processes, both total and state-resolved, is
far from complete.

Alternative Mechanisms in MAR
R. K. Janev*

Oak Ridge National Laboratory, Oak Ridge, TN (visiting);
*Macedonian Academy of Sciences and Arts, Skopje, Macedonia

The enhancement of MAR in divertors via mechanisms different than the standard ion-
conversion and negative-ion formation channels would be highly beneficial from the point of
view of divertor operation.  Two such alternative mechanisms were analyzed.  One is based
on the hypothetical existence (formation) of Rydberg H2 molecules in the cold divertor
regions, the dissociative electron attachment of which should have huge (~10-7 cm3/s) rate
coefficients.  H2 molecules in Rydberg states have been observed in some plasmas with
parameters close to those in fusion divertors.  Dissociative electron attachment on a small
fraction of Rydberg H2 in the divertor would strongly enhance the negative ion MAR channel.

The other alternative MAR mechanism is based on the presence of hydrocarbon (CxHy)
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impurities in divertor plasma (which is a reality for almost all presently operating divertors).
The mechanism consists in proton charge exchange with a CxHy molecule, followed by the
dissociative recombination of produced CxHy

+ ions with plasma electrons.  Since the products
of e + CxHy

+ recombination are again hydrocarbon molecules, the charge exchange-
dissociative recombination cycle can be (multiplicatively) repeated with the hydrocarbon
fragments of the previous cycle.  The mechanism, thus, exhibits a catalytic property which
makes its effectiveness very high.  Calculations show that ~5-6% of CxHy in the divertor will
have the same plasma recombining effect as the entire molecular hydrogen gas.

The potential role of H3
+ ions in the divertor plasma volume recombination was also

discussed.

2.2  Presentations on Other Divertor Plasma Processes

The second day of the workshop was devoted to atomic processes in divertor plasmas related
to other (non-MAR) aspects of these plasmas such as radiative cooling, ionization balance,
divertor plasma diagnostics and interactions of plasma particles with material surfaces.  The
session ended with a general discussion on various atomic and particle-surface interaction
issues of the current divertor plasma research.  The main conclusions of this discussion are
summarized in Section 3.

Abstracts of presentations

Overview of Important A&M Divertor Plasma Processes
R. K. Janev*

Oak Ridge National Laboratory, Oak Ridge, TN (visiting);
*Macedonian Academy of Sciences and Arts, Skopje, Macedonia

The atomic and molecular collision processes in divertor plasmas were reviewed from the
point of view of their role in divertor plasma cooling, power and particle exhaust from
divertor region, divertor plasma diagnostics, and neutral particle and impurity transport in
divertors.  In particular, the radiative plasma losses due to hydrogen and impurities were
analyzed (with identification of the main participating atomic/molecular processes), the
processes involved in plasma momentum dissipation in the divertor were highlighted, the
processes involved in the emission and charge exchange beam diagnostics of divertor plasmas
were enumerated, etc.  A brief account of the status of the corresponding required databases
for these plasma studies was also given, emphasizing the data gaps and deficiencies.  The
particle-surface interaction processes in the divertor region were also reviewed and the status
of our understanding of their physical mechanisms and methods of their description was
briefly presented.
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Ionization and Recombination in Electron-Ion Scattering
M. S. Pindzola, J. P. Colgan, and F. J. Robicheaux

Auburn University
Auburn, AL

D. C. Griffin and D. M. Mitnik
Rollins College
Winter Park, FL

N. R. Badnell, C. P. Ballance, and H. P. Summers
University of Strathclyde

Glasgow, UK

An electron-ion scattering database for ionization and recombination is now available at the
Oak Ridge National Laboratory's Controlled Fusion Atomic Data Center (see www-
cfadc.phy.ornl.gov). The general format contains final state resolved Maxwellian rate
coefficients as a function of electron temperature, as developed for experimental
spectroscopic diagnostics at the Joint European Torus.  Direct ionization rate coefficients are
available for all Be, B, C, N, O, and Ne ions, while direct and indirect ionization rate
coefficients are available for Na-like and Mg-like Ti, Cr, Fe, and Ni ions.  Dielectronic
recombination rate coefficients are available for all He, Li, Be, B, C, N, O, and Ne ions, while
dielectronic recombination rate coefficients are available for H-like through Ne-like Ar and
Fe ions.

Recent time-dependent close-coupling and R-matrix pseudo-state calculations for the total
electron-impact ionization cross sections of He and Li+ are found to be in good agreement
with experimental measurements.  State selective ionization and recombination theoretical
predictions remain unconfirmed by atomic experiments. 

Electron-Impact Excitation of Impurity Ions
Donald C. Griffin
Rollins College
Winter Park, FL

In this presentation, we summarized the electron-impact excitation data that have been stored
at the CFADC Internet site at ORNL as part of a collaborative effort between Rollins College,
Strathclyde University, and Auburn University.  They were generated from large-scale R-
matrix close-coupling calculations and consist of energy levels, radiative rates, and effective
collision strengths in the ADAS format.  The applications of these data to collisional-radiative
modeling of laboratory and astrophysical plasmas were briefly discussed.  As an example, we
also presented the results our R-matrix with pseudo state calculations of the electron-impact
of C3+ and O5+, where the effects of coupling to the target continuum states has a significant
effect on the cross sections for transitions to the 2s4l excited levels.  
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Overview of Electron-Ion Collision Experiments at ORNL
M. E. Bannister

Oak Ridge National Laboratory
Oak Ridge, TN

An introduction to the electron-ion collision experiments performed at the ORNL
Multicharged Ion Research Facility (MIRF) was presented.  The merged electron-ion beams
energy-loss (MEIBEL) experiment, a collaboration with the research group of Gordon Dunn
of JILA, measures absolute near-threshold excitation cross sections for multicharged ions of
interest to fusion.  Recent results on C3+ and He+ demonstrate the ability of the apparatus to
accurately measure allowed transitions, while data on spin-forbidden excitations in Si2+ and
Ar6+ show the capability of investigating dielectronic resonance structures as well.  The
electron-ion crossed beams experiment was also highlighted, including a summary of the
range of ions for which single ionization cross sections have been measured with the
apparatus.  The crossed-beams experiment is also used to study electron-impact dissociative
excitation (DE) and dissociative ionization (DI) of molecular ions.  Further details on the
experiments, as well as all the published data, can be found at: http://www-
cfadc.phy.ornl.gov/meibel/ and http://www-cfadc.phy.ornl.gov/xbeam/.

Electron Impact Ionization of Divertor Plasma Molecular Impurities
Y.-K. Kim

National Institute of Standards and Technology
Gaithersburg, MD

Electron-impact ionization cross sections for molecules and their ions can be estimated using
the binary encounter dipole (BED) model and its simplified versions. Cross sections based on
these ab initio models are expressed by a simple analytic formula for each molecular orbital.
The outline of the theory, necessary molecular constants to calculate ionization cross sections,
and comparisons to available experimental data can be found at a public Website:
http://physics.nist.gov/ionxsec.  The Website contains cross sections for almost 70 molecules,
including most hydrocarbons relevant to magnetic fusion plasma modeling.  Please contact
kim@nist.gov for more information.

CTMC Charge Exchange Cross Sections:  n-Scaling
Ronald E. Olson

University of Missouri, Rolla
Rolla, MO

The classical trajectory Monte Carlo method was used to calculate total and final (nf) state
selective electron capture cross sections for stripped ions ranging from He2+ to Ne10+ incident
on H(ni = 1 - 4) and Li(2s and 2p) targets at collision energies of 1 – 100 keV/u.  Scaling laws
for state-selective electron capture cross sections as a function of collision energy, initial and
final bound electron states, and projectile charge were given.  The scaling rules reduce the
state-selective cross sections to distinct universal curves.  The curves allow one to predict
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electron capture cross sections in low-energy regions where experimental data are limited or
non-existent.  Reference: K. R. Cornelius, K. Wojtkowski, and R. E. Olson, J. Phys. B 33,
2017 (2000).

Overview of Ion-Atom/Molecule Collision Experiments at ORNL
C. C. Havener

Oak Ridge National Laboratory
Oak Ridge, TN

At the ORNL Multicharged Ion Research Facility (MIRF) (visit www-cfadc.phy.ornl.gov)
ion-atom and ion-molecule experiments provide data that is relevant to fusion plasmas and
that test our current understanding of low energy collisions. Scaling laws which are often used
to estimate electron capture cross sections at keV/amu collision energies are not appropriate
at eV/amu energies. At MIRF total single and double electron capture cross sections for a
variety of multicharged ions on atomic and molecular gases are measured using a gas cell.
Such measurements for B3+ + H2 in the keV/amu energy range provide a benchmark to recent
coupled channel molecular-orbital calculations.  To address low energy collisions, the ion-
atom merged-beams apparatus provides benchmark absolute total electron capture cross
sections for collisions between multicharged ions and ground state H or D in the energy range
from .02 eV/amu to 5000 eV/amu. For example, our measurements for C+ ions with H have
shown dramatic differences in the total cross section for collisions with metastable versus
ground state ions. For C3+,4+ our measurements provide a new benchmark for normalization
of state-selective data and show structure which is not reproduced by current theory.
Measurements with Si4+ + D provide evidence of a strong isotope effect at eV/amu energies.
The merged-beams technique will soon be expanded to include multicharged ion collisions
with a variety of neutrals, e.g., Li, Na, and Fe. At eV/amu energies and below, such collisions
systems are virtually unexplored. 

Ion-Surface Interaction Studies at the ORNL Multicharged Ion Research Facility
V. A. Morozov

Oak Ridge National Laboratory
Oak Ridge, TN

An overview was provided of present and planned experimental activities in the area of ion-
surface scattering at ORNL-MIRF. Using a recently developed floating scattering chamber,
deceleration of ion beams prior to surface impact down to a few eV has been achieved. A
TOF system permits energy and charge state analysis of projectiles and secondary particles
120o backscattered from solid targets. A movable electrostatic spherical sector analyzer
permits in addition measurements of energy spectra of electrons emitted during projectile
interactions with the surface. The apparatus has already been used to study neutralization of
multicharged projectiles during binary collisions with isolated atoms in metal and insulator
surfaces. We have recently initiated studies of chemical and physical sputtering processes
relevant to divertor and edge plasmas of fusion devices. While the initial focus will be on
sputtering of ATJ graphite by low energy H+, D+, He+, multicharged impurity ions, and
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molecular species (e.g., light hydrocarbons), future studies with liquid and solid Li
overcoatings will be possible as well, in an attempt to elucidate the beneficial effects of Li
pellet injection and laser ablation demonstrated in the final days of TFTR, and to support
liquid Li limiter and divertor experiments on present devices such as CDX-U.

3.  SUMMARY OF WORKSHOP CONCLUSIONS

The extensive discussion sessions held after the presentation sessions of the first and second
workshop days have addressed many general and specific questions related to the role of
atomic and molecular processes in fusion divertor plasmas, the proper inclusion of these
processes in the divertor plasma studies (e.g., plasma modeling and diagnostics), the quality
of atomic data information presently used in plasma modeling codes and diagnostic methods,
the data availability and data needs for various divertor plasma studies, the status of data
information exchange between data producers and users, etc.  The main conclusions of these
discussions can be summarized as follows.

3.1  General Conclusions

(1) The Workshop participants adhere to and share the widespread and well founded
recognition by the fusion community that one of the critical issues of current fusion reactor
development is the successful design and operation of the reactor divertor system (for
resolving the critical problems of thermal power and particle exhaust, reduction of power and
particle flux loads on the divertor plate materials, efficient impurity control, etc.).
Furthermore, it was recognized that in the most recent divertor concepts (as implemented,
e.g., in the ITER EDA and in the presently most advanced fusion devices) the trust in the
achievement of the desired divertor functions and performance is placed on the atomic and
molecular (collision and radiative) processes and on their dominant role in determining the
physical conditions of divertor plasmas.  In particular, the atomic and molecular processes in
divertor plasmas may critically influence the plasma energy balance (through various plasma
cooling mechanisms), plasma momentum distribution (and dissipation), plasma ionization-
recombination equilibrium regime, the conditions for plasma-wall interaction processes (and,
thereby, the impurity generation, hydrogen recycling, etc.).

(2)  Under the conditions when atomic and molecular physics plays such an important, and
in many respects decisive, role in the divertor plasma physics research, the strong interaction
and even direct collaboration of atomic and divertor plasma physicists becomes an imperative.
Such cooperation enables an efficient and rational approach in resolving the outstanding
problems of optimization of the design and operational performance of a fusion reactor
divertor, also for a successful carrying out and interpretation of the experimental and
computational (modeling) divertor studies on the presently operating magnetic fusion devices.

(3)  Joint collaborative efforts between atomic and divertor plasma researchers would be
particularly useful in the areas of divertor plasma and neutral particle modeling, divertor
plasma diagnostics, divertor plasma cooling studies and plasma-wall interaction effects.  The
present level of interaction between the atomic physics and fusion research communities in
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the above areas is, in general, indirect (e.g., via DOE OFES, or ORNL CFADC) and the time
correlation between the data generation efforts and the data needs is not always adequate.

(4)  The present Workshop has demonstrated to the full extent the usefulness of working-level
meetings between atomic and plasma researchers on well focused topics (in the present case
the MAR physics), and also the usefulness of a detailed information exchange on the A+M
data needs and availability in the broader scope of fusion plasma research (in the present case
the divertor physics).  Continuation of the practice of such workshops, each time focused on
a different topical area, at which atomic and plasma physicists discuss in detail a specific set
of research problems and agree on certain courses of action, is highly desirable and the
workshop participants recommend it strongly.

(5)  The ORNL Controlled Fusion Atomic Data Center has been (since its inception) and
remains the focal point of the U.S. effort on collection, critical assessment and generation (to
a significant extent) of atomic and molecular data for the U.S. fusion program (and beyond).
In the present situation, when the strengthening of the interaction between atomic and fusion
research, particularly in the area of divertor plasma physics, is becoming essential for ensuring
an efficient and rational approach to solving plasma research issues containing a strong atomic
physics component, the role of the ORNL CFADC in catalyzing this interaction and providing
even the necessary level of effort, and coordination could be very important.  A series of
CFADC organized workshops, such as the present one, as well as the numerical A+M
database maintained by CFADC, provide basic tools by which CFADC could exercise such
a role.

3.2  Specific Conclusions

1.  Regarding MAR processes

(1)  The kinetic reaction schemes presently employed in the collisional-radiative codes for
modeling MAR, generally adequately describe the relevant atomic physics for the case of a
pure hydrogen plasma.  There are, however, a number of key reactions (such as proton charge
exchange on vibrationally excited H2) for which the required database is still not available with
sufficient accuracy.  The quality (accuracy) of the A+M collisional data implemented in the
modeling codes differs from code to code and comparison of their results for the same plasma
conditions is at present not possible.

(2)  The most important gaps in the A+M database for MAR modeling are in the area of
vibrational and rotational kinetics.  The data for the process of vibrational excitation of H2(v)
via the resonant H2

+ state are still not implemented in all MAR modeling codes.  The recent
observations of high H2

+ rotational temperatures in some divertor plasmas indicate that
ro-vibrational kinetics has to be implemented in the MAR modeling codes (and not only the
vibrational one).  This raises the question of a major upgrading of the existing A+M databases
with collisional data for ro-vibrationally excited H2 (and H2

+), which, for most of the
processes, presently do not exist.  Similar upgrading is required also for the modeling codes.
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(3)  Reactor relevant studies of MAR should consider the collision processes of heavier
hydrogen isotopes D2, DT, and T2.  There are several reactions in the MAR kinetic scheme
which proceed via intermediary states (e.g., the dissociative electron attachment, e-impact
vibrational excitation) and which may exhibit an isotope effect.  The collisional data available
for H2(v) cannot be in such cases directly applied to the same processes with heavier isotopes.
The isotopic shift of vibrational levels in different hydrogen molecule isotopes requires also
carrying out new calculations for all the processes in which the internal energy of the reactants
plays a critical role (e.g., in the ion-conversion reaction).  Particle exchange reactions in
isotopic mixtures are expected to play an important role (in the temperature region about 1
eV) and there is at present no cross section data information for such reactions involving D
and T isotopes.

2.  Regarding other (non-MAR) processes

(1)  Elastic, charge exchange, and momentum transfer processes between plasma ions and
divertor neutrals are the main plasma momentum dissipation processes in the divertor.  The
database for these processes for all hydrogen ion-atom (molecule) isotopomers has recently
been established by the ORNL CFADC and has a very high accuracy.  For the neutral particle
transport studies in the divertor, this database constitutes one of the basic inputs.

(2)  The theoretical and experimental data generated in the last few years by the U.S. DOE
OFES contractors for the electron-impact inelastic processes involving plasma impurity
atoms, ions and molecules, as well as for the heavy particle collisions at low energies,
adequately address the present needs of the fusion research, including that of fusion divertors.
The accuracy of these data is sufficient for the needs of fusion applications.  Use of cross
section scaling properties (with respect to atomic or interaction parameters) would make
easier the implementation of the results of massive cross section computations into the plasma
application codes, but this approach is not always possible.

(3)  Particle-surface collision processes are important source/sink terms in the impurity and
neutral particle transport equations, but also participate in the vibrational kinetics of the
divertor molecular gas.  Knowledge of the vibrational distribution of hydrogen molecules
created on (or released from) the divertor wall/plate surfaces is of paramount importance for
the overall divertor plasma chemistry (particularly that involved in MAR).

4.  RECOMMENDED ACTIONS

The Workshop participants recommend the following specific actions be undertaken for
enhancing the interaction between fusion and atomic physics communities in resolving more
effectively some of the critical fusion research.

(1)  In view of the demonstrated extreme usefulness of the present Workshop, it is hereby
strongly recommended that this type of workshop, with a well focused topical part and a
more broader A+M data reviewing part, be held annually with their organization entrusted
to the ORNL CFADC.  A Summary Report of these workshops should be published by the
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ORNL CFADC and distributed to the relevant institutions interested in the workshop
outcomes and conclusions.

(2)  The presentations of the topical part of the Workshop bear scientific importance and it
is recommended that they be published in a scientific journal.  The ORNL CFADC is asked
to take over the editorial responsibilities in the preparation of such a publication and to select
the publisher (journal).  The IAEA APID series and Physica Scripta (Topical Issues series)
are recommended as a possible publication medium for the workshop presentations.

(3)  It is recommended that the MAR modelers and atomic data generation groups undertake
immediate actions to identify the most urgent A+M data needs for the MAR kinetics and
define joint collaborative projects for improving the atomic physics of MAR modeling codes.
Inclusion of rotational kinetics in MAR is one of the most important areas in which such joint
effort is urgently required.
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APPENDIX 1
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and Other Processes in Fusion Divertor Plasmas
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Sept. 8-9, 2000

Participants

Mark E. Bannister, Oak Ridge National Laboratory, Oak Ridge, TN
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Yong-Ki Kim, National Institute of Standards and Technology, Gaithersburg, MD
Sergei Krasheninnikov, University of California, San Diego, CA
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APPENDIX 2

Workshop on Molecule Assisted Recombination and
 Other Processes in Fusion Divertor Plasmas

September 8-9, 2000
 Oak Ridge National Laboratory

Friday, September 8, 2000 – Molecule Assisted Recombination

8:30-9:00 Coffee

9:00-9:15 Schultz, Janev - Welcome, Workshop objectives

9:15-9:45 Krasheninnikov - MAR: Mechanisms, collision processes and plasma
conditions

9:45-10:15 Pigarov – Collisional radiative kinetics of MAR in edge plasma

10:15-10:45 Coffee

10:45-11:15 Stotler - A&M database for MAR and divertor plasma modeling in neutral
particle codes: data status and needs

11:15-11:45 Wadehra – Dissociative electron attachment on hydrogen isotope
molecules: status 

11:45-12:15 Fabrikant – Resonance processes in e-H2/HD/D2 collisions: dissociative
attachment and dissociation from vibrationally excited states

12:15-2:15 Lunch

2:15-2:45 Fujimoto - Collisional-radiative model for molecular hydrogen
2:45-3:15 Krstic – Charge transfer, vibrational excitation and dissociation in slow

hydrogen ion-molecule collisions
3:15-3:30 Stancil – Particle interchange in slow (hydrogenic) ion-molecule collisions

3:30-4:00 Coffee

4:00-4:30 Janev – Alternative mechanisms in MAR
4:30-5:30 Discussion – Krasheninnikov, Janev

6:30 Dinner reception
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Saturday, September 9, 2000 – Other Processes in Divertors

8:30-9:00 Coffee

9:00-9:30 Janev – Overview of important A&M divertor plasma processes
9:30-9:45 Pindzola – Electron-impact excitation, ionization of low-q plasma

impurity ions
9:45-10:00 Griffin – Recombination of low-q plasma impurity ions with electrons

10:00-10:30 Coffee

10:30-10:50 Bannister – Overview of electron impact collision experiments at ORNL
10:50-11:10 Kim – Electron impact ionization of divertor plasma molecular impurities
11:10-12:15 Discussion, Dunn

12:15-2:15 Lunch

2:15-2:35 Olson – CTMC charge exchange cross sections: n-scaling
2:35-2:55 Havener – Overview of ion-atom/molecule collision experiments at ORNL
2:55-3:15 Morozov – Overview of particle-surface collision processes at ORNL

3:15-3:45 Coffee

3:45-4:45 Discussion, Krstic
4:45-5:00 Recommendations, summary, Schultz
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