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5 ABSTRACT 

This report presents a selective compilation of basic facts from the tields of particle 
entanglement and quantum information processing prepared for those non-experts in these 
fields that may have interest in an area of physics showing counterintuitive. “spooky” 
(Einstein’s words) behavior. In fact, quantum information processing could, in the near 
future, provide a new technology to sustain the benefits to the U.S. economy due to advanced 
computer technology. 
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: 1. INTRODUCTION 

The quantum mechanical state of a system is said to be entangled when it arises from the 
superposition of states of identifiable correlated subsystems that can not be factorized. 
Entanglement is a pure quantum mechanical feature without a classical analogue. 

In 1999 one of us, J. T. Mihalczo, suggested the use of nuclear reactions to produce 
entangled massive particles as an alternative to the already existing sources of entangled 
photons. Besides the High Flux Reactor, ORNL will be the site of the Spallation Source. 
both facilities providing the availability of the needed intense neutron sources able to induce 
a variety of nuclear reactions as a source of massive particles. It then appeared of some 
interest to know more about the fields of entanglement, quantum logic. and their possible 
future applications. Motivated by these ideas, it was decided to compile information on those 
fields, mostly to educate ourselves, in an area of physics showing counterintuitive “spooky” 
behavior. This report, like Gallia, is divided into three parts. 

(a) Compilation of the quantum mechanical formalism needed to understand entanglement 
and non-locality in quantitative terms (the casual reader may skip most of this part). 
Most of this analysis has been based on the SU(n) formalism as expounded in Reference 
4. When needed, some of the mathematical steps have been worked out in various 
appendices. This part comprises Sections 2 up to 8. 

(b) Sections 8 up to 10 deal with the subject of quantum interference and entanglement of 
massive particles. It also includes discussions on the Einstein-Podolski-Rosen paradox. 
Bell’s inequalities, and the problem of measurement in quantum mechanics. A brief 
review of some interference measurements using massive particles is included as well. 

(c) Due to the fact that the mathematical and physical background dealt with in parts (a) and 
(b) of the report is equally applicable to the fields of quantum logic and quantum 
information processing, the last part of this overview intends to provide a general 
description of the subjects of quantum cryptography, teleportation of quantum states. 
and quantum computers. The urgency for ORNL to participate in what is now a 
worldwide project on quantum logic is discussed in Section 1.5. 

Clearly, this is not an in-depth review of the above-mentioned fields; it is rather an 
introduction for non-experts in quantum logic that, like ourselves, acquired some interested 
curiosity. As an aid, a relatively extensive list of references is provided. 

i 
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SYMBOLS 
i Uni; Operator 
i4,h Operators 
T, Trace (sum over the diagonal elements) 

[A? 61 Commutator, (A I2 - i3 A) 



I 2. BRIEF REVIEW OF QUANTUM MECHANICS FUNDAMENTALS 

This section contains a brief review of the quantum mechanical tools used in the following 
sections of this report. The fundamental ideas have been extracted from references 1. 2. and 
3. The development and application of the SU(n) representation has been extracted entirely 
from Reference 4. 

2.1 HILBERT SPACE 

A Hilbert space is a complete normed space H in which the norm is given by a scalar 
product. A generic element of H, gi, will be represented by the Dirac, ket. I gi >. and its 
complex conjugated by the bra notations < gi 1 . then the scalar product is written as < gi j g, > 

= II gi l12. 

2.2 OPERATORS 

A rule A that transforms a vector, gt E HI, to another vector, g2 E HZ, 

2.2.1 Linear Operators 

~(aIg,+azgZ)=al~g,+a2~g, 
2.2.2 Inverse Operators 

Inverse operators, A-‘, defined by 

2.2.3. Adjoint Operators 

5 2.2.4. Hermitian (Self Adjoint) Operators 

(2.1) 

(2.2) 

( i = unit operator ) (2.3) 

(2.4) 

2.2.5 Unitary Operators 

(2.6) 

3 
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2.3 EIGENVALUE EQUATIONS 

The eigenvalue equation for the operator A is 

A / g, > = a, I g, > (2.7) 

where, a, , are the eigenvalues and jgi > the eigenvectors. Orthonormality is represented by 
the inner product 

-Gig,>=&, (2.8) 

2.4. GROUP THEORY (FOR POETS) 

A set M of elements is called a multiplicative group when: 

(a) given a pair of elements, A, B E M, the product A B E M (AB f BA); 

(b) (AB) C = A (BC); 

a 

(2.9) 

(c) There is a unit element, 1 E M, such that 1A = Al = A; 

(d) Given A E M, there is an inverse element A“ E M such that AA-’ = A-IA = 1. (2.10) 

In the case that condition (d) is not fulfilled, the membership is called a semigroup. The 
group of operators, U, (with elements Ui j) that transforms n-dimensional vectors, 

v = (VI, V2’ . . . v,, ) , according to 

I. I - VI - c Uij Vj 
j=l 

(2.11) 

is called the unitary group, U(n), if 

UU’ =U+U=l(i.e. 2 UijUij=C UI,,U,k=CYik)* (2.12) 
j=l .I 

Hence, /det (U) 1 = 1; if det (U) = 1, the unitary group is called a special unitary group, SU(n). 

4 



2.5 TRANSITION QPERATORS 
b 

Given the eigenvectors /k>, / !? >, the transition operator Fk, is defined as 

fikP =I k> Id@/ (or simply 1 k > < 4 1, reminding the integration step) (2.13) 

To see how it works, consider the ket, /Y>, expanded in terms of eigenvectors /k>. .e.. 

(Y?>=~ a,.[k’> 
k’ 

apply now the transition operator i),, : 

fi,IY>=jk>x ~dr<kla,.jk’>=/k>Ca’l<klk’>=Ik>Ca’l,ii’j,i=aiik> 
k k k’ 

the result is to “project out” the k-th component of Iv>, so that pk. can be termed a 
projection operator. Important properties of these operators4 are: 

. 

c i>k, 

kf k 

with the commutator relation 

The following trace relations apply 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

2.6 GENERATING OPERATORS OF SU(n) 

1 

The elements of a group can be constructed on the basis of a set of quantities called 
generating operators (or group generators). All (n xn) unitary matrices with det(U(n)) = 1~ 
define the subgroup SU(n). The elements Uij can be represented in terms of a Hermitian 
matrix, &by: 

U,,, = exP { i A,j,, > ; A,, = A;,, (2.20) 

5 



In view of the condition, det U(n) = 1. and the hermiticity of A, there are s = nz - 1 
independent generating operators. R, (j = 1, 2 . . s) and the rank of the group. r, is equal to 

(n - 1). 

3 

The generating operators, i, (j = 1, 2 , . . .s) are Hermitian operators defined by the relations 

[i,.i,l=2ik f,,k /ik 

k=l 

(2.2 1) 

The quantities fijk, are the so-called structure constants. The A - operators obey the trace 
relations: 

T,{ i;}=o; Tr&ik:.=2’,k- (3 33) -.-- 

The SU(n) generators are expressed in terms of transition operators: 

with 

~,jk = fi,, + 6, ; Gjk = i ( i)jk - 6kj) (2.24) 

2 a 
we=- !(!+l) i-- 

(i?, + ... e,, - 1 Fg+,, !+I 1 

(l<j<k<n; l<e<n-1). 

A given Herrnitian operator, A, acting on an n-dimensional Hilbert space,, can be represented 
in terms of the SU(n) generators: 

>; Aj=T,CAi,). (2.26) 

An example is worked out in Appendix A. 
. 

In particular, because the ihre o p erators together with the unit operator form a complete set of 

commuting operators, one can rewrite (2.26) in the form 

“=i A, i+; 2 At $; A,,=T,{A}; AE=T,{Awp). (2.27) 
P+l 

6 



The eigenvalue equations associated with the iv, operators are 

s $1 v>=;i [(b’) / v > (l<v<n, lIP<n-1) (2.28) 

($+I) = e 2 
we 

I 1 !(!+I) 
. v=e+1 7 (2.30) 

we (“)=O ; e+l <v In. (2.3 1) 

2.7 PURE AND MIXED STATES 

. 

When a quantum system can be described by a single state vector, /w>, given in terms of an 
orthonormal basis by 

/Y>=C c, In> 
n 

(2.32) 

the corresponding state is called a “pure” state. 

In the presence of fluctuations, due for instance to interaction with the environment, the 
system may find itself in various state 1~” > occurring with probability, pV, in this instance, 
the state of the system is called a mixed state. 

2.8 THE DENSITY OPERATOR 

For a pure state the density operator is defined as 

~=IY><Y’ (2.33) 

3 It coincides with the projection operator on the state lY>. 

i Its matrix elements, pi, define the density matrix. From (2.33) and (2.32) 

p,jk=‘jIb/k>=<jIY> <Y/k> =cjc; (2.34) 
and 



i,=c c,, C; I j > < k I. (2.35) 
c 

The expectation value of an operator, & is defined as 

jk jk 
Insert now (2.7) and use (2.8) to get 

,. 
<A>=x c’,ckak <j/k>=x c, c; a,. 

/k d 

(2.36) 

(2.37) 

It is convenient to express expectation values in terms of the density operator. Consider the 
quantity 

Q=T, {x c,&j/~lk>)=~ c,c~<jl~lj>=~ c,c*,a,=<A> 
/k / I 

hence we obtain the useful result 

‘<i>=T,@i}. (2.38) - 

For a mixed state, the density operator is 

(2.39) 

and the expectation values are now 

<A>=~ p,<Y,(AlY,>* 
Y 

(2.40). 

The density operator satisfies the relation 

T,(@}=i. (2.4 I) 

For later work it becomes convenient to write the density operator in terms of the SU(n) 
generators, Aj. We use equations (2.26) and (2.41) to get 

e 

* 

(2.42) 
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The real valued expectation values. A,. form the so-called coherence vector A, 

(A, ; j = l...s). 

2.9 THE LIOUVILLE EQUATION 

Upon operating on (2.33) with, i A $ , and after use is made of the Schrodinger equation: 

d A 

i ft - / Y > = H / Y > , satisfied by the state vector 1 Y > and its complex conjugate one 
dt 

obtains the quantum mechanical version of the Liouville equation 0 

where A is the Hamiltonian operator. 

3 For an isolated physical system, the Liouville equation is the mathematical representation of 
the quantum mechanical principle of the deterministic evolution of the system; i.e., if at t = c,, 

. the density operator is p(tO) at a later time, one has p (t) given by 

/G(t)=tJ(t - t,,)b(t,,>~-‘(t - to) (2.44) 

where U(t - to) is a unitary operator. Note that the process described by Eq. (2.44) is 
reversible and as such it does not change the system’s entropy. 

. 

9 
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z 3. THE SUPERPOSITION PRINCIPLE AND SUl’ERSELECTION RULES 

. 
Dirac postulated the superposition principle as the fundamental principle of quantum theory, 
We follow Dirac’s line of thought so brilliantly expressed in his classic text. “The Principles 
of Quantum Mechanics.“’ Dirac introduces the superposition of states idea using the 
example of a beam of light passing through a polarizing crystal. Consider the case of a single 
obliquely polarized photon at an angle, cx, with respect to the crystal optic axis. After several 
measurements, one will find the whole photon on the backside in a fraction, sin* a, of the 
total number of trials. “The result of an experiment is not determined. as it would be 
according to classical ideas, by the conditions under the control of the experimenter. The 
most than can be predicted is a set of possible results, with a probability of occurrence for 
each.” The quantum mechanical explanation, secundum Dirac, considers that a photon 
polarized obliquely to the optic axis is partly in the state of polarization parallel to the axis 
and partly in the state of polarization perpendicular to the axis. Given the quantum systems. 
A and B, represented by the kets, IA>, /B>, respectively, if an state results from the 
superposition of the A and B states, the associated ket vector, /R>, can be expressed as a 
linear combination; i.e., 

IR>=c,IA>+CzIB> ; /C,I'+ICz/* = 1 (3.1) 

. where, Cr and C2, are complex numbers. 

Dirac completes the mathematical formulation contained in Eq. (3.1) by introducing a further 
assumption, “The superposition of an state with itself cannot form any new state,” i.e., 

c,IA>+cJA>=(C,+Cz)IA> (3.2) 

It follows from the statement involved in (3.3) that (Cl + Cl) j A> must be the same state that 
the one represented by /A>. Thus, a state is specified by the direction of the ket vector in 
‘H-space, the length of the vector being irrelevant. These properties show the fundamental 
difference between the superposition of the quantum theory and the kind of superposition 
process in classical theory. In the later context when one superposes one state with itself, for 
instance a vibrating string, one obtains a different state with a different oscillatory strength. 
Note that a superposition of states is “its own” state, different from the set of its components. 
A spectacular success of the superposition principle was the prediction of superpositions of 
K-mesons and their antiparticles as forming new and different particles.6 The superposition 
principle when combined with quantization gives rise to “entanglement”. 

3.1 SUPERSELECTION RULES a 

There are, however, state superpositions that are not conceivable seen in Nature. Some 
physicists, among them Wigner,3 have postulated “superselection rules” that restrict the 
superposition principle. One of the most important excludes superposition of states with 
integer and half spins or having different electrical charges. 
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z 4. COMPOSITE SYSTEMS: THE TENSOR PRODUCT OF HILBERT SPACES 

. 
Starting from two independent systems, each one described by its own Hilbert space, an 
appropriate mathematical scheme to describe composite states is to construct a single larger 
Hilbert space as a product of the two.3* 4 

4.1 TENSOR PRODUCT OF HILBERT SPACES 

The composite system of two subsystems defined in H(l), H(2), exists in the product Hilbert 
space 

H( 1,2)=H(l) @H(2) 

Denoting by je (l)> and le (2)> the state vectors in systems (1) and (2), one has the 
completeness relations 

i(v)=C l!(v)>d(v)l (v=1,2) 
I 

+ The state vectors je (v)>, span the H-spaces, H(v) (v = 1,2), with dimensions 

dimH(v)=n, 

The state vector spanning the composite system, is the tensor product 

Completeness for the product H-space is 

i=i(l)@i(2)=C /!(l)m(2)><!(l)m(2)I. 
I ,u1 

The product state vectors satisfy the orthonormality relation 

<~(l>m(2)/~‘(l>m’t2)>=Sff~6,,,,,,~. 

Y 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

4.2 OPERATORS IN THE PRODUCT HILBERT SPACE 

Let the operator A( 1) be in H( 1) and the operator 6 (2) in H(2), with eigenvalue equations 
and unit eigenvalues 

A(l)I!(l)>=[er(l)>; 6(2)lm(2)>=lm’(2)2 (4.7) 

13 



then in the product Hilbert space. H, these operators are 

A=A(l)CC(2); B=i(l)@G(2) 

The eigenvalue equations (4.7) become in the product space 

A~~(l)m(2)>=~!f(l)m(2)>;~~E(l)m(2)>=~I(l)m’(2)~ 

(4.8) 

(4.9) 

The matrix elements of the A and k operators are given by 

< t ( 1) m ( 2 ) / A I e’ ( 1) m’ ( 2 ) > = Apt, ( 1) S,,,,,,, (4.10) 

<P(l)m(2)li31P’(l)m’(2)>=B,,,,,~,(2)SFI, (4.11) 

where, A(l),,! , B(2) ,,,,,,, , are matrix elements in the subspaces HI, HZ. 

From (4.9) and (4.10) important trace relations arise 

<P(l)lT,zC~~/C’(l)>=AYI,(l)n2 (4.12) 

<m(2) lTll ifi} I m’(2)>= nr B,,,,,,,(2) (4.13) 

where, T,, (i = 1,2) means that the trace operation is performed on the ith subspace only, and 

nr and n2 are the dimensions of the Hilbert subspaces. Also 

T,{A)=z A(l),, nz=T,r{A(l)jnz 
I 

T,~i3)=C’n,Bmnr(2)=n,Trzf~(2)). 
m 

4.3 TENSOR PRODUCTS OF OPERATORS 

Starting from subsystem operators, one can form new tensor product of operators 

The following rules apply 

[A(l)@&2)] [~(l)@fi(2)]=A(1)~(1)@~(2)~(2) 
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(4.14) 

(4.15) 

(4.16) - 

(4.17) 



[A(l)@B(2),~(1)@d(2)] = AC@OD-CA@l3B. (4.18) 
. 

The matrix elements associated with the product are given by the product of the matrix 
elements in each ‘subspace: 

From (4.19) it follows that 

T;(A(1)@&2)}=~ A(l),, B(2),,,, =T,-, &l)}T,: iB(2)1. (4.20) 
6.m 

From the above developments, one derives two useful relations for the direct products of 
SU(n) generators: 

(a) From (4.20) and (2.22) 

Trfj.,t.1)@i,t2))=0; (4.2 1) 

(b) From (4.17) and (2.22) 

T,([/i,(l) @ /i,(2)] [i,(l) @ hd2)) 
=Tq (,$(l)&(l)) T,(;ik(2)~,,r(2)}=46,1Skn, . (4.22) 

4.4 THE DENSITY OPERATOR IN THE TENSOR PRODUCT SPACE: 
ENTANGLEMENT 

Based on the algebra for the tensor product of operators in the previous sections and on 
equation (2.42). he density operator for a composite system is written in terms of SU(n), 
generators, as 

p (1,2)=J- i(l)&(2) + 
nl n2 

& $ A,jtl> [j,(l) @ i(2)1 
I ./-I 

+ +-& $ nk(2)[i(1>@ik(2>l 

+a”$ Kjk(l,2) [ij(1)@ik(2)] 

/.k 
(4.23) 

where l,j (1) (j = 1, 2, . . .nr); A,j (2) (k = 1, 2, . . . n2) are SU(n) generators for systems ( 1) and 

(2). The quantities, AEj (l), Ak (2) are the expectation values 
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(1.24) 

and the real valued quantities Kjk( 1, 2) are the components of the correlation tensor: 

K,k(l,2)=<,&(1) ~,(2)>=T,~~[~,(1)~~,(2)1:. (4.26) 

One can also introduce the “covariance” (correlation) matrix 

M,,k = K,k -A,(l) A(2). 

(4.25) 

(4.27) 

On the basis of (4.27) a composite system will be entangled whenever Mjk f 0. Note that for 
a product state (total wave function equal to the product of wave functions) Mjk becomes 
zero. 

4.5 REDUCED DENSITY OPERATORS 

In this section (following Reference 4) we define the concept of reduced density operators. 
R(l), R(2), allowing for the calculation of expectation values for the subsystem H( 1) and 
H(2). 

Recall that we are now in the composite Hilbert space where it exists a density operator 

I Ql> m(2)> <j(l) k(2) I (4.28) 

with the matrix element 

P f,,,,k =<f(l> m(2>1iti(l> k(2)>. (4.29) 

One desires to calculate the expectation value of the operator A( 1) in the subsystems H( 1). 
We use (2.38) and (4.8), i.e., 

<ii>=T,(~/ii(1)@i(2)) (4.30) 

that in view of (4.28) and (4.29) can be rewritten as 

<A>= c [<e(l) m(2)ldlj(l) k(2)>] <j(l)k(2)l~(l)@?(2)l~(l)m(2)>~ (4.31) 
I jmk 
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Use now (4.19) with g (2) = i (2) to get 

<A(l)> = c <e(l) m(2)l$jj(l)m(2)>Aj/i. 

Define the reduced density matrix 

1) m(2) R).,(l) =c <e( 
,,I 

so that now 

(4.32) 

lbljU> m(2)> (4.33) 

<A(l)> = c RY,(l) A,?. 
i.1 

(4.34) 

Observe that corresponding to the reduced density matrix elements, Rpj( 1 ), one must have a 

reduced density operator, k( 1) such that 

R,,(l)=<e(l)l~(l)lj(l)> (4.35) 

* hence comparing (4.32) and (4.34) 

k(l)=C <m(2)@/m(2)>=T, {b>. (4.36) 
m 

Similarly, one obtains 

~@)=Tr,fbb (4.37) 

One concludes then that to obtain information on the subsystem (1) one must trace out the 
subsystem (2) and vice versa. 
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* 5. THE QUANTUM MECHANICAL DESCRIPTION OF MEASUREMENT 

We follow the general lines of thought pursued by Wigner’ and London and Baue? in the 
analysis of the quantum mechanical process of measurement. We assume that in the remote 
past, the “object” an the measuring apparatus existed in two separate Hilbert spaces. H( 1) and 
H(2), respectively. The property of the object to be measured is an observable associated to a 

Hermitian operator, f, , characterized by an eigenset I ek (1) > corresponding to the 
eigenvalues ak. The measuring apparatus is in turn described by another Hermitian operator. 

6 , describing the coordinates of the “pointers” of the measuring device. Associated to this 
operator there is a set of eigenfunctions mk(2) and eigenVdUeS, gk, corresponding to 
“pointers” locations. In H( 1) the object is in the pure state 

lWl>>=C akIt!Aw~ 
k 

(5.1) 

whereas the measuring apparatus is assumed to be on its “zero” state, m,(2). 

The act of measurement is formulated mathematically by the construction of the product 
Hilbert space, H = H( 1) @ H(2). Then according to (4.4) the state vector spanning, H. is the 
product state: 

l!(l) mcJ(2)>=/mcj(2)> c akI!k(l);. k (5.2) 

The ket, (5.2) is the solution of a wave equation controlled by a Hamiltonian split in two 
parts, each one of them depending only on a set of coordinates (either (1) or (2)). After the 
introduction of an interaction object-apparatus, that depends on both sets of coordinates the 
resulting state, ]Y (1,2)> can be expressed in terms of direct products I ! (1) m(2) > , because 
they constitute a set of complete orthogonal kets [see equations (4.5 and 4.6)], i.e., 

/‘Y(1,2)>=~ akk’I[k(l) mk’(2)‘. 
kk’ 

(5.3) 

The results (5.3) to provide a measurement must correlate the pointer positions, g,, with the 
quantities to be measured, a,, in a one-to-one manner. It is then that one can inscribe directly 
onto the g, scale the corresponding values, a,. The present form (5.3) does not satisfy this 
requirement. Indeed, the probability of finding the apparatus in the state, mk(2), and the 
object in the state [, (1) (v f k) should be zero (to preserve the one-to-one correspondence). 
This leads to the condition 

akk’ = ak 6kk’ . (5.4) 

Thus, the form of the wave function after the measurement should be 
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lYUJ)>=~ a, If,(l) m,(2)>. 
k 

(5.5) v 

Now, according to the standard postulate of quantum mechanics, the probability of finding 
both the object and apparatus in the same state, v, is 

I<[,.(1> m,(2)1 In>/’ =I aJ* (5.6) 

where we used the orthogonal relations (4.6). . 

The measurement process, embodied in the result (5.5) has established a statistical 
correlation between the states of the systems and the “pointers” in the apparatus; however. it 
has not emerged with the choice of a definite state. For this to happen, the wave function 
should experience discontinuous jumps: “the collapse of the wave function”. This situation 
was recognized by von Neumann’ who made a distinction between the unitary evolution of 
the wave function, according to the Schriidinger equation. valid for isolated (closed) systems. 
and the “reduction” (collapse) of the wave function to a definite state. 

5.1 AXIOMATIC MEASUREMENT THEORY: THE PROJECTION POSTULATE 

von Neumann’ enunciated the so-called projection postulate that has become the axiomatic 
form of measurement theory. We follow the version of the postulate by Mahler and 
Weberruss.4 Consider the Hermitian operator, A, with eigenvalue equation 

A 1 Zli > = ai 1 ai > (5.7) 

and projection operators, p ,,,,,, = 1 a,,, > < a,,,\ . 

If a measurement represented by the A-operator is carried out on an ensemble described by 
the density operator, 6, then after the measurement the system is in one of the pure states 

where pm is the probability of finding the result, 1 a, >, 

(5.8) 

(5.9) * 

The result (5.8) is the mathematical formulation of von Neumann’s projection postulate. An 
example is given in Appendix B. 
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Note that the projection postulate is realized by the application of the “superoperators” 

Pm,,, (4 J?!,,,,, * This operator can be expressed also in SU(n) algebra’. To this end. replace the 

general operator A by PI,,,, in equation (2.27) and use T, { Pf,,, } = i to get 

L, = ; i +; 2 XI i$, 
Y-l 

with 

(5.10) 

Xp = T, {P,,,,,, L%J, > = w?“) . (5.11) 

Then one obtains 

and (see Appendix C) 

(5.12) 

(5.13) 

+ F,,,,, \;v, i$ ,,,, = +Q(“‘) ii,n, (5.14) 

km i ik,,, = L, * 

By virtue of equation (5.12) up to (5.15), one obtains the relations below 

(5.15) 

? 

. 

where w 
t 

is the expectation value 

wp =T,(+%k 

The probability of the outcome, /m>, is now [use (5.12) and (5.17)] 

p,, = T, ( i),, p > = i + ; $ W,““’ WI 
F-I 

(5.16) 

(5.17) 

(5.18) 
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T 6. NON SEPARABILITY: d’ESPAGNAT THEOREM 

P Let two systems with wave functions 

IWW=~ ah,>lmU> >; I@(2)>=C a(tn2>lm(2)> VI 11, (6.1) 

be allowed to interact. Then, in general, the composite system wave function is giv,en by the 
non-separable product: 

I-wJ)>= ( a m,mz)/m,mz >; a tm,m2)‘*Gm,) a(m& (6.2) 

The corresponding density operator is 

c=IY> <Y l=C a(mlm2) a*(m’,m’,) I mlm2> <m’im’2 I. 
m, ml3 m’, m’, 

(6.3) 

l 

Let us try to extract the subsystem H(l), for instance, by tracing out of existence the 
subsystem H(2). To this end, we can use the concept of the reduced density operators 
developed in Section 4. Indeed, from (4.34) and (6.2) one gets: 

k(l)=T,~tb)=x <rnzlblrnz>=C a(ml ml) a’ (m’l m2) I ml > < rn’i I (6.4) 
m2 ml m2 m’, 

The result (6.4) does not allow us to write the reduced density as, I? (1) = IQ (1) > < 0 ( 1) j ~ 
unless that (Y> was indeed separable (i.e., a(mi rnz) = a(mt) a(mz). The results (6.4) 
embodies the following theorem due to d’Espagnat”: “If two subsystems have been 
interacting in the past, then it is generally not possible to define a state vector for any of the 
individual subsystems.” It follows from this theorem that interaction leads to the 
entanglement of correlated subsystems and that it shows in the off-diagonal terms of the 
density matrix. 
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l 7. MEASUREMENTS ON COMPOSITE SYSTE’M’S 

.7.1 DEFINITION OF COMPOSITE SYSTEMS 
* 

In this section we consider a composite system, SU(n) 8 SU(n) in a state determined by two 

coherence vectors 2 (1) i (2) with elements (J, (1),;4 (2)) and the correlation matrix Mij. The 

density operator for this composite system, fi (1,2) is given in equation (4.23). Our goal is 
to evaluate the effect of a local measurement, for instance a measurement of A (2)) in 
subsystem (2) on the composite system. In Section 4.5 we have learned that the proposed 
measurement on H(2) is represented by projection operators acting only on H(2). Following 
the developments in Section 4.5, we define the projection operator 

fJ2) = i @ i, (2),,,, ; P (2) ,,,,,, = I m (2) > <m (2) I. ,,w, (7.1) 

When the system is described by the density operator, i? (1,2), in accordance with axiomatic 

measurement theory, the probability of finding the result, a,!?) is given by 

p,, (2) = T, { 6:,:,;, I;, > = Tr2 &,,,,,, (2) fi (2) > (7.2) 

*) c where, R (2)) is the reduced operator defined in (4.35). After the measurement, the system 
reduces to 

iL (2) b’ = Fin,(2) 5 F,,,, (2). (7.3) 

Inserting in (7.3) the development of the density operator, b (1,2) in terms of SU(n) 
generators, equation (4.23), one obtains (ni = n2 = n) 

k (2) 6’ = k,ca t 7 l iwm)+~ $ h,(l) [~,(l)@i(2)] 
/-I 

+ i t Kjk(lr2)[;i1(1)0~k(2)] k, (2) . (74 
, k-l 

After some manipulations (see Appendix D) one obtains 

+ f 2 2 K,, s’ + t win’) [i, ( 1) @ k,, (2) 
.I ICI 
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where it is to be reminded that the expectation values, we (2), are given, see equation (5.17) 

bY 

w,(2) =T, (b G/,(2)) (7.6) - 

and, s = n2 - n. 

In the next step, we use the representation (5.12) of the projection operators in terms of the 
SU(n) generators, G! : 

and equation (5.18) for the probability pm (2): 

P,,(2)=;++ $ w[,“l’w,(2) 
p-1 

to obtain from equations (7.5, 7.7, and 7.8) (see Appendix D). 

b’=$ i(l)@i(2)+-& E W,(“‘) [i(l) @ c&2)] 
f-l 

+ j& ii 2 K,“‘(l,2) [&(l)@i(2)1+; r K,,,(*) (IT21 [ij"~f1,(2)1~ 

m i P-1 

where 

Kj (I) = $ A,( 1) + + $ K,, \s+I, wy(“‘) 
P-l 

,i$d n.(l) w(“‘) 
n ’ I + + r Kj,s,+P’ &“‘) wy(“) . 

F-1 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7. I 1) 

The question now is to ask for the changes in the coherence vectors of the two subspaces. 

al), a), fi a er a measurement performed on H(2). To answer this question, we start from 
the relation (4.24) written in terms of the density operator, $, for the collapsed state: 

Insertion of equation (7.9) for $’ into (7.12) yields 
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h’,,(l)=T,.(i,(l) L l-l2 i(i) 8 i(2) + $ r W,(“‘) [ i( 1) c3 j,.+,iZ) F-1 1 
&(I) +‘; 2 K ,,,,, +, W,(“‘) 

i 

w)“‘) +; $ K,r.,yt,u, W,,i”‘l w,(“‘) x 
P’ - I I 

(7.13) 

where we used [see Eq. (2.23)], iye (2) = is + e (2) . To work out the trace relations in Eq. 
(7.13), we need to recall the following properties of the coherence vectors [Eqs. (2.22), 
(4.2 l), (4.22), and (4.14)] 

T,jn,,(l) @ i(2)}=0; T, 

T,{ i,(l) @ /i,(2)}=0 

i =2 6jk (7.14) 

(7.15) 

Tr h(l) @ i,c2)] k,(l) @ i,,,c2)] ]= 4 6,,16k,,, 
After use of the trace relations (7.14) up to (7.16), one obtains 

(7.16) 

&(l)= l - 
! 

’ 
P,,,(2) n 

A,( 1) + i f!fJ Kj.,,+t wl(m2) 
Y-l ! 

(7.17) 

In the absence of interaction, the correlation tensor [see (4.26), (2.23)] becomes the product 

(remember Ai2Jt = we ) 

Kj,~,+e = lj(l> W,(2) (7.18) 

Thus, (7.17) now reads: 

,,i(,)‘m i+; z wp(m*) w,(2) 
P,,, ( 2 ) i 1 P-I 

(7.19) 

and by virtue of (7.8) for p,(2) one obtains the expected result that the subsystem, H( 1 ), 
remains untouched by the measurement on H(2) (A> (1) = A,. (1). We now turn to find out 

the new value of the coherence vector j (2) . Start from 
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&(2)=T&(l,2) ici) @ i,(2)] (7.20) 

insert Eq. (7.9) and follow the same steps as before. 

n-l 
h’,(2) = c WY@‘) S,J*F (7.2 1) 

f=l 

For subsystems that had interacted, the coherence vector of the non-acted upon subsystem 
evolves according to the result (7.17): “Local measurements induce non-local effects”. 

7.2 CONDITIONAL PROBABILITIES 

The probability, pt,( l), of finding the subsystem (1) in the ml-th state after having 
performed a measurement on subsystem (2) (i.e., the conditional probability, pI (ml / mz) is 
given by [see Eq. (7.2)] 

p,(rnllrnr)=T,~~,,,(l)~‘} (7.22) a 

in terms of the “collapsed” density operator, Eq. (7.9). Note that the projection operator, 

k,,,,,, (l), is given in terms of the coherence vectors ;2” (l), /1’(2) after the measurement, then 
Eq. (7.7) is rewritten as: 

(7.23) 

Insert (7.23) into (7.22) and use 

T, {@‘> = 1; &+~(l) = 1, @,&+#) } (7.24) 

to get 

PI (ml Im;!)= $ + f r ,pJ j&+,( 1) . (7.25) 
P-l 

pi 
Next use (7.17) to get 

A’,rv+P( 1) +; e wp(ml) K(.;+r, (\~co~) 
I 

(7.26) 
P’-, 

where, pm(2), is given by Eq. (7.8). 
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i 
Finally, the joint probability is given by 

* 
P(ml,mz)=p(mz) p, (m~lm?)=P(ml) P(mz/ml). (7.27) 

7.3 CORRELATION FUNCTION 

Consider two SU(n) subsystems4 defineed in their respective H(v) spaces and specify two 
measurement operators, A(v) (v = 1,2). These operators can be expressed in terms of the 
SU(n) generators as shown in Eq. (2.26). Their respective expectation values <A> are given 
by Eq. (2.38); i.e., 

<ii> = T, {@ ii (v)}= T, jj T, (A (v) > + + iy A, (“) T, :b /i, (V) > . (7.28) 
i-1 I 

Now since TY { b > = 1 (2.41) and the definition (2.42) of the expectation value of the 
j-th generator, one obtains: 

( ) A(v) J- 
n 

T, {A (v) }+ i $ Aj (“) A.1 (“) 
./-I 

where recall (2.26) 

A, C") = T, I, A (“) ij (V) ) 

(7.29) 

(7.30) 

ands=n’-1. 

Next consider a SU(n) @ SU(n) composite system and form the representation of the direct 
product A( 1) @ A(2), in the manner shown in Section 4.3. In terms of the SU(n) generators, 
one obtains 

A(1) 0 A(2)=-1- 
n2 

T~I {A(l)} Tr2 {i(2)) 

+& T~I (A(l)) 2 Aj(2) [i(l) @ i,(2)] 

+$ T.,{h& A,,(l) [‘(I) @ i.j(2)] 
i 

+i 2 A,(') Ak(2) h,j(l). @ ikt2)] ’ 
Jk 

(7.3 1) 

The quantum mechanical correlation function is defined as the expectation value of the 
tensor product of operators: 
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(i(l) @ A(2)j=T,(b(1.2) i(1) ‘8 A(2)) 

=- I, T,,{$l)) T,.&(2)) T,[i(1! 3 i(2)] 
n- 

+& I-,., @Cl,] 2 A,(2) T, i(l) @ j,c:i 
i /=I 

+& T,.z (,4(2)} 2 A,(l) T,I j,(l) @ i(2)) 
/=I 

+ $ 2 A,(l) Ak(2) T,[;;,(l) @ i,(2)]. 
ik 

(7.32) 

Now use Eqs. (4.20), (2.42), and (4.25) to get 

+$ Trl{A(2)},2 A,(l) /2,(l) 
J 

+ a z Kjk(ly2) A,,(l) Ak(2). 
/k 

(7.33) 

Comparison of the above result with [(7.29) and use of Eq. (4.27)] for the correlation matrix, 
Mik yields 

A( 1) @ &2))=(W)) (AW)+Cu (7.34) 

where 

CM=+ $ Ai M,jk(l,2) A/c(2)* 
/Sk-1 

(7.35) 

The result (7.34) shows that a correlation function of second order can be decomposed into 
the product of the expectation values of the individual systems (correlation of first order) and 
an additional second order correlation, (AA). 

7.4 THE SU(2) 63 SU(2) SYSTEM 

For the upcoming discussions on the EPR-paradox and Bell’s; inequalities it becomes 
convenient to replay the preceding results for a SU(2) (8 SU(2) composite system. To this 
end, consider the singlet state of two particles of one-half spin: 
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ly>=-j$ [Iml(l)> /mz(2)>- Im1(2)> lmz(l)>] (7:36) 

where / ml (v) >, 1 rn2 (v)>, (v = 1, 2) denote spin eigenfunctions with spin “up” (v = 2) and 
spin “down” (v = 1). The singlet state (7.36) represents an entangled state since it cannot be 
reduced to a product of states. Either subsystem can be in either of the “up” and “down” 
states. The SU(2) operator w e (Eq. 2.25) acts on the m-states as: 

iy,. I ml (V)> = wrCV) ml (V) ; GN, I rnz (V) > = wI(“) 1 mz (v) > (7.37) 

where the eigenvalues, wy), are given by Eqs. (2.29) up to (2.3 1). The components of the 

coherent vector are the expectation values of the generator /i j, i.e. (Eq. 2.42) 

A, = T, {i, r:, i . (7.38) 

. The SU(2) group generators are [Eqs. (2.23) (2.25) ] 

3 
1* ,. n A n A 

;I, = Ul2 = PI2 + P21 ; A2 = 1;12 = i PI2 - 62, ( ); /&=ib=-(~,,-~22) 

where the projection operators are given by 

ijj(l>=l m,(j)> ;rnl(i) I ; F,,jt2)=l m2(j>> <m2(i> I 

(7.39) 

(7.40) 

and the density operator is in terms of the above set of projection operators 

@(1,2)=IY> <Yl,=i (F,,(l) i)22(2)-&(1) i+,(2) 

- i)2,u> 612cv + 622(l> i),2w (7.41) 

We now work out the j = 1; component of the coherence vector for the subsystem H(l), i.e.. 
insert (7.39) and (7.41) into (7.38) 
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Now use (2.17) to get 

(7.43) 

Use Eq. (2.19) (i.e., T, (PIP} = 6 k[) to obtain hl (1) = 0. Following a similar procedure for 
the other components and su,bsystems (2), one obtains 

A,(1>=/lji(2)=o. (7.44) 

Next, we calculate the correlation tensor Kjk (1, 2) [see Eq. (4.26)]. We illustrate this 
calculation for the diagonal term, K 11, which from (4.26) is written as: 

b 

K,,(l,2)=(,&(1) i,(2))=T&5 [i,(l) @ i,(2)]] 

where from (7.39) 

(7.45) * 

/gl) @ i,W={i)p(U @ F,,(2)+ i),2U) @ iw) 
+ F,,(l) @ i)&)+pJl) @ @,,m >* (7.46) 

Insert the density operator (7.41) and Eq. (7.46) into (7.4.Q then after repeated use of Eq. 
(2.17) yields, Kr 1 (1, 2) = -1 and in general 

K,, = - 6i.l. (7.47) 

The coherence vectors after the measurement on H(2) are given by Eqs. (7.17) (7.2 1). and. 
Kij by (7.47) (recall that the coherence vectors were zero before the measurement). We got 
from (7.17) (n=2): 

A’,+(l)= l t: 
(1) 

2 p,,,,(l) I=, K.j.2+p wp (1) - - - 2;;,,2m 6/3 

A’,,-( 1) = ’ 
2 P,,,, (2 ) 

i Kj,2+l wtc2) = - w1(2) S,, 
fl=l 2 P,,QC2’ 

n 

(7.48) 

(7.49) 
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1 where, pm2( 1) is the probability that after a measurement in H(2) one finds the state m2( 1) 
(spin “down”) and p,,,*(2) the probability of finding H(2) in the state m2(2) (spin “up’.). 

* Correspondingly, II’ . ,+ (1)) is the coherence vector, j + (1). associated with the state m,(2) 

and ,?- (l), with the state mr( 1). From Eq. (7.8) one obtains (see Appendix D) 

t 

c 

P,,,*w=; (l+w,“’ w,(2))=; (l+w,“’ /23(2) )=f 

p,,,:(2)=; (l+w,(z) /@+; 

(7.50) 1 

(7.51) 

where we used the fact that /z (2) = 0 . 

We can now calculate the conditional probabilities, p(m, (1) ) m, (2) ) . p(m, (2) / mz (1)). 

P h (1) I m2 (1) > 7 and Ph-G) I m2CW 

p(m,(l) 1 m*(2))=+ [I+ WI(‘) 2’3-1 =k [~-WI”’ WI(‘)] 

P(ml(2) I m*(l))=+ [1+ WI(‘) R!s~] = P (ml(l) I (m*(2) 

P(mr(1) ( m2(1))=: [1+ WI(‘) A’,;] =.k [l-W10 Wli2)] 

P(ml(2) I m*(2)) =i [l+ w,(*) A()-] = + [l-w,(1) w,q 

where the eigenvalues w,(“) (V = 1,2) are from (2.29) up to (2.3 1) 

(7.52) 

(7.53) 

(7.54) 

w1(‘) = -1 ; w,(*) = 1 (7.56) 

Inserting (7.56) into (7.52) up to (7.55) one obtains 

l 

P(rnl(l) I m2(2))=P(m2(2) I ml(l))=1 (7.57) 

P(ml(1) I m2(l))=P(ml(2) I m2(2))=0 (7.58) 

in agreement with common sense. 
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The joint probability will then be . 

P(m~(l),rnz(*))=P(rn~(*)~ rn2Cl))=f- (7.59) ‘I 

For a factorable state, the correlation tensor is zero, hence all the conditional probabilities 
become one-half and the joint probabilities become one-fourth in agreement with the fact that 
there are four possible outcomes in this case. 
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* 8. DECOHERENCE 

Decoherence is the “bete noire”’ ’ of entanglement. Indeed, so far we have been dealing with 
“closed” systems isolated from the environment with the exception perhaps of externally 
applied fields. Information on a quantum object is, in contrast, obtained only by 
measurement that necessarily involves interaction with the environment and hence the study 
of “open” systems. Clearly, one can consider the interaction of an object with the rest of the 
Universe as being again a closed system described by an entangled density operator with 
non-diagonal terms arising from their interaction. The effect of the environment was already 
discussed in classical mechanics by Bore1 who, in 19 14, pointed out to the large “effect” of a 
small mass of a few grams, as far away as the star Sirius on the trajectories of air molecules 
have on earth.“’ ’ To evaluate the problems associated with the object environment closed 
system, consider the processes involved in the detection of a nuclear particle by a Geiger 
counter and its associated electronics. First, the nuclear particle induces an ionization 
process, clearly of quantum mechanical nature, afterwards the secondary particles diffuse 
within the gas under an electric potential gradient and collect on a wire. Through appropriate 
electronics, the charge produced by the ionization process gets transformed into a pulse that 
produces a “click” in a macro-object. Anybody brave enough to model this process will be 
faced with the question of setting the so-called “Heisenberg cut” defining the line between 
the quantum and classical descriptions. Worse yet, even at the quantum-mechanical level it 
will be difficult to split the total Hamiltonian into unperturbed and interacting parts. One can 
get some good answers by an approximate description of the “open” system as a “closed” 
system consisting of the quantum object interacting with a “bath” modeled as a many degree 
of freedom system with a quasi-continuous spectrum (see Ref. 4, page 242) for a 
mathematical description of such a model. The wave functions of the quantum object and the 
“bath” become entangled. Then due to the large reservoir of microscopic variables, when the 
density matrix is traced over the environmental components, one induces a fast dissipation of 
coherence by an eventual cancellation of its non-diagonal elements.’ ’ 

f 
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9. THE AHARONOV-BOHM EFFECT 
l 

I In 1959, Aharonov and B0hr1-1’~ demonstrated that a charged particle can be influenced by 
electromagnetic potentials even when the electromagnetic fields themselves are null (The AB 
Effect). Indeed, if I%‘> is a solution of the wave equation for a charged particle in the 
absence of an electromagnetic field, then in the presence of a static magnetic field, the wave 
function evolves into: 

lY>=jY,,>exp \ 
J 
* (9.1) 

where, A (i ) is the vector potential, e is the charge of the particle, and the integral extends 
over an arbitrary path between some point, i,, and the field point, i, . Feynman, in his 
Physics Lectures, I3 points out the extraordinary effects on the self-interference of charged 
particles. For instance, placing an ideally infinite solenoid confining the magnetic flux 
between a screen with two slits and a receiving screen, the recombined wave function at the 
latter screen is given by 

where, path 1 has been chosen to circle the solenoid from above and path 2 from below. The 
interference pattern is observed to depend on both the magnetic flux and the difference in 
path lengths. 
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10. QUANTUM INTERFERENCE AND ENTANGLEMENT 
. OF MASSIVE PARTICLES _ 

* 
Richard Feynman wrote, “The self-interference of massive particles remains an intriguing 
phenomenon that has in it the heart of quantum mechanics.T”3 Although a substantial amount 
of interference effects between. correlated photons have been already observed 
experimentally, there is very little laboratory work on analogous effects for massive particles. 
Before entering into the main theme in this section, we shall examine some introductory 
subjects. 

10.1 THE EINSTEIN-PODOLSW-RQs]EN (EPR) PARADOX 

?. 

* 

A most counterintuitiveaspect of quantum theory is the non-separability of two distant and 
non-interacting quantum systems that had interacted in the past (recall d’Espagnat theorem). 
In a celebrated paperI by Einstein, Podolski, and Rosen, the quantum theory was applied to a 

’ system of two particles, that are moving in opposite directions with the same value of the 
linear momentum, after having interacted initially. After moving apart, the particles enter a 
detector to measure either the momentum or position of each of them independently. 
Because the particles had interacted in the past, there will be substantial correlations between 
the results of measurements on each-,of,the pair. Although it is not possible to simultaneously 
measure both the position and momentum of one of the particles (thereby violating the 
uncertainty principle), one could, says EPR, measure either one of these dynamical variables 
for oneparticle of the pair and without disturbing the state of the second particle, determine 
the value of its corresponding dynamical variable.with 100% certainty. How would the 
remote unprobed particle know which measurement Eas~simplemented on the test particle? 
Can this information be transmitted instantaneously? This is in summary the EPR paradox. “./,>.. 
In their paper the authors inv~ked,three,critia:“.~ _, ,j _ ,~ 

W 

(a) Reality Criterion 
“If without in anyway disturbing a system, one can predict with certainty the value of a 
physical quantity, there exists an element of physical reality corresponding to this 
quantity.” Thus, if we have measured the mornentV-un of particle 1. then the momentum 
for particle 2 must be regarded as an e1eme.m of reality existing separately in particle 2 
alone.14 

Separability Criterion 
“Since at the time of measure.m.ent thetwo systems no longer interact, no real change ***,“, 
can take place in the second system in consequence of anything that may be done to the 
first system.” Consequently, an element of reality (momentum in particle 2) can’t be 
instantaneously created by a “spooky” (Einstein’s words) action-at-a-distance due to the 

measurement pn.particle 1. 
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(c) Completeness Criterion . 
“Every element of the physical reality must have a counterpart in the physical theory.” 
According to the above ciiteria. precisely defined elements of reality must exist in the 
second particle, corresponding to the simultaneous definition of precise L’alues for irs 
momentum and position before we measured its twin on the next galaxy. What 
happened to the uncertainty principle? Moreover. because the wave fiinction can. at 
most, specify either momentum or position at a given time with complete precision. one 
concludes that the wave function does not provide a complete description of all elements 
of reality existing in the untested particle. 

Bohr, who at the time of the 1927 Solvay Congress had survived. victoriously. the 
attacks on quantum mechanics by Einstein (see Ref. 16 for detailed account), recei\red 
the EPR onslaught as a bolt from the blue. One is very much tempted to agree with 
EPR. Surely, consider two identical marbles, except for the color. blue and red, for 
instance, enclosed in a box. An extragalactic voyager removes one of the marbles 
without looking, transports it to the next galaxy and then looks to see that he got a red 
marble, therefore the remaining marble must be, obviously, with 100% certainty, blue. 
Moreover, this property was part of its physical reality no matter what the voyager 
would do to the red marble. Nothing surprising here! The results of a measurement on 
some aspect of physical reality of an object ought to be explainable by its own elements 
of reality and those of the experimental apparatus. Whether a photon is reflected or 
transmitted in a beam splitter does not depend on what happens to its twin far away. 
Locality and completeness are the basics of the classical description of Nature. Locality 
prevents instantaneous transmission of physical fields (no argument here) and 
completeness can be understood as if “every element of physical reality has its marching 
orders”. In an experiment every particle behaves according to its “hidden” instruction 
sets, i.e., its intrinsic nature.” Nothing is really random, any observed randomness 
reflecting our lack of knowledge of the hidden archives. The entire scheme is based on 
common sense and does indeed appear as a correct description of physical reality. 

10.2 BOHR AND QUANTUM MECHANICS HIT BACK 

In the late thirties, Bohr refuted (in some sort of oblique manner,“. 18) the EPR arguments. 
To better understand Bohr’s counter-arguments, we jump to the 195 1 arguments of 
D. Bohrn” and follow his line of thought that consists of showing that the EPR paradoxical 
results, will not be obtained if one renounces the criteria (b) and (c) above that “the world can 
correctly be analyzed into elements of reality, each of which is a counterpart of a precisely 
defined mathematical quantity appearing in a complete theory.” The assumption that reality 
is built on a mathematical foundation is a plausible hypothesis based on the extraordinary 
success of mathematical analysis in mechanics and electrodynamics achieved in the last 
centuries within the framework of classical, tindamentally deterministic physics. In contrast. 
quantum theory makes different, but equally plausible, hypothesis in regard to the 
fundamental nature of matter. The quantum formalism assures that the one-to-one 
correspondence between mathematical theory and precisely defined “elements of reality. 
exists only at the classical level of accuracy whereas at the quantum level the mathematical 
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description provided by the wave function is not in one-to-one conespon&nce \vith the 
system reality, but only in a statistical correspondence. Yet. Bohm points out the fact that 
still one asserts that the wave function can. in principle, provide the most complete possible 
description of the system that is consistent with the actual structure of matter. The 
justification of the above assertion is that the properties of a given system exist only in an 
imprecisely defined form as. say potentialities. which are definitely realized in interaction 
Lvith a classical system such as a measuring device. For instance. consider two 
noncommuting obserirables such as the momentum and position of a particle. in general 
quantum mechanics postulates that neither exists in a precisely defined fashion but that both 
coexist in a roughly defined form. such that the uncertainty principle is not violated. 
However. either variable can be more precisely defined at the expense of the degree of 
definition of the other when in interaction with a measuring device. Consequentl> . v,ithin the 
framework of quantum theory, two noncommuting properties are not only incompletel?, 
defined and opposing potentialities. but the realization of these potentialities depend 
considerably on the systems.with which the particle interacts. “There are not preciselc 
defined elements of reality in a quantum system.” Thus, these remarks contradict the-EPR 
(a) and (c) criteria above. The separability criterion does, in turn, disappear in quantum 
mechanics in view of d’Espagnat theorem. None of the EPR criteria apply then to quantum 
mechanics. Have we proved EPR wrong? Probably not, for a complete classical theory may 
still exist out there. What we have really achieved is to escape the EPR trap by saying: 
“folks we are using a formalism where all your conditions do not apply”. In fact, Bohr’s 
oblique refutal condensed in his remarks to Einstein “your reality differs from mine”. 

10.3 THE IRREDUCIBLE RANDOMNESS OF QUANTUM MECHAfiICS 

In the previous section we have seen the statistical nature of the quantum formalism, but how 
to calculate probabilities ? An excellent account of the subject is the one given by Milbum” 
that will be summarized here. To develop the subject, Milbum considers the incidence of a 
beam of light on a beam splitter, the reflected beam propagates to an upward mirror and the 
transmitted beam to a lower mirror. The reflected beam, from the upper and lower mirrors 
are made to fall on a second beam splitter so that its two outputs fall in an upper (U) and 
lower (L) photodetector (see Fig. 1). The path lengths can be adjusted by moving one of the 
mirrors in such a way that we can arrange this optical system to send all the light ,output to 
the U or L detectors or, for instance, split the output equally between the two detectors. The 
classical wave theory of light easily explains these results. Now let us dim the incident light 
to the point that only one photon is detected in a given channel width of the analyzer. When 
the path adjustment is that only the U detector was active, we are going to see single photons 
arriving to this detector at random intervals; none to the L detector. Next, a new path 
adjustment is performed to get half of the beam intensity in each detector. Again, dim the 
light until only a single count is recorded at either detector in any time interval. We are 
going to count a single photon at the L detector and none at the U detector and vice versa. 
Even though we very well know the structure of the incoming light and the nature of the 
apparatus, which of the two detectors registers one count is “as random as the toss of a coin”. 
We just can’t predict the outcome of the measurement. Now switch gears and turn to the 
theory predicted in the EPR paper; i.e., that the particle carries its own element of reality. 
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Fig. 1. Milburn” set-up to discuss the wave nature of light. 

S = I3eam splitter 
M = Reflecting mirror 
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Following again Milburn’s exposition, assume that photons carry a gene (hidden variable) 
that determines whether the photon is going to be transmitted or reflected upon impinging on 
the beam splitter. If its gene is an R-gene, it will be reflected at the first and second beam 

0 splitter, thus it will always end up in the upper detector. If it is a T-gene photon, it will be 
transmitted in both beam splitters and again end up in the U detector regardless of the path 
adjustment. So much for elements of reality! Going along with the quantum formalism 
random photon behavior, let’s make up the following table of outcomes: 

Photons reflected at both beam splitters + RR 
Photons transmitted at both beam splitters + TT , 
Photons reflected at the first; transmitted in the second + RT 
Vice Versa + TR 

RR and TT outcomes lead to detection in the U detector; conversely, the outcomes RT and 
TR lead to a certain detection in the lower detector. Clearly, Milburn’s experiment has to be 
analyzed in terms of the successive tossing of a coin with one side labeled R and the other 
labeled T. To determine the chance of a photon being counted at U or L, one needs a rule for 
combining probabilities. Amongst the several existing rules perhaps the best know are: 
(1) Laplace rule, “In the absence of a prior information, assume equal probabilities for all the 
possible outcomes”. Accordingly, each of the outcomes, RR, TT, RT, and TR, will have a 

z 
25% probability. (2) Bayes rule “If an event can happen in two or more ways, add the 

. probability for each way, considered separately !! Accordingly, a U detection can happen in 
0 two ways (RR, TT) and an L detection also in two ways (RT, TR). Hence, we shall have a. 

50% probability for both U and L detection events. These two rules can be quantified in the 
following relations: 

P(A + B) = P(A) + P(B) - P(AB) 
P(AB) = P(A) P(B/A) = P(B) P(A/B) 

Both rules lead to probabilities independent on the path adjustment (i.e., the difference 
between the length of the upper and lower paths). This conclusion is not consistent with the 
observations. What is missing is the proper combination of randomness with interference, 
Also, we forgot (momentarily) the fact that in the quantum dictum, probability is not 
fundamental but derived from the probability amplitude (i.e., the wave function),,‘a complex 
function depending on two real quantities. It is on the basics of the wave function. Y. that 

the probability is calculated as the product Y Y * = Y it + Y :. Hence, the probability is 
given by the hypotenuse of a right angle triangle (see Ref. 2). Obviously, there is an infinite 
set of right angle triangles with the same hypotenuse (the absolute direction taken as 
unimportant). Having said that the amplitudes are the fundamental entities, we return to the 
beam splitter apparatus in Fig. 1. We shall need two probability amplitudes; qne for 
reflection, and one for transmission. Consequently, two right angle triangles with the same 
value of the hypotenuse since reflection and transmission are equally likely events. The 
length of the hypotenuse is all that matters in the case of a single beam splitter since all that 
we have to describe is a random coin toss. It is when there ,are more jhg 9~5 “beam splitter 
that we have to face again the issue of combining probabilities in a chain of random events. 
Not very surprisingly, R. Feynman came to the rescue: Feynman Rule: “if an event can 
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happen in two or more indistinguishable ways, the probability amplitude for that event is the 
algebraic sum of the probability amplitudes for each way, considered separately”.” ” 

Milbum, in Ref. 17, shows how Feynman’s rule combines the various probabilities at each 
beam splitter so that the effects of path adjustments are correctly interpreted. Photons then 
behave in an intrinsically random way. However. the rules for calculating the probabilities 
for multiple encounters with a set of beam splitters are quite different from the classical ones. 
They become important rules for the operation of the quantum computer. 

10.4 ENTANGLEMENT AND BELL’S INEQUALITY 

Quantum entanglement described correlations between the results of local measurements 
performed on two particles even if the entangled pair is well separated at the time of the 
measurements. In Section 7.1 we have shown that the quantum mechanical formalism 
predicts non-local effects, upon a local measurement, something very c0unterintuitiL.e 
indeed! The opposite view expounded in Section 10.1 is that it can’t exist spooky ai;tion at- 
a-distance and that each particle carries its own “element of reality” (hidden variables). The 
Bohr-Bohm refutal and the examples in Section 10.2, where the irreducible randomness of 
quantum mechanics was discussed, indicated the problematics of local, hidden variable 
theories but did not provide a “measurable” test. It was the Irish Physicists, John S. Bell, 
who provided such a test 2o in a short and fundamental paper. We follow here a special 
formulation of this test; the so-called Bell’s inequality provided in Ref. 4. Consider LWO 
photons moving in opposite directions and having the two circular polarized states, rnl( 1) and 
m,(2), for the subspace H( 1) and m2( 1) and m2(2) for the H(2) subspace. It can be shown 
that although the photon carries spin 1 (boson type), the operator associated to the states 
defined above is the spin operator, &:. Thus, we can carry over the formalism developed in 
Section 7 and the following. The polarization operator associated with the polarization states 
above is the measurement operator, given by 

A(v)=& sin B (v) + eZ CosB (v) 

where 0(v) is the angle setting of the polarizer. The corresponding expectation value vectors? 

i (v) , are calculated in Appendix A: 

A(l)=2 [sin 6(l), 0, cos 8(l)] (10.2) 

li(2)=2 [sin e(2), 0, cos Q(2)]. (10.3) 

Now imagine that on both sides of the photon source there have been placed two polarizers. 
A and B. We perform two measurements. In the first, the polarizer A is set at the angle 01, 

and B at 92. In the second, these angles have been changed to 03 and 04, respectively. After 
the measurements, one can obtain the cross correlations, CAA (01,92), CAA (92,03), 
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C.aA (83, 0,). and CL4 (94. 8,). Bell’s inequality 
must be satisfied within the framework of”loca1 

then establishes that the following conditic,n 
realism” 

s 0 = 1 c.,,, ( e1 e2 1 + c 4., ( 65 6 ) + c.{., ( 8: e4 > - cd., ( es e, ).I 5 2 . (10.4) 

To see how the quantum mechanical correlations, C A.& behave with regard to Bell’s 
inequality ( 10.4) we use Eq. (7.35) (see also Appendix E) to obtain 

c,., (8, e4=%0s (e?-8,) . (10.5, 

Now choosing the angles in the sequence. 92 - 8, = Q3 - 8? = (I34 - 8; = cp, and 13~ - 8, = 3(?. 
Bell’s inequality becomes 

s,, = I 3 cos Y -cos 3 Y I 12 .( 10.6) 

that is obviously violated for instance if ~3 = T ) among other values. Clauser. Horne. 

Shimony, and Holt 2’ arrived at stronger inequalities. Many experimental tests have been 
performed of Bell’s; inequality (see the surveys by Clauser and Shimony.” Pipkin.” and 
Home and Selleri.“’ All measurements confirm the predictions of quantum mechanics. 
However, Weihs, et a1.25 point out the fact that all this amount of evidence still does not rule 
out a local realistic explanation completely because of three loopholes in the experiment. ( 1) 
Due to low efficiency of detection, only a small fraction of the pairs emitted by the source are 
actually detected. Consequently, one has to assume that this detected subset is a fair 
representation of all emitted pairs. (2) “The settings of the measuring systems are made 

’ sufficiently in advance to reach some mutual rapport by exchange of signals with velocity 
less than or equal to that of light.. .it is then crucial to change settings during the flight of the 
particles,” Be11.26 (3) The assumption of locality in the derivation of Bell’s inequality 
requires that the two observers be space-like separated. 

The first measurement where the experimental settings were switched was due to the Aspect 
et a1.27 Weihs et a1.25 performed a Bell’s inequality test under strict Einstein locality 
conditions by switching at random the photons polarization angle and placing the measuring 
systems separated by 400 m across the Innsbruck University campus. 

10.5 QUANTUM INTERFERENCE OF MA#GyE pAIFsT.JCLES L ..-.. m,w. - . .._ s. ,. l”., * . . 

In contrast with the substantial amount of experiments to study interference effects between 
correlated photons, the laboratory realizations of analogous effects for massive particles are 
scarce. The interest in the experimentation of interference effects for massive ‘particles lies in 
that the attributes of charge and quantum statistics (fermions as opposed to the bosonic 
statistics for photons) when combined with the AB effect (see Section 9) would manifest 
three distinct types of quantum interference:28 (1) interference dependent upon optical path 
length difference resulting from wavelike propagation of particles; (2) interference dependent 
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upon confined magnetic flux resulting from particle charge and spatial topology. and ( 3 ) 
interference dependent upon quantum statistics resulting from particle indistinguishabilit\ 
under exchange. Tvvo types of experiments will be reviecved: particle self-interference and 
quantum interference with correlated massive particles. 

10.6 PARTICLE SELF-INTERFERENCE EXPERIMENTS 

Particle self-interference experiments are used as a tool to test “the fundamental principles ()t 
quantum mechanics with massive particles on a macroscopic space-timed scale.“” Self- 
interference experiments have been performed with neutrons and electrons. 

(a) Neutron Self-Interference * 
The neutron interferometer consists of a perfect silicon crystal cut in the form of three 
plane-parallel plates on a common base. The incident neutron beam splits into two 
coherent beams that are superposed by the middle plate in the third plate acting as the 
analyzer of the resulting interference pattern.” Additional parallel plates can be used as 
phase shifters to adjust the path difference between the two neutron beams. Rauch and 
SummhammerJO performed neutron interferometry measurements introducing a neutron 
absorber in one of the neutron beams. Badurek et a1.j’ ’ mtroduced resonance spin-tlip 
coils in both neutron beams to investigate the nature of wave-particle duality. Extensive 
description of these experiments are given in Ref. 1.5. Phase shifting of neutron beams by 
the AB effect (see Section 9) was first suggested by Zeilinger” and Anandan.33 Several 
AB-based measurements were performed by Allman et a1.34 using unpolarized neutron 
beams and by Lee et a13’ with longitudinally polarized neutrons. 

(b) Electron Self-Interference 
Tests of the wave-particle duality using coherent, low-intensity electron beams have been 
performed by Tonomura et a1.36 In analogy to the standard double-slit experiment. 
Tonomura used a special electron gun emitting coherent wave fronts. By blocking their 
central parts, one recreates a double slit.” 

10.7 QUANTUM INTERFERENCE EXPERIMENTS WITH CORRELATED 
MASSIVE PARTICLES 

Quantum interference experiments with correlated beams of electrons interacting with 
confined magnetic fields (AB-effect) have been extensively discussed by Silverman2* 
However, as pointed out by Silverman himself, the proposed measurements would need the 
use of sources of correlated electrons, not yet available. Ghose” describes a test of an EPR- 
like situation using the decay of the vector meson 0, into a kaon anti-kaon split. This test 
has been studied by several authors. The main difficulty of observing its predictions lies in 
the short lifetime of the kaon products (-10-i’ S). 
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10.8 NUCLEAR REACTIONS .&SOURCES OF~‘CdRRI?Lii%ti P.AR-iICLES 

* in view of the av,ailability both present (High Flux Reactor) and future (Spallation Source) ok 
neutron with energies from subthermal up to a few MeV. it appears of interest to look at 
neutron reactions as sources of correlated massive particles. Two main requirements arise 
from the analysis of the previous sections: (1) superselection rules. and (2) the particles are 
correlated either because of the reaction mechanism itself and/or because of the overlapping 
of their 1vav.e functions (d’Espagnat theorem). Superselection rules vvill eliminate those 
nuclear reaction product pairs of different charge and quantum statistics of their components. 

In regard to the second requirement, direct reactions involving t!?e formation of an excited 
nucleus of low mass number appears more promising that reactions in heavier nuclei Iv-ith the 
formation of Bohr compound nucleus. This is because the de-excitation of the reaction 
product low mass number does not have as many decay channels as for instance the 
(U-235 +n) compound nucleus. 

i 

A possible exception could be subthreshold fission processes where “privileged” exit 
channels appear by the matching of levels in the first well of the fission barrier vvith the much 
less populated level set in the second well of the barrier. In general though. there can‘t be too 
much hope that neutrons coming either from the same or different fission products could be 
correlated. A nuclear reaction that appears promising is the interaction of slow neutrons with 

P helium 3 to produce protons and tritons: 

,H: + n’=(zHfy= ,P’+ ,T3;[Ep=.573Mev, E,=.l9lMev]. (10.7) 

This reaction goes through the formation of an unstable He-4 nucleus that decays into one 
proton and a triton flying in opposite directions with the same momentum. Both particles 
have the same charge and are both fermions (half-integer spin). However. they have 
different masses and therefore they can be “separated” by the gravitational field. We shall 
assume that, in view of the smallness of the interaction. all the conditions to pass the 
superselection rule requirement are being satisfied. Since the pair of reaction products are 
highly correlated in momentum space, one expects also a high level of correlation in their 
location at the moment of production (not to be seen as a violation of the uncertainty 
principle). There is then a good chance that either by the reaction mechanism or both by this 
mechanism and wave function overlapping the two particles come up correlated. A detailed 
study of this reaction as a possible source of entangled particles will be’ presented in a 
separate report. 
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11. QUANTUM COMPUTATION AND INFORMATION PROCESSING 
.! 

* It was R. Feynman, who in 1982 suggested3’ that individual quantum systems could be used 
for computations. The first description of a universal quantum computer was given by D. 
Deutsch3* in 1985. At the rate of which lithographic techniques advance presently, there will 
be a point where logic gates will be made of a few atoms. At this microscale limit quantum 
effects will play a role so that classical devices may be either supplemented or replaced by 
quantum gadgets. Lengthy and ever much exciting reviews of the fields of Quantum 
Computation (QC) and Quantum Inrormation Processing (QIP) are given in the books of G. 
Milbum, *’ “The Feynman Processor,” and M. Brooks,39 “Quantum Computing and 
Communications.” For late developments, see the recent article by Bimbaum and Williams’o 
in Physics Today. In a nutshell (see Ref. 39) a quantum computer has to have at least four 
components: Qubits, a set of logical gates, an initialization (CLEAR) operation, and a 
readout mechanism. In this report, we shall only worry about qubits that are the most 
fundamental components. 

11.1 QUBITSAND QUANTUM SOFTWARE ._ 

Present computers collect and handle information,using what is called a “bit,” i.e., an entity 
that can take on one of two,values. ,..A&&rily, bits are labeled by the two digits, 0, and 1 
(“on” and “off’). The values taken by the bit are encoded by some electric or magnetic 
means with the condition that these values are sufficiently separated in their parameter space 
for information reliability. 

Now let’s see how we could store information in a quantum mechanical way. Consider an 
atom and its discrete set of electronic energy level. One could label the fundamental energy 
level “0” and the next one “1” thus similarly to a classical bit, information would then be 
encoded in the atom. Clearly, one can also encode information in photons by using 
polarization states or by encoding in terms of electron spin components. However, (recall 
Section 3) the atom can enter into a superposition of states: Ci IO> + C2 j I>, in terms of the 
kets, representing the two states. From the superposition principle comes the first insight into 
the potentiality of quantum computing. Now the atom can represent “0” and “1” besides “0” 
or “1”. We now have a “qubit”. 

Imagine that we have available to us a register of L-qubits. Due to quantum superposition. 
the register can now store 2L different numbers at. once on which one can perform operations ,. . . . . c -,,, _* ..,. *.-*, ,w ,,., i-~.L*Un<.xe, 
simultaneously. Thus, one can implement a massive parallel computation in a single piece of 
quantum hardware. To accomplish the same task, a classical computer will have to repeat 
the calculation 2L times. Following Feynman’s suggestion,37 the first proposed application 
was the simu!ati?.n”,~f,quanturn systems. Consider a quantum system with N degrees of 
freedom. The corresponding Hilbert space will have 2N dimensionality. According t; the .l_ , , -. .I 
evolution equation (2.44), one would have to evolve in time .~atrices”~f~~i~~~~i~~,2 . 
Following the time evolution of a quantum system containing 40 spins is an impossible task 
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for any classical computer today and in the far future. In 1996, Lloyd” showed Feynman 
conjecture to be correct. 

In the realm of quantum software two fundamental contributions are Shor’s’* factorization 
algorithm and Grover’s search algorithm. In 1993, Shor”’ (AT&T Bell Labs) developed a 
quantum algorithm that can factor large integers in poll ;!omial time (i.e.. the time it takes to 
execute the algorithm increases no faster than a polynor.ial function of the input size) in this 
case the problem belongs to a P-class. Problems outsidi this cIass are called hard problems. 
The factorization problem has been qualified as “hard” i‘or classical computers. For example. 
for a classical computer to factorize a one thousand digits number would take more than the 
estimated age of the universe. In 1997, Groverd3 described a quantum algorithm to perform 
searches in a random database. For a record of N items, classical algorithms require an 

average of + steps. Grover’s algorithm performs the same search in 4% steps. 

11.2 ENTANGLEMENT 

In Section 7 of this report, we have studied the joint state of two quantum systems and their 
correlation function. We showed how a local interaction on one of the particle pair induces a 
change in the quantum state of its partner. Consider now that we have two qubits and that we 
like to encode two bits IO> and 1 l>. One can encode one bit onto each qubit separately, for 
instance IO>, 10~2, IO>1 Il>z, 1 l>i IO+ and /1>1 11>2, or one can encode the information onto 
an entangled state of the two qubits so that none of the qubits carries any definite information 
on its own. A much used entanglement choice is based on the so-called Bell states: 

IY (+)>=$ (lO>, ll>, + ll>, lo>l) (11.1) 

IY (-I>=$ (103 ll>, -ll>, lo>2) (11.2) 

(a (+)>=5 (IO>, 10Bz +ll>, ll>J (11.3) 

p (-,>+ (lO>, lO>, -ll>, ll>,) (11.4) 

It is possible to derive any one of the Bell states from any other be performing a unitary 
transformation (see Section 2) on one of the two qubits (there are four possible unitary 
transformation with this property: identity, phase shift, bit Ilipping, and shift and bit flipping. 
Note that due to the non-locality property of entangled states unitary transformations are 
“seen” by both entangled particles. Entanglement allows for various operations unthinkable 
in classical physics: dense coding, cryptography, and teleportation. the paradigms of QIP. 
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. 11.3 DENSE CODING 

0 
Observers A (Alice) and B (Bob) are supplied (from ,an appropriate source) with two photons 
entangled in one of the four Bell states above. Alice applied on her photon a unitary 
transformation transferring the pair into one out of the four possible Bell states. Afterwards. 
Alice sends her photon to Bob which can be detected after he gets hold ofthe total system. 
Since there are four possible outcomes of Bob’s measurement, Alice has sent twice as much 
information as can be sent classically with a two-state particle (four alternatives instead of 
two). This experiment was first implemented by Zeilinger group at Innsbr-uck.44 

11.4 QUANTUM CRYPTOGRAPHY - -. .. “’ .’ --- 

“Cryptography consists of hiding information in a string of bits that are meaningless to any 
unauthorized ~arty.“~~ Cryptography algorithms are used to combine a message with some 
additional information known as the “key”. The key consists of a set of specific parameters 
introduced into encrypting and decrypting algorithms. The transmission of the key to 
interested parties must be protected from eavesdropping, a difficult task when classical 
communication channels are used. If this security cannot be implemented, the next best thing 
is to make sure that eavesdropping can be detected. This can be implemented by using a 
quantum channel for the transmission of the key. In one version, the two-particle entangled 
state (EPR-state studied in Section 10.3) is the basis for the implementation of the quantum 

channel. It works as folloWs:4 Alice picks three discrete angles, 0, = 0 , ,g3 = %; o5 = 5. In 

turnBobpicks &=~;,gl=~and@,=$. 
2 

The source sends entangled photon pairs, one 

member of each pair goes to Alice and the other to Bob. Both observers are randomly 
changing their respective allowed angle settings. The detected ‘e’vents’ &e registered in local 
protocols, and Alice and Bob transmit their respective sets of angles in a pubiic channel. The 
set of results obtained are (arbitrarily) split into two subsets: (1) same orientation 

[fhe*)9 kh%)l~ d * d’ff an SIX 1 erent orientations, [(e,, e2), (e,, e2), (TV e,>, (e,, 06)] . The first 
set is kept as the key; the second set is transmitted through a classical channel so that both 

: _ _l_l x__,,~ . ..= _*..,f”..^*- _. - - ..,.. - _. 
observers can check that Bell’s inequality (10:4) is violated. In fact, for the set prcked by 
Alice and Bob, Eqs. (7.35) and (10.4), we have 

S~=,3cos(~)-cos(3~) / =2fi > 2 (11.5) 

If one finds that S,, f 2 fi, the quantum channel has been messed with.4 This scheme for the 
quantum transmission of a key has been implemented by Eker1.45 
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11.5 QUANTUM TELEPORTATION 

Teleportation consist of the transmission of the state of a photon. For instance, Alice has to 
teleport an unknown state Y’ = a / 0 > + b 11 > ) to Bob; let’s call this photon (iJ (qubit a). 
An entangled pair of photons (2,3) is now shared by both observers. At a time, say tl, Alice 
gets the photon 0 and Bob the photon 0. Thus, Alice now has a three-node entangled state 
a-@ 0. At time, t2, Alice performs a measurement on her two photons 0 and 0, with 
respect to the four Bell states. Two events follow: (a) Alice’s measurement has led to one of 
the four Bell states that after the collapse of the state, provides two classical bits of 
information, and (b) due to non-local interactions, Bob’s photon @ has dhanged to a state 
congruent with the outcome of Alice’s measurement. Now, if Alice phones the two classical 
bits from her measurement to Bob, he recognizes which unitary transformation was used by 
Alice. All we have to do now is to apply the inverse unitary transformation to his photon 0, 
to acquire the state of photon 0. Thus by applying this transformation, Bob has received 0 
without measuring it or Alice actually transmitting it. Reference 4 presents the rigorous 
theory of the teleportation scheme. See’also Bennet et a1.46 Experimental confirmation has 
been provided by Bouwmeester et aL4’ 

11.6 QUANTUM COMPUTER HARDWARE 

Both Refs. 17 and 39 contain a detailed study of the present ideas about the hardware to 
implement logic gates and the quantum software. The main contenders for the job are up to 
now: 

(a) Trapped Ions 
Ignacio Cirac at the University of Castilla La Mancha and Peter Zoller at the University 
of Innsbruck4* suggested storing a collection of ions in an electrostatic trap with each 
qubit (one per ion) formed by a pair of internal states of the ion. Because of the ion 
confinement, it is feasible to entangle the motion of all the ions and all their respective 
electronic states. Steane49 has implemented a control-not gate using qne trapped ion. 
One expects that ion trap quantum computers can be built. Although this type of system 
does not have a fundamental scaling limit, decoherence effects will act very 
destructively beyond more than 10 ions in the trap. 

(b) Nuclear Magnetic Resonance (NMR) 
In NMR the two spin states of an atomic nucleus immersed in a magnetic field serve as 
the basis of a qubit. Since NMR can distinguish among the atoms of a molecule, it can 
be used as a quantum computer whereby each nucleus provides a single qubit. Because 
of the weakness of the NMR signal from a single molecule, it is necessary to amplify the 
signal by using a large number of identical copies (not too difficult to implement in view 
of Arogrado’s number). The problem is that it is practically impossible that all the 
molecules start from the same initial state (clearing the computer) so different copies 
will perform different calculations. In fact, one ends up with a mixture of final states. 
Several solutions to “distill” the desired state from,the mixture have been developed.” 
Several implementations of NMR computers have been realized.5 ’ 
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Cc) 

(d) 

Cavity Quantum Electrodynamics 
In cavity quantum electrodynamics atoms are held in an optical cav.ity. Under 
appropriate conditions, the light can be used to couple and control the quantum states ot 
the cavity “trapped” atoms. The dynamical theory of an atom interacting Lvith quantized 
cavity fields have been studies by Yao.” 

Quantum Dots 
Quantum dots are regions on the nano meter scale where electrons remain confined and 
their energies quantized as a consequence of confinement. Since quantum dots do 
mimic the electronic levels of actual atoms, they can be used. in principle. to encode and 
store quantum information, as well as a new source of single photons. Aiso. hav,ing 
interacting quantum dots will provide a basis for the implementation of quantum logic 
gates, The dynamics of nanostructures has been extensively studied.“. “, iA 
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l 12. PROBLEMS AND RESEARCIIi ISSUES 

It is always a bit dangerous to jump on the bandwagon of attractive new technologies without 
first looking at their “ugly”side of the face. For instance. look what happened to the “All- 
Optical” computer.55 For the following discussion it is convenient to recall Moore’s Laws: 
Gordon Moore (Intel Corp.) quantified the steady increase of gate density bringing up the 
first Moore’s Law, “The number of transistors built into a chip increases exponentially with 
time,” and Moore’s second law, “The cost of building a chip factory also increases 
exponentially.” 

Moore’s first law has been used as an argument for the development of quantum computers. 
It goes like this, more and more transistors will create a situation whereby transistor 
components will get smaller, at this point quantum effects will appear so let’s go quantum 
anyway. However, in view of Moore’s second law, miniaturization is slowing down, not for 
physical but for economic reasons. The semi-conductor industry may go away form 
miniaturization and enter other ways of expansion, like for instance. 3-D integration since 
what counts is component density rather than size.56 This new direction may lead the 
semiconductor industry into new architectures that could make the quantum computer look 
like an expensive toy. 

In the event that one goes quantum, there are three main interrelated serious problems that 
demand active research: unitarity, decoherence, and errors. 

(a) Unitarity 
All operations in a quantum computer are performed on the basis of unitary 
transformations (assuming evolution according, to the Schrddinger equation). Qubits 
evolve in the form of unitary (no damping) transformations (see Section 2, Eq. 2.44 and 
Section 11). This means that while computing the computer must be described and kept 
on a closed system since any observation on its working will collapse the wave functions 
of the entangled qubits. Hence, interaction with the external world (to get the results, for 
instance) must be realized after a flag indicated the end of the computation. The 
problem is to keep external disturbances from entering the system. 

(b) Decoherence 
In Section 8 we have briefly discussed the subject of decoherence. Quantum 
decoherence is one of the major roadblocks to quantum computation. The problem is 
that the computation process occurs in terms of the parallel evolution of entangled qubits 
along different pathways carrying definite phase relations. At the end they must 
interfere to produce a given result that can be prevented to arise due to the loss of 
entanglement by decoherence.” 

(c) Errors 
Two kinds of errors appear in the dynamics of a quantum computer; classical bit-flip 
errors and superposition destroying errors due to decoherence. However, as pointed out 
by Landauer’9 there are other sources of errors besides decoherence. They arise from the 
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physical implementation of the quantum mechanical operator associated with the unitar! 
transformation you want in your computer. Fabrication defects will make these 
implementations only approximately correct. Thus, every single processor (like gates) 
in the device will be somewhat off in a systematic manner from the ideal situation. 
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13. FUTURE RESEARCH 

Y 

There are, for now, two methods to prevent decoherence. 

(a) Control of Quantum Systems 
Similar in many aspects to classical control, the quantum version still consists of the 
minimization of some functional that may be constrained by some demands on the 
system. There.ends the similarity since now the basis of the system is the quantum 
Hamiltonian. For closed systems the model describing the gadget to be controlled is the 
quantum Liouville, equation (2.43). When open to the environment (see Section 8). 
must include in the Hamiltonian the effect of the environment. As a result for the 

one 

reduced, traced upon system the time evolution is not unitary any more. For instance. 
the time correlation of the system is damped; i.e., it decays exponentially with time and 
reversibility is lost.4 The task of the control algorithm is to determine the kind of 
external fields that can either prevent the environment effects or impose a given output 
demand on the system environment complex. 

Much of the work done on quantum contro15*’ j9* 60. 6’, 62 is in the class of open-loop 
control; that is, there is no feedback signal. In this instance, changes in the system 
parameters will disrupt control. The problem with the concept of feedback (closed loop 
control) is that one has to be mindful to the fact that the feedback loop would not behave 
as another interaction with the external world, which it really is. The solution of this 
problem would allow the use of uncertain dynamics to account for the effect of the 
fabrication flaws mentioned in Section 12. 

(b) Quantum Error Correction 
By the end of 1996, new principles were discovered that enabled quantum computers to 
be protected from errors, classical bit-flip as well as decoherence errors. The idea” is 
based on the use of redundancy by using strings of bits to encode a single “1” or “0”. 
This encoding is so implemented that an error in a single qubit still will allow the 
original qubit to be inferred and restored.39 
active ‘3.64.65 

Research on this subject is very much 
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/ 

. 

1-L OVERVIEW 
i 

It is now apparent that quantum physics could propel computing beyond the silicon- 
dominated era (see Ref. 30 for a most interesting overview of the future of computing). In ;t 
broad sense. three fields of research and applications seem to arise in the area of Quantum 
Information Processing. 

(a) 

(b) 

. 

Cc) 

W 

Quantum Switches 
According to predictions from the Semiconductor Industry Association.‘“’ in 20 10 the 
individual transistors will be turned on/off by the addition or remo\,al of a few elttctrons. 
The robustness in distinguishing “0” from “1” will be compromised. This bvouid be a 
good time to develop quantum scvitches! 

Secure Communications 
As it was discussed in Section 11, quantum communication provides a safe method of 
transferring information. with the possibility of applying statistical tests to verify if any 
eavesdropping has been attempted. 

Quantum Logic Applications 
Systems handling only a few qubits can presently be build. which will be an incentive to 
perform quantum simulations of interest to the chemical and-,pharmaceutical industry. 
Other industrial applications such as metrology (improved precision atomic clocks. 
quantum gyroscopes. navigational aids) can be implemented with small (10 qubits) 
systems. 

Full-Blown Quantum Logic Computers 
Machines with hundreds of entangled qubits. using quantum logic because of their 
reversibility and inherently parallel features, represent a leap far beyond what classical 
computers can offer.” However, barring unexpected theoretical and technical 
developments, the general belief for the implementation of such a machine sets the date 
between 2025 and never. 
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. 
15. SHOULD ORNL BE INVOLVED IY QUAYTUM INFORM,-\TION 

PROCESSING RESEARCH? 

Intermediate between Llniversity and Industry lies ORNL. Universities hale done most of 
the basic theoretical and experimental research in QIP. For them the issue of participation or 
not depends on getting. or not getting. appropriate funding from the National Science 
Foundation (or other government sources of funds). In regard to Industc. the moti\,ation is to 
show benefits. The amount of resources to be committed depends on an estimation of the 
si7 If the future market for QIP. R. s. Williams. Director of Basic Research for He\s.lttt 
Pachard Laboratories. in Ref. 39, provides a fascinating account on how to figure out the 
amount of company funds to be assigned to basic research in QIP: ten million dollars >.ctsr. 
This figure though may have been obtained at the time ( 1999) on the basis of a some\vhat 
pessimistic view of the QIP field since presently one can observe a more intense desire to 
work in this area by the Hewlett Packard Company.” 

A possible approach for ORNL is not to consider the construction of the full-blown quantum 
computer right away. Rather than this, one should consider those areas of research. as for 
instance quantum communication. either close to industrialization or arising interest for 
commercialization by the Industry. However, there has to be a basic research component to 
observe and measure quantum phenomena, as for instance the work presently performed at 
the Instrumentation and Controls Division with entangled photons and molecular computers, 
Incidentally. Los Alamos National Laboratory (LANL), one of the most far looking ahead of 
the national laboratories, is already heavily engaged in teleportation and quantum 
cryptography. The next component of the research program is two folds: move towards 
experimentation to control the observed quantum phenomena and look for new technologies 
and materials to implement nano-circuitry escaping from Moore’s second law. ORAL has 
indeed an excellent “know-how” in both areas. 

The amount of resources to be engaged in this kind of “risky” subject is certainly depending 
on the funding extracted from NASA, DOE, and DARPA and from the extense of 
cooperative agreements with Industry. Participation in QIP is a calculated risk, balanced by 
the perception that one has to sustain the economic benefits to the U. S. economy due to 
advanced computation when the second Moore’s law stops miniaturization. Finally. ORAL 
is full of bright, young, computer wizards. ’ at’s challenge them! 

61 



This page intentionally left blank. 

62 



. 
16. REFLECTIONS ON QLANTC’M MECHANICS 

* 

. 

Quantum mechanics is an amazingly successful formalism that describes nuclear atomic and 
high energy particle phenomena with great accuracy. However. almost from its inception. 
Einstein” considered quantum mechanics to be an incomplete description of the ph>,sical 
reality. The delayed impact of Einstein’s remark was felt u.hen very precise experiments of 
photons. neutrons. and single atoms in electromagnetic cavities vvere profusely reported in 
the literature and in special when the teleportation of entangled quantum states were actuai]>, 
implemented. Although very counterintuitive. entanglement arises directly from the quantum 
formalism (Dirac’s superposition principle). The real problem though is the act of 
measuidment involving the interaction between macro and quantum objects. To describe 
measurements quantum mechanically. von Neumnn “dogmatized” his axiomatic 
measurement theory (see Section 5) and started a long and not yet clarified polemic of w,hcn 
(and if) the time evolution described by the unitary transformation actually leads to the 
collapse of the wave function. Consequently. there is not a complete and unambiguous 
description of one of our most fundamental physical theories’ (Einstein does indeed cast a 
long shadow). Nevertheless. the quantum formalism has not been contradicted yet by any 
measurement. Its mathematical formalism predicts entanglement and non-locality as it has 
been experimentally confirmed. In view of so many clear-cut successes, one may ask 
whether the polemic on the collapse of the wave function or on the limits between the 
quantum and classical worlds is simply a philosophical polemic, In the words of Wigne?‘. 
“We are facing here the perennial question whether we physicists do not go beyond our 
competence when searching for philosophical truth.” 
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APPENDIX A 

Consider the SU(2) operator (n = 2. s = 4 - 1 = 3. r = 1) 

\i.here 2 and i are the vectors of components 

‘1, = sin 8 ; a? = 0, al = COS 8 . , (A.3, 

To obtain the construction of this operator is terms of the SU(2) generators, i, , & , & . 
given from (2.21) and (2.22) as 

a 

A,, = T, {A }= a, T, ( @,, + fi,,) + a3 T, ( - fi,, + &,) = 0 (in view of 2.19) (A.51 

use of (2.19) yields 

A, = 2 a, = 2 sin 8 . CA.7) 

In the same manner is easily checked that 

A2 =o; A3 = 2 COS 8 . (A.81 
I 

3 

0 
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APPENDIX B: PROeJECTION POSTULAT-ti 

Given the ensemble described by the density operator 

p’c p,: li><,jl 
1 I (B.1) 

find the probability. p I I, of having the result. F,, = j I > < I i 

From Eqs. (5.9) and (B. 1 j. w-e have 

p,,=TJl> 4 c Ii> P,, <ji) cB.2, 

get now the trace, and use orthogonality 

c 

p,,=c p,<llk> <k(l>=p,, . 
k 

(B.3) 

The “reduction” of the wave function is seen to happen using (5.8) and (B. 1) 

i 
)I> <II c p;, Ii> <ji II> <l/ 

I 
<l/i> <jil> <1 ) 

‘I , 

use orthonormality and the result (B.3). to get 

jY=)l> <II. (B.4) 

Thus. after the measurement a la von Neumann one obtains the “collapsed” ensemble (B.-F). 
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APPENDIX C: SOME ALGEBRA 

To prove the results (5.13) up to (5.15) start from Eqs. (2.23). (2.28). and (-1.17) 

11,~~ = i),,, + i),,, : k,, = i 1, P,,, - P,,,) ( n * j) (cl 1 

ii , : m > = W, ’ “’ ’ i m > (C.2, 

From (C. 1) and (C.3) one obtains 

P, ,,,,, CL, it,,,, = 2 i, ,,,,,, s,,,,, s/n, = 0. 

Same argument yields i, ,,,,,, ii,, 6 ,,,,,) = 0. Use of Eqs. (C.2) and (C.3) yields 

k,,,,, k;, i, ,,,,,, =r; ,,,,,, W,(“‘) fi ,,,,,) =w;““) p ,,,,,, s ,,,,,, = Wy(“‘) p,,,,,, . 

Direct application of (C.3) yields the result (5.15). 
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5 _ .^, ‘ . .._ .I . _..I,/ ,, . . . . . . _ _” I APPENDIX D: PROJECTION ALGORITHM FOR COMPOSITE’SYi+jS 
9 

The main mathematical manipulations to obtain the result (7.5) from Eq. (1.33) are gi\.cn in 
this appendix. Start from the SE(n) generators. &(v)(v =1,2).showninEq.(223)and 
the relations (5.13) up to (5.15) that for convenience are repeated below 

i, I,,,,, i-h I it, ,,I, = ix,,?, 6, I Pw, = 0 (D.1) 

i, 1,111, +8 I? ,,,,,, = w “‘I’ I+, ,,,, (D.‘, 

lL, i lx,,,, = IL, . (D.3 I 

Note that the projection operators above act on subsystem H(2). We proceed term by term in 
Eq. (7.4) 

,a + i, mm i( 1) @ i(2) F ,,,,,, = ic1 > i, ,,,,,, (2) 

0 --y 6 ,,,,,, 2 /l,(l) [/i, (1) @ i(2)] i, ,,,,,I = 2 A,( 1) I i,( 1) @ pmml /=I /=I 
@ -+ i, ,,,,II 2 Ak(2) [ecu @ ;lr(2)] i, ,,,,,, =z w,(2) W,(“‘) [i(l) @ P 1,111, t2i] 

/=I Y=, 

This result arises [see Eq. (2.23)] from the fact that.the elements u,, and +,, of the /i, (2) 
generator do not contribute to the sum, in view of (D. 1). Only those components given by 
the operators wp ( e = I... n - 1) do contribute according to (D.2). 

@ --) i, ,,,,,, 2 K,k ( 1, 2 ) [ i, ( 1 ) @ ik ( 2 ) 1 k,,,,, 
i,k 

= i),,,,, 
i 

c {K,,, [11,(l) k,(2)] +...K,z [i,(T) k;(2) +..a 

+ T {Kit [A,(l) @ 
’ 1. 

ii,? (2)] + . . . . K,z ] i,(l)@ k(2)]+... j 

T Again, in view of (D. 1) and (D.3), one obtains 
c 

@ = 2 2 K,,f+r w,(“~) [ ;i,(l) (8 i, ,,,,,, (2)]. 
/=I P=l 

The second subindex in the correiation tensor K( 1,2) is 
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because of the “mutilation” of the range of the-original. k. subindcs due to the results ( D. 1 ). 
For instance. for n = 3; 1 5 /: I 2. vve have [see Eq. (2.X)] 

it follows that the second subindex must match the 7’h and 8’h positions of the seventh and 
eight components: i.e.. 

, 
c .=, K , ,,Tt = K,.? + K,.y 

To derive the result (7.9) insert Eq. (7.7) for the projector operator t,,i2) into Eq. (7.5) and 

rearrange to get: 

p,,,(2) +J- i(l) c3 
n’ 

c ! 
[i,(l) @ i(2)] 

n 

P 

Next on account of the expression (7.8) for p,,,(2), one obtains dividing through by p,,,(2) the 
result (7.9) in text. 
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APPENDIX E: CALCULATION OF C..\,\ 

P 

We start from Eq. (7.35) written in the SU(2) @ SC’(Z) formalism. where since 2 (1). :? (2) 
are zero and K,, (1. 2) = - Si; . one gets 

M,k =-S,k (El) 

Then Eq. (7.35) for CA,\ becomes 

C .,., =-$ $ A,(l) A,(% 
i-1 

Use of Eqs. (10.2) and (10.3) in (E.2) yields 

c.,., (e.! 64) = - cos ( 82 - 01). 

(E.‘) 

(E.3) 

with two limiting cases 

8, = 82 c&$=--l ( anticorrelated ) (E.4) 

CA.4 = 0 ( uncorrelated ) . (E.5) 
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