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1. BACKGROUND 

1.1 Goals 

The main purpose of this work was to fmd the optimal monochromator 

configurations at the new HB-2 beamport for use in residual stress mapping. With that 

end in view it is essential to specify the following basic requirements. 

1. Sampling volume is typically in the range of 0.5 to 10 mm3; a smaller 

volume is most desirable when achievable. The neutron flux falling on the 

sample rather than the full beam intensity is the relevant quantity to 

characterize the neutron beam. 

2. Accuracy of stress measurements is influenced by the diffraction linewidth, 

the total number of counts under the measured peak, and the peak to 

background ratio. 

3. The data collection time is determined by the accuracy level imposed on 

the final results and the number of measurements necessary to determine 

the orientation of. the strain tensor. 
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4. A large range of d-spacings must be accessible for residual strain 

measurements to cover the variety of materials and several diffraction 

peaks for each material desired by users. The monochromator system has to 

include selectable wavelength options. 

5. The monochromator system evaluation will include the impact of various 

shield and shutter designs. Cost and complexity of possible instrument 

modifications will be taken into account. 

1.2 Figure of merit 

To search for an optimal monochromator one needs to define an appropriate 

parameter to evaluate quality of the monochromator. A monochromator can be 

described by the phase space volume selected from the neutron source and the neutron 

transport efficiency from source to sample. The shape of the selected phase space 

volume is also important. The goal in strain measurements is to determine d-spacing 

changes very precisely. The figure of merit must be related to the accuracy in the peak 

position measurement. 

The relative change of d-spacing is related to the peak shift by: 

where 26, is the detector (diffraction) angle. The standard deviation of Ad/d is 

proportional to the standard deviation of the peak position (~20): 

(1.2) 
cot e, c 

CAd =-One 
-z 2 

From statistical considerations, 020 is proportional to the variance os of the diffraction 

line (line shape assumed to be Gaussian): 

(1.3) CT,, =-j+ 

where N is the integral number of counts. 



In the presence of background the accuracy will be worse than expression (1.3) 

prescribes. A Monte Carlo simulation has shown that the influence of a constant 

background can be quantified through a simple formula (see Fig. 1.1): 

U-4) 02* =3 
d 

1+3$ 

where F/I is the background to peak ratio. This ratio is a sample characteristic if the 

background comes from the sample and it also depends on the linewidth. In the 

following all estimates will be made under the assumption of zero background. To 

account for the influence of background the total number of counts should be divided 

by (1 + 3 F/I). 

The variance of the diffraction line contains an instrumental contribution OR 

and a microstrain contribution Ok: 

(l-5) 2 
6s =a; +4tan2eSG;, 

The integral number of counts is proportional to the neutron flux at sample @s (see 

section 1.1, fast requirement) and for powder diffraction it is also proportional to: 

a3 
sin 8, sin 26, 

For a fixed d-spacing it results that: 

(1.6) iv - tane,Q,,t 

where t is the data collection time. 

The figure of merit (the quality factor) will be in inverse proportion to the data 

collection time needed to reach a certain level of accuracy, Using expressions (1.2, 1.3, 

1.5, 1.6) one can define the figure of merit as: 

(1.7) FM = cote,<P, 

bus + 
cot2es 2 

4 0, 

With this expression we will compare the accuracy of measurements made at different 

wavelengths. 
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1.3 Instrument design limitations 

The extraction of the beam dedicated to stress mapping measurements is 

sketched in Figs. 1.2 and 1.3. The beam is deflected 2” from the HB-2 beam line axis. 

At higher deflection angles the neutron beam would hit structural parts of the reactor 

wall. The monochromator locates at 768-788 cm from the end of the neutron beam 

pipe near the reactor core. A natural beam divergence of about 1” in horizontal and 

vertical planes results from this geometry. A first task was to size the opening in the 

primary beam shutter. 

The secondary beam diffracted from the monochromator will penetrate the 

shielding through an experiment shutter. The basic configuration of the stress mapping 

diffractometer is’: sketched in Fig. 1.4. The minimum distance between the 

monochromator and the goniometer center is 212 cm. The current experiment shutter 

design prescribes an opening of 7.6 cm wide and 12.7 cm high. A second task was to 

determine if this opening is adequate. 

The Monte Carlo method was used to calculate the reduction of neutron 

intensity at the monochromator due to the size of the primary beam shutter. The 

maximum monochromator dimensions were considered (16.5 cm wide x 15.2 cm high 

- the clearance gauge of the existing monochromator unit). The transmission was 

calculated relative to the total number of neutrons striking the monochromator area 

where there were no limitations between the monochromator and the neutron source 

(circular disk with 18 cm diameter). Results are given in Table 1.1. 

At a square opening of 9-10 cm the shutter transmission is 60-70%. This 

evaluation is not complete because focusing monochromators cannot reflect ah 

neutron trajectories between the neutron source and monochromator. 

To evaluate the monochromator arrangement a fmed take-off angle (88’) and a 

fixed distance from monochromator to sample were considered. The sample was 

assumed to be point-like. Trajectories arriving at the point sample from an infinitely 

extended neutron source were generated by the Monte Carlo method. The extraction 

efficiency was defined as the ratio of the number of neutrons actually passing through 

the system (finite source, shutters and monochromator) to the total number of reflected 
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neutrons coming from an indefinitely large source. This efficiency depends on (1) the 

monochromator curvature radii in the horizontal (Rn) and vertical (Rv) planes, (2) the 

cutting angle (m, between the crystallographic plane that reflects neutrons and the 

monochromator surface) and, (3) the openings of both the primary beam and 

experiment shutters. 

Table 1.1 

Vertical Primary beam shutter horizontal opening 

opening [cm1 

[cm1 7 8 9 10 11 12 

7 0.39 0.45 0.49 0.54 0.58 0.60 

8 0.45 0.51 0.56 0.60 0.65 0.67 

9 0.49 0.55 0.62 0.66 0.71 0.74 

10 0.52 0.59 0.65 0.71 0.76 0.79 

11 0.55 0.63 0.69 0.74 0.79 0.84 

12 0.58 0.66 0.72 0.78 0.83 0.87 

The extraction efficiency for the case of no limitations except for the finite size 

of the source is presented in Fig. 1.5 as a function of the cutting angle and the 

horizontal radius of curvature, at fYted value of vertical radius (Rv = 1.75 m). A large 

strip with high extraction efficiency is visible. The effect of introducing the shutter 

opening is shown in Fig: 1.6. The results are shown for the primary beam shutter with 

an opening of 10 x 10 cm and for the experiment shutter with the maximum available 

opening of 7.6 x 12.7 cm. The extraction efficiency is visibly reduced for reflection 

asymmetries with beam extension (XM c 0). To show this effect more clearly,’ the 

variation of the extraction efficiency with cutting angle is shown in Fig. 1.7, with the 

horizontal radius set at optimal value. The limitation by the second shutter is 

responsible for the reduction of the extraction efficiency below j& = 15”. To show the 

effect of the first shutter, the same dependence is presented in Fig. 1.8 for a relaxed 

5 



opening of the second shutter. It is seen that an extraction efficiency exceeding 80% 

can be reached with a horizontal opening of 10 cm at most cutting angles (x&r ~35’). 

The effect of the vertical curvature is shown in Fig. 1.9. The horizontal radius 

was fured at the optimum value and the opening of the second shutter was relaxed. The 

largest efficiency of extraction is reached at radii of vertical curvature exceeding 1.8 

m. The vertical opening of the first shutter (10 cm) reduces the extraction efficiency at 

vertical radii exceeding 2.2 m. At RV = 1.8 m the vertical opening of the second 

shutter can be reduced to 5 cm with no significant loss of extraction efficiency. 

However, an excessive reduction of the height of the shutter is not recommended. Our 

analysis considered the case of focusing neutrons at 2.12 m from the monochromator, 

but other configurations, like a double crystal arrangement, should not be excluded. 

In conclusion, an opening size of 10 x 10 cm is recommended for the primary 

beam shutter, although a 9 x 9 cm size is also acceptable. The maximum allowed 

opening size of the experiment shutter (7.6 x 12.7 cm) would reduce the extraction 

efficiency by as much as 50%. A monochromator cutting angle above 15” is 

recommended to minimize this loss. 

In the following chapters two different monochromator configurations are 

discussed: single reflection and double reflection. For single reflection (section. 2) the 

performance of two types of focusing monochromators, made of thick silicon plates 

and of packets of thin wafers, are compared. The best choice for neutron stress 

mapping permitted by the new HB-2 geometry is searched for. In section 3 the double 

reflection option is analyzed. The search focuses on two basic arrangements: with 

identical crystals at e 55” take-off angle and with non-identical crystals at M 88” take- 

off angle for the first crystal (to preserve the single reflection option at the same taker 

off angle). The final recommendations are given in section 4. 
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2. SINGLE REFLECTION MONOCHROMATOR.UNITS 

2.1. Focusing monochromators for diffraction 

Mosaic crystal monochromators are the basic choice for conventional neutron 

diffractometry with Soller collimators. Highly oriented pyrolytic. graphite (PG) and 

mosaic Be give the highest beam intensities, but the d-spacing of PG is too large for 

adequate resolution in diffraction while good Be crystals are not readily available. Zn, 

Cu and Ge mosaic crystals are commonly used [l]. In conventional configurations 

good resolution in diffraction is obtained with tight collimation at large 

monochromator take-off angles [2]. Much work has been done to focus the neutron 

beam in the vertical plane. The most successful version of mosaic crystal 

monochromator for high resolution diffraction is a stack of flat plates of squashed Ge, 

each tilted vertically to provide ,vertical beam concentration onto the sample [3]. The 

mosaic spread sets a limit to spatial focusing: a spread of 20’ gives a blurring of about 

2 cm for each meter of distance. 

Alternative monochromators based on elastically deformed perfect crystals 

have been developed in recent years [4]. They allow focusing in both the horizontal 

and vertical planes and a control of resolution through focusing in scattering. In spite 

of lower full beam intensities, under focusing conditions bent perfect crystals can 

deliver neutrons to small areas at a higher flux than mosaic crystals can. This is 

because bent perfect crystals have high peak reflectivity [5] and can accept beams of 

large angular divergence. The best choice for a diffractometer with small gauge 

volume and position sensitive detector (PSD) is a double focusing bent perfect crystal 

monochromator [6]. 

A curved crystal acts as a neutron lens [7]. A thin bent monochromator placed 

at a distance Lo from a neutron source will produce an image of the source at a 

distance Lr from the crystal, related to Lo by the simple lens formula: 

(2-l) fnb + fn*/L* = 1 (in the horizontal plane). 
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The main difference between a bent crystal and a lens is that the focal lengths before 

reflection (fu) and after reflection (fn*) are different: 

(2.2a) fn = (Rn/2) Shl(e~-l-~~) 

(2.2b) fn* = (Rn/2) sir@-m) 

The following notations were used: t& the Bragg angle, XM the cutting angle (the 

angle between the lattice plane and the crystal surface) and Rn the crystal radius of 

curvature in the plane of reflection (horizontal, or equatorial). 

The distance Lr’ to the vertical plane image is given by the same relation with 

other focal lengths: 

(2.3) f”/LfJ + f&r’ = 1, 

(2.4) fv=R&?COS~&Il&) 

where fv is the vertical focal length, the same before and after reflection, and Rv is the 

sagittal (vertical) radius of curvature. The ‘astigmatic difference’ of fv in relation to fn 

and fn* is a significant distinction between neutron Bragg optics and geometrical 

optics. 

The Bragg reflection by a bent crystal introduces a correlation in the 

wavevector space between the modulus of the wavevector k and the neutron direction 

in the horizontal plane [a]. This correlation can be manipulated to achieve a suitable 

orientation of the instrument resolution ellipsoid [9]. Focusing in powder diffraction 

for a sample of small diameter occurs when [9]: 

(2.5) fJLr = 1/(2 + ta.&&i&) 

where Lr is the distance between the monochromator and the sample and 28s is the 

detector (diffraction) angle. This relation defines the radius of curvature needed to 

achieve good resolution in powder diffraction at a given detector angle. The numerical 

values of the resolution and intensity are determined by the monochromator thickness, 

the elastic constants of the crystal material, and the type of bending. Relation (2.5) 

gives a neutron equivalent of the focusing at detector in X-ray powder diffraction (the 

Bragg-Brentano parafocusing). Characteristic monochromatic X-rays come from a . 

point source, are diffracted by an extended plate sample, and go to the same point of 

detection. Neutrons, with no point sources and no strictly monochromatic beams, 
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come from an extended crystal, go to a point sample and - under focusing conditions - 

go, to the same point of detection. 

Silicon is the commercially available material for focusing monochromators 

with high transparency for neutrons. Early focusing neutron monochromators were 

bent pneumatically (quasi-spherically) [lo] or mechanically (cylindrically) [ 111. The 

latest focusing monochromators of high performance have a more complex design that 

will be described in the following two sections. 

2.2. Bulk silicon crystal unit 

One unit developed at the Missouri University Research Reactor (MURR) [4] 

is made of 9 vertically stacked Si blades, mechanically bent in the horizontal 

(diffraction) plane and quasi-bent by segmentation in the vertical plane. All blades 

originate from the same plate, which automatically ensures their correct relative 

orientation. The plate is cut obliquely from an 8” (203.2 mm) diameter [RIO] ingot 

with a suitable cutting angle and, usually, with the ~01 l> zone axis vertical. 

The horizontal radius Rn is given by a 4-point elastic bending device and is 

adjustable with a fine screw. A stepping motor can be mounted to remotely drive the 

adjusting screw. The vertical curvature Rv is set by the profile of the bending posts 

(barrel shaped on the front, concave on the back) and is fixed. A difference from the 

usual 4-point bending method is that the mob& posts revolve around axes that are 

close to the center of the device. This eliminates the nonuniformity of the horizontal 

curvature over the height of the stack due to the varying thickness of the posts. 

The usable monochromator area is 16.5 mm wide and 15.2 mm high. The blade 

thickness is usually between 5 and 6 mm. The horizontal curvature is limited by the 

breaking limit (safe when Rn > 10 m) of the silicon blades. Because the second focal 

length fn* must be comparable to the distance between monochromator and sample, 

which usually is short (l-2 m), the asymmetric reflection with beam condensation 

(Fankuchen range) is used. The cutting angle is close to the Bragg angle so that the 

radius of curvature is considerably larger than the second focal distance (see relation 

2.2b), thus avoiding breakage. 
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The neutron reflectivity of bent perfect crystals is well described by the 

s lamellar approximation [5]. The local value of the reciprocal lattice vector is defined 

for every point of the crystal by taking into account the variation, due to the elastic 

deformation, of the orientation and spacing of lattice planes. It is assumed that all 

neutrons along a given path in the crystal are reflected with a constant probability 

when the Bragg condition is fulfilled. 

By neglecting the intrinsic dynamic diffraction range (Darwin width, of a few 

seconds of arc) the diffraction by an elastically bent perfect crystal becomes 

deterministic. The point where the reflection occurs is determined uniquely by the 

direction and the wave vector of the incoming neutron. The path of the reflected 

neutron is also determined uniquely. The crystal dimensions will thus fully define the 

domain in real and phase space where the Bragg reflection is possible. 

A matrix method similar to that used in Gaussian lens optics has been worked 

out for neutron optics [8, lo]. The neutron state before reflection is specified by the 

spatial coordinates across the beam (yi, zi), the angular deviations (3, &) from the 

beam axis and the relative deviation of the wavevector @k/k). The neutron state is 

actually defined in the five dimensions by the phase space vector (yi, Icyi, Ak, zi, k&). 

The neutron state after reflection is specified in the same way by changing the 

subscript (i%). In the paraxial approximation of linear relations describing the Bragg 

reflection the neutron coordinates in the horizontal (diffraction) plane are not 

correlated with those in the vertical plane and the wave vector deviation has no 

influence on the vertical motion. One can thus consider separately’the vectors vi =(yi, 

‘yi, Ak/k) and vr =(yf, yf, Ak/k) of the neutron state in the horizontal plane and the 

vectors u, = (zi, Si) and ur = (zf, &) in the vertical plane. 

The vectors vi and vf are related by the Bragg reflection matrix Sn: 

(2.6) vf = sH*vi 

with the following elements: 

SHZ~ = -(&i&fl)/(&Rn) ; Sm2 = &f ; Sn23 = -(&f+l)tane ; 

S~31=&32=O;S~33=1. 

The following notations were used: 
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Akk - relative wavevector deviation; 

G = (COS~/COS&)[ 1- ( ~+K)s~~(BM+~)s~II(BM-~)] ; 

K - material elasticity constant; 

E = S~IIBMIG ; 

Ei = [E-s~~(~M-~M)]/s~(~M+~M) ; 

&f = [E-s~II(~M+~)]/s~I@M-XM> . 

Physically G/RH represents the change in Bragg angle per unit incident neutron 

pathlength in the crystal [5]. The material elasticity constant K is the ratio between the 

deformation tensor components along and normal to the crystal surface. It depends on 

the crystallographic orientation of the crystal plate and on the method of bending, and 

it equals the Poisson ratio in a particular case [5]. 

The matrix Sn is unitary (its determinant equals unity). This means that the 

phase space volume is preserved upon the transformation (2.6), as required by the 

Liouville theorem (which actually says that the neutron density in the phase space 

-cannot increase). The elements of the inverse matrix’&-’ are: 

SH 11 = Ef ; it&2 = ERH ; S&3 = &RHtLUIeM ; 

sH21 = (w-~Y(ERH) ; S~‘22 = Ei ; SH’23 = (&i+l)tadM ; 

SH 31 = SH’32 = 0 ; SH 33 = 1. 

Bragg reflection can take place only if the following relation is fulfilled: 

(2.7) IAvil<B 

where the components of A and B are: 

&I =-i/G ; A12 = [SiII(eM+&gG]RH ; A13 = - [Sh(eM+XM)/G]RHt2UIeM ; 

A2i =- COt(ervri-XM)/G+l /Sh(eM+xM) ; Azz = [COS(eM+XM)/G]RH ; 

A23 =- [COS(ehl+XM)/G]RHtZiIIeM ; 

B1 = g/2 ; B2 = Z/2 , 

with g the crystal thickness and I the crystal length; 

A similar relation holds for the vector vf with the following coefficients: 

A’r2 = - l/G ;A’r2= - [SiII(eM-XM)/G]RH ; A)13 = - [SiD(eM-XM)/G]RHtZUIeM ; 

A’zl = COt(eM-XM)/G-l/Sin(eM-XM) ; f&2 = [COS(eM-XM)/G]RH ; 

A’23 = [COS(eM-xM)/G]RHtiUIeM , 
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The vectors ui = (zip &) and uf = (a, &) are related by the vertical matrix Sv: 

(2.8) Uf = Sv*Ui 

with the following elements: 

SVll = 1 ; sv12 = 0 ; 

sv21 = -2SheMCOS~MmV ; sV22 = 1. 

A simple restriction holds: I zi I = I zf I < h/2, with h the crystal height. 

The peak reflectivity is given by the formula: 

(2.9) P = 1 - exp(-QIRn/GI) . 

where Q = @k&)tar&& =(~)(dln)(sin2eM/coseM) is the kinematic reflectivity 

per unit incident neutron pathlength in the crystal, d is the lattice spacing for the given 

reflection and Ak& is the Maier-Leibnitz reflectivity constant (selected wavevector 

band per unit pat@ [ 121. The values of d and Ak& for silicon are given in Table 2.1. 

Table 2.1 

Reflection d [Al Ak& [A-‘cm-‘] 

(111) 3.1355 0.0273 

(2201 1.9200 0.0200 

(311) 1.6374 0.0068 

(400) 1.3577 0.0098 

(331) 1.2459 0.0038 

(422) 1.1086 0.0064 

(511) 1.0451 0.0026 r 

The relations presented above form the basis of a matrix neutron code for 

design and optimization of diffraction arrangements. Results of computations with the 

code have been presented in a series of papers [9, lo] and also in a previous project 

report to ORNL. A later development in phase space diagram computation has 

occurred in part under the present project. A code has been worked’ out for 

arrangements of single or multiple monochromators. It makes use of the matrices Sn, 
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Sv defined above and also of translation matrices. Translation matrices,, describe ,the 

motion of neutrons in empty space between two spectrometer elements. The space 

phase diagrams visualize the boundaries of the ,allowed phase space domain. The 

diagrams are computed from the geometry of the experiment, with all limitations due 

to the presence of various slits accounted for. “. 

2.3. Multi-wafer silicon unit 

Silicon breakage restricts the range of applications of bent bulk silicon 

monochromators. A way to overcome the restriction is to use monochromators made 

of packets of thin silicon wafers. Such monochromators allow for a smaller bending 

radius, hence for a stronger spatial focusing, and give more flexibility in the design of 

focusing arrangements. 

A prototype was made of a packet of 14 commercial wafers, each of 20 cm 

diameter and 0.7 mm thickness, originating from the same Si [lOO] ingot. The bending 

device was basically the same as for bulk silica-n crystals. The overall crystal thickness 

was about 10 mm, but designs having thickness between 3 mm and 15 mm can be 

fabricated. The vertical. curvature is obtained by fine segmentation (5 mm). The unit 

has an adjustable horizontal curvature with a minimum radius of,,about 1 urn (the 

breaking limit for commercial wafers). In the vertical plane the radius is fixed by the 

profde of bending posts. 

Modeling of multi-wafer units has required the introduction of a new option in 

the computer design codes. Work on the necessary modifications has been done 

partially under the present project. Some of the results are presented below. 

Each wafer in the packet reflects neutrons like a bulk crystal, but problems 
. 

arise upon considering the reflectivity of the packet as a whole. On the 8 scale (or Ak/k 

scale) the reflectivity of a packet of wafers is generally comb-shaped. The width of a 

tooth (the band reflected by each wafer) is defined by the value of the elastic stress, 

but the distance between successive teeth is given by the geometry of bending only. 

The filling ratio is thus of concern. The reflectivity curve is approximated by a 

rectangle having the same overall width and a height equal to the average reflectivity 
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over the many teeth. The filling ratio must be considered not solely on the 8 or Ak/k 

scales, but in the three-dimensional phase space. If the reflection is asymmetric, the 

overall phase space volumes before and after reflection differ, leading to different 

phase space filling ratios. When the teeth superimpose, corrections must be introduced 

in the effective peak reflectivity to account for possible losses due to multiple 

reflections. 

In ray tracing calculations, to simplify the calculations, the packet of wafers 

was simulated by a bulk bent crystal without elastic stresses. The elements of the 

Bragg reflection matrix Sn are: 

SHll = COS(eM-m)/COS(eM+xM) ; sHl2 = a*2 ; sH13 = 2L*2 tZ&M ; 

SHzr = 0 ; SH22 = 1 ; SH23 = -2 tmeM ; 

SH31 = Ski32 = 0 ; SH33 = 1. 

The determinant Of Sn is COS(8M-~M)/COS(eM+~M), and it is different from unity if the 

reflection is asymmetric. The overall volumes in the phase space may thus be different 

before and after reflection. This is an apparent violation of the Liouville theorem, 

introduced by the approximation used in modeling. We know that no violation occurs 

in reality as each individual wafer obeys the Liouville theorem. To correct for this 

situation, a factor is introduced in the average peak reflectivity, which comes to 

depend on whether the phase space volume considered on its averaging is before or 

after reflection. 

The elements of the inverse matrix Sn-’ are: 

SH 11 = COs(eM+~M)/COS(eM~M) ; SHY12 = 2L** ; SHY13 = 2L** taeM ; 

si21 = o ; sH’22 = i ; sH’23 = 2 tmeM ; 

S~‘31 = SH 32 = 0 ; SH 33 = 1. 
c 

where L*r = RHSh12eM/kOS(eM-~M) and L*a = RHSh2eM/2COS(eM+)&) are 

characteristic lengths that equal each other for symmetric reflection. 

The reflection can take place only if the following relation is fulfilled: 

(2.10) IAvrl<B 

where the components of A and B are: 

&I = -ihS(eM+xM); Al2 = RHtm(eM+xM); Al3 = - RHtaI@M+XM)tEUIeM; 

A21 = 0 ; Az2 = Rn ; A23 = -R&am& ; 
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Bi = g/2 ; Bz = Z/2 . 

The relation (2.10) defines the boundaries of the phase space acceptance window 

(before reflection by the bent crystal). 

A similar relation I A’vf I < B holds for the vector vf with the following 

coefficients: 

A’12 = -i/COS(eM-$@& A)12 = - RHtNI(eM--m); A)13 = - R&iII(eM-~)ti3IIeM; 

A’21 = 0 ; Af22 = Rn ; A)23 = RHtZUIeM. 

The above relations define the phase space emergence window (after reflection). 

The relations between uf and uj and the vertical restriction are the same as for 

the bulk bent crystal (2.8). 

To compensate for the difference in the volumes of the acceptance and 

emergence phase space windows, the peak reflectivity is multiplied by 

COS(eM+~)/COS(eM-XM), that is the peak reflectivity before (P,) and after (Pb) 

reflection are related by: 

(2.11) pa = iCOS(eM+xM)/COS(eM-~M)i Pb 

The correction of the reflectivity for the phase space fdling ratio is introduced 

by the formulae: 

(2.12a) pb = iG/COS(eti~M)i PO when iG/COS(eM+~lvr)l<l , 

(2.12b) pa = IG/COS(eM-~M)l PO when iG/COS(eM~)I<l , 

with PO = 1 - exp(-QlRu/Gl) as given by the bulk case formula (2.9). 

If IG/COS(eM-I-~M)l>i the wafers screen each other in the incident beam. An 

extinction factor has to be introduced to account for this screening. The expression of 

the factor will depend on the superposition number n=IntlG/cos(BM+XM)] and on the 

number of wafers in the packet N. At high N the following asymptotic expression may 

be used: 

(2.13) Pb,a = [n+l-@/COS(eM+XM)I][ 1-(1-Po)“]+[lG/COS(eM+xM)I-n3[ l-(1-PO)“‘] 

For a finite number of wafers the final formula at N>n is: 

(2.14a) pb =yPb,- +i$G/cos(B, +xM)+n-2j-l]P,(l-P,)j 
j0 

and if N<n one obtains: 
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(2.14b) Pb =Lz[G/cos(OM +XM)+n-2j-l]P,(l-PO)’ 
N j=o 

The formula (2.13) was derived under the assumption of no superposition and 

no multiple scattering in the reflected beam. Superposition in the reflected beam exists 

when the superposition number m=IntlG/cos(BM-m)] is different from zero. The 

wafers will then screen each other after reflection, causing the neutrons to be scattered 

out of the beam by multiple reflection. The expression (2.13) must be multiplied by a 

factor accounting for multiple reflection (fmix): 

(2.15) f& = (1 - P-) / (1 - P+P-) 

where P- and P+ are different from 0 when m and n (respectively) are different from 0. 

The corresponding expressions for P- and P+ can be inferred in a similar way to (2.13), 

with only a change in exponents: 

(2.16a) P-=[m+l-lG/COS(eM-XM)l][ I-( 1-Po)“‘]+[lG/cOS(e~-~)~-m][ I-( l-PO)? 

(2.16b) P+=[n+l-lG/COS(eM+~M)l][ 1-( l-Po)“‘]+[IG/COS(eM+XM)I-n~[ 1-( l-PO)? 

To give an idea about the difference between multi-wafer and bulk crystal units 

numerical values for PO, Pb and Pa are plotted in Figs. 2.1 - 2.4 as functions of the 

cutting angle m for four different reflections of silicon. To each value of m the radius 

of curvature was assigned that minimizes the linewidth at 90” detector angle (28s), 

using relation (2.5). The curve for PO shows the variation of the peak reflectivity of a 

single wafer on bending to the corresponding radius, relation (2.9). One should keep in 

mind that Pb refers to a reflectivity curve defined in the phase space of the incident 

neutrons. In Figs. 2.1-2.2 Pb reaches the value of a single wafer at positive cutting 

angles where the teeth of the reflectivity curve merge. However, if one looks at the 

emergence window in the phase space of the reflected neutrons, this is not a good 

situation because the value of P, is then low. The average reflectivity P, decreases at 

large cutting angles (xM>o range) because the increase of the peak reflectivity Pb is not 

enough to compensate for the expansion of the overall phase space volume after 

reflection. A similar decrease of Pa occurs at m<O. A maximum for Pa is reached 

around m - -15”, defining the optimal range of cutting angles. The situation is more 

. 

complicated in Figs. 2.3-2.4 because of the stronger variation of PO related to lower 
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kinematic reflectivities. The gain over the single wafer seen for Pb at dirge XM is due to 

the fact that those neutrons not reflected by the first wafers in the packet (even if the 

Bragg relation was fulfilled) got a second chance to be reflected by subsequent wafers. 

Perhaps more suggestive should be Figs. 2.5 - 2.8, where a comparison is 

made with the bulk crystal case. The thickness of the multi-wafer unit was kept at 1 

cm, but the thickness of the reference bulk crystal was set at the breaking limit for 

every radius of curvature (by using an empirical relation for that limit in silicon)#. The 

curves marked “peak ratio” show the ratio PJPo, the curves marked “A(3 range ratio” 

refer to the overall width of t-he reflectivity curves, and the curves marked “intensity 

ratio” give the gain in full beam intensities. These gains are seen to be of 3.5 to 4 in all 

cases considered. 

The general conclusion is that for the case of diffraction lines, with minimum - - )/ .a,_ 

width at 90’.detector,,-mgle, multi-wafer units with moderate cutting angles (from -20” 

to +15”) are definitely better than bulk crystal units. 

A possible substitute for Si in multi-wafer u&s is Ge. Germanium has better - r.‘ “-.-A.. i.” ,. I_,. I__**_.ll* 

kinematic reflectivity, but stronger absorption for neutrons. Consequently the peak 

reflectivity formulae must be-corrected for absorption. As the lattice parameters for Ge 

and Si are close, it is possible to compare directly the corresponding monochromator 

performance by an “intensity ratio” for the same reflection. At 1 cm total, thickness the 1.411”..^. “_ 

intensity ratio (Ge/Si) is 0.85 for strong reflections like (400) and (311), 1.24 for 

(331), and 1.57 for (511). The gain in the case of weak reflections is at the same 

monochromator dimensions, but commercially available Ge wafers have smaller 

diameters (5” - 127 mm) than Si (8” - 20.32 mm to 12” - 30.48 mm) and the price is 

higher by an order of magnitude. 
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2.4. Optimal Configurations 

DAX simulations 

Neutron optics programs for curved crystal spectrometers were worked out 

after the generic problem was expressed in matrix language [ 131. This allowed the 

extension of the Cooper-Nathans formalism [14] to include spatial effects and bent 

crystals. The transmission function of the spectrometer p&,r,I~) is extended by simply 

adding the coordinate r of the point in the sample where scattering occurs. This 

function is constructed from the transmission functions of the monochromator and 

analyzer units p&&r) and pA(kf,r). These are obtained by considering the Bragg 

reflection on a bent crystal in phase space. Transmission functions are approximated 

by multi-dimensional Gaussian functions. Covariance matrices of phase space 

variables are computed and then the covariance matrix of the resolution function 

variables is obtained through matrix operations [13]. 

Codes considering both resolution and intensity were developed on this basis, 

for design and optimization of scattering instruments, as well as for planning 

experiments. [9]. A program for diffraction arrangements (DAX) was written in 

Romania under a project supported in part by IAEA Vienna. It has been upgraded at 

MURR and has been used in the design of monochromator units for neutron powder 

diffraction, small angle neutron scattering (SANS) and synchrotron radiation (SR). 

With this program, analytical and numerical optirnizations can be done. A figure of 

merit (ratio of peak intensity at detector to Iinewidth squared) is maximized 

numerically. The linewidth refers to powder diffraction. c 

The DAX program was used to compute monochromator performance (powder 

diffraction linewidth, flux at sample, beam size at sample, etc.) in different 

arrangements (distance monochromator to sampIe, horizontal and vertical curvature of 

monochromator, cutting angle, etc). A survey of options of interest to ORNL was 

performed with the idea of having a choice of wavelength for neutron stress mapping 

’ of various materials. Because the take-off angle accessible at the new HB-2 beamport 

’ The Si(100) breaking limit of g[cm] = (R&x1]/2714)~‘~ was assumed. 
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is about 90” and the range of detector angles in residual stress measurements is limited 

(70” - 1 lo”), the Bragg reflections (31 l), (400), (331) and (511) of silicon were chosen 

for examination. These reflections give suitable wavelengths to measure diffraction 

patterns in a wide range of d-spacings (0.09 - 0.19 nm). 

The design dimensions considered in this search were: 

- distance from source to monochromator: 

- diameter of the source: 

- opening of the in-pile shutter: 

- monochromator dimensions (width, height): 

- distance from monochromator to sample: 

725 cm* 

18 cm 

10x 10cm 

16.5 x 15.2 cm 

190 cm* 

- openings of the reflected beam shutter: entrance 7.6 x 12.7 cm 

exit 3.8 x 5.1 cm 

- sample size: lxlx5mm 

- distance from sample to PSD: 80 cm 

- PSD spatial resolution: lnlm 

For studies on steels using the a-Fe 211 line at detector angles around 90” one 

cannot improve upon the existing unit with Si (331) asymmetric (x=28.5”) reflection. 

A slight intensity gain of 30% can be obtained by resetting the horizontal curvature 

from the present vahte of Rn=10.7 m to the value of Rn=14.7 m, optimal for the larger 

distance to sample. However, such a gain will only be available for samples with no 

intrinsic line broadening, not typical for stressed:materials. A small gain (of 7%) can 

also be obtained by changing the radius of vertical curvature from Rv=1.55 m to 

Rv=1.67 m. The conclusion is that the existing unit already goes to the limit of what 

silicon can give in high resolution neutron stress profiling at distances to sample 

around 1.8 m. This is because at the present crystal size and cutting angle, the HB-2 

geometry provides a nearly full illumination of the monochromator. 

Many options for single reflection monochromators have been compared, 

4 including arrangements with transmission geometry and with strong asymmetric 

reflection geometry in beam condensation (Fankuchen range) or beam extension 

(inverse Fankuchen). The best solution for multiple choice of wavelengths was found 
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to be a multi-wafer unit with Si [ 1001 orientation and with the ~01 l> zone axis 

vertical. This unit provides the Si (400) symmetric reflection and the asymmetric 

reflections Si (311) and Si (511). At fixed take-off angle, the wavelength is changed 

simply by rotating the monochromator. On changing the wavelength the horizontal 

curvature has to be adjusted (by remote control of the adjusting screw). The vertical 

curvature may be fured at a value representing a compromise for all wavelengths. 

Varying the take-off angle was considered with the aim to adjust to 90” the 

detector angle for given reflections from various samples. It was found that such a 

variation would give only a marginal gain in the figure of merit while greatly 

complicating the beam extraction and dramatically increasing the cost to implement 

the solution 

The best results for this series of computations are summarized in Table 2.2 for 

a take-off angle of 88”. Instrumental linewidths versus detector angle are shown in 

Figs. 2.9 - 2.12 for several take-off angles. 

Type 

I)’ Si(31 
Si(400): 
Si(331) 

I)* Si(51 

Table 2.2 

h x RH Rv Beam cross Flux FWHM 
section at sample relative to at 

[A] [deg.] [ml @I mm1 single 2es=900 
width x height (331) [deg.] 

2.27 25.3 9.5 1.75 28 x21 0.59 0.26 
1.89 0 5.1 1.75 22x21 2.06 0.19 
1.73 28.5 10.7 1.55 28 x21 1 0.19 
1.45 , 15.8 7.4 1.75 26x21 1.53 0.21 

1 - Existing Si (33 1) monochromator 
2 - Multi-wafer Si unit with adjustable horizontal curvature and fured vertical 
curvature 

Phase space diagram simulations 

A useful characterization of neutron monochromators is by their acceptance 

windows in phase space. These are similar to the acceptance diagrams defined in two 

* Preliminary design dimensions for the new HE-2. 
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I/, I. I ,,,- ..,_ ‘.; , 

dimensions (y, y), but are three dimensional, in the phase subspaces vi =(yi, 3, Akk) 

or v~(y~, yf, Akk). With flat crystals the spatial coordinate does not matter and the 

windows are two-dimensional, depicted in the well-known DuMond (Ah/h, ‘y) 

diagrams [ 151. 

In neutron diffraction strain mapping the gauge cross section of the beam is 

usually 2 x 2 mm (or less). This makes it possible to describe the monochromator in 

terms of two-dimensional angle-wavelength diagrams instead of full three-dimensional 

diagrams. Such diagrams correctly describe the situation at the beam center only, but 

the representation is free of the errors introduced by Gaussian approximations. The 

matrix expressions given in the previous two chapters were used to compute the 

diagrams. The diffraction line widths in a 28s range of 70”-110” were computed by 

taking into account the contribution of spatial beam spread on the acceptance diagram 

and the contribution of angular collimation after sample. From computed variances, 

linewidths were estimated by assuming diffraction profiles to be Gaussian. 

Table 2.3 

i- Flux FWHR, 
Ay A6 pa relative to at 
rl rl single 2e,=90° 

(331) Weg.1 

me x 
rdpo i 

RH 

rml 
Rv 

lid 

I 
(311)bulk 25.3 11.4 1.6 1 0.9 
(311)multi 25.3 
(400)multi 0 5.2-5.5 1.5-2.0 2.0 
(33 l)bulk* 28.5 10.7 1.55 0.1 
(33 1)bulk 28.5 13.4-13.8 1.3-1.7 0.7 
(511)multi 15.8 7.7-7.8 l-5-2.0 1.4 _. _, ._~, _.,“. 

1 t 0.6 
1’1 1 1.4-1.8 1 0.9’ I~~- 3.6 1 0.40 1 0.6 1 0.27 

f 3.6 1 0.64 T- 2.7 

3.6 1 0.86 
3.’ ’ --- 

* 
- Existing Si (331) monochromator in present HB-2 design. 

The phase space diagrams for the optimal monochromator configurations 

mentioned before are shown in Figs. 2.13 - 2.16. The optimal radii of curvature and 

the corresponding performances of the monochromator are given in Table 2.3. The 

wavelength is identical with that of Table 2.2 as the take-off angle was the same (88”). 
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The design dimensions considered in the survey were afterwards modified to 

more realistic values: 

- distance from source to monochromator: 768 cm* 

- diameter of the source: 18cm 

- opening of the in-pile shutter: 9x9cm 

- monochromator dimensions: 16.5 x 15.2 cm 

- distance from monochromator to sample: 212 cm* 

- openings of the reflected beam shutter: entrance 7.6 x 12.7 cm 

exit 7.6 x 12.7 cm 

- slits before and after sample: 2x2mm 

- distance from sample to PSD: 80 cm 

- PSD spatial resolution: 2 mm# 

The focusing in scattering for the case of powder diffraction can be expressed 

in terms of phase space diagrams. For a broad neutron beam converging onto a small 

sample, the diffraction line is still narrow if the combination ksinf3s is kept constant 

(Q=2ksir& - the scattering vector, 28s - the detector angle). This can be done through 

a tight correlation between k and the direction of the neutrons in the incident beam. 

The necessary correlation is ensured by a correct curvature of the crystal, given by the 

relation (2.4), and occurs when the needle shaped @k/k, y) phase space diagram is 

inclined by an angle as relative to the Ak/k axis satisfying the relation: 

ta.lN& = - 2tanes. 

For 28s = 90” one gets cts = - 63.434” . All acceptance diagrams should thus have the 

same orientation regardless of the wavelength and geometrical configuration. 
r 

Figures 2.13-2.16 illustrate this principle. In Fig. 2.14, which refers to the 

multi-wafer monochromator, the thickness of the needle in the phase space diagram is 

larger that in other. cases. It was for this reason that we added in Table 2.3 the case of 

(311) bulk monochromator: the bulk option is better (better resolution at the same 

intensity). This is a general finding: at strong asymmetries with beam condensation 

(Fankuchen range) bulk monochromators are better than multi-wafer monochromators. 

. 

* Revised new B-2 design dimensions. 
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For symmetric or nearly symmetric reflection a multi-wafer monochromator has a 

larger angular acceptance and, in spite of the lower peak reflectivity, a better 

extraction efficiency (defined by the effective phase space volume selected by 

monochromator from source). 

The last column in table 2.3 contains the linewidths at 28s=90°. For multi- 

wafer units linewidths are larger. This is due to a larger effective thickness (by a factor 

of about 2). For stressed samples with intrinsic line broadening this difference should 

not be significant. The linewidth variation with detector angle is displayed in Fig. 2.17. 

The results are consistent with ,Dm computations. 

Relative figures of merit of different monochromators are plotted in Fig. 2.18 

for three values of the microstrain (0, 0.002, 0.004), the primary factor in the sample 

contribution to line broadening. The figure of merit was defined in section 1.2, relation 

(1.7). The figure of merit of the present Si (33 1) bulk crystal unit on measuring the 

(211) line of a-iron without microstrain was taken as reference (figure of merit = 1). 

The d-spacing scale is independent of the choice of the wavelength. Different 

monochromators can thus, be compared directly. The d-spacings frequently used in 

stress measurements on various materials are indicated. Figure 2.18 is useful for the 

selection of the most suitable monochromator at given diffraction lines of stressed 

materials. The conclusion is that to cover the whole range of d-spacings required in 

residual strain measurements at least three monochrom,ator units .,are necess”uy: one 

multi-wafer and two of the bulk crystal type. 

In the configurations examined above it was assumed that the multi-wafer unit 

is made from commercially available Si (100) wafers. This results in a limitation of the 

performance of multi-wafer units. The next section will consider the situation when 

the wafers are allowed to have optimal crystallographic orientations. This allows the 

achievement of maximum benefit from using multi-wafer monochromators. 

# Selecte43 to assure predicted JWHM agree with measured FWHM for existing system. 
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2.5. Recommended Configuration 

To optimize the figure of merit of multi-wafer monochromators we looked for 

wafer orientations around the [lOO], [111] and [llOJ directions. For the reflections 

(400), (511) and (311) the best choice of orientation is a moderate inclination (lo”-15’) 

of the normal to the surface from the [lOO] direction toward the [01 l] direction. The 

best choice for (331) reflection is just the [l lo] wafer orientation. The total unit 

thickness was also optimized. The best average figure of merit was obtained for total 

crystal thickness of 1.25 cm (18 wafers). The basic performance is summarized in 

Table 2.4 and the corresponding figures of merit are given in fig. 2.19. An average 

increase of 50% in figure of merit is obtained in comparison with the configurations 

considered previously for (400), (3 1 1), and (511) reflections, but more than 100% 

increase for (331). 

In computations the horizontal curvature was fuced at the value corresponding 

to best linewidths at 28s = 90”. By making the curvature variable to optimize the 

resolution at every scattering angle one can further improve the figure of merit. The 

dependence of linewidths on detector angle for the options of fixed and variable radius 

of curvature are compared in figs. 2.20-2.23. The figures of merit at variable radius are 

shown in fig. 2.24. Figures of merit increase at high detector angle (small d,) because 

optimal radii decrease there. Consequently, not only the linewidth improves on going 

to the optimal radius, but also the intensity increases. 

Table 2.4 

Flux Fwhm at 
TYPe RH Rv Ay A6 P, 

[d&l [ml [ml 17 [“I 
relative to 2B,=90° 

single Cdeg.1 
(331) 

(311)multi 13.2 7.8 1.75 1.6 3.6 0.61 1.9 0.29 
(400)multi -12 5.0 1.75 2.0 3.6 0.90 3.5 0.23 
(33 1)multi -13.3 4.9 1.75 2.0 3.6 0.61 2.7 0.23 
(511)multi 3.8 6.4 1.75 2.0 3.6 0.33 2.9 0.27 
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By adjusting the horizontal curvature and by choosing the monochromator that 

gives the largest detector angle (below 29s = 110“) for each material, figure of merit 

gains from 3 to 10 can be reached at sample d-spacings from 0.09 to 0.15 run. 

Finally one can conclude that for the single reflection monochromator (SRM) 

option two variable horizontal radius multi-wafer units with wafers : of non-standard 

orientation and with the following characteristics will optimize the new HB-2 neutron 

instrument for mapping stresses in a wide variety of materials and for measurements of 

multiple lines (hr kr 11; h2 k2 12; . . .) of a given sample: 

1. SRM option A - used for (31 l), (400) and (511) reflections: 

- silicon wafer orientation: 12” from [ 1001 toward [Ol 11; 

- wafer thickness: - 0.7 mm; 

- wafer vertical segmentation : - 5 mm; 

- total crystal thickness: - 1.25 cm; 

- remotely adjustable radius of horizontal curvature from 2 m to 14 m; 

- fixed radius of vertical curvature: 1.75 m. 

2. SRM option B - used for (331) reflection: 

- silicon wafers orientation: [ 1 lo]; 

- wafer thickness: - 0.7 mm; 

- wafer vertical segmentation : - 5 mm; 

- total crystal thickness: - 1.25 cm; 

- remotely adjustable radius of horizontal curvature from 5 m to 14 m; 

- fixed radius of vertical curvature: 1.75 m. 

The dimensions of the bending device considered in these estimates are the 

same as those of the existing Si (331) bulk focusing monochromator. The two 

recommended units can be mounted on the same XYv monochromator stage. The 

remotely controlled translation X permits adjusting the working unit to the rotation 

center of the goniometer. The remotely controlled translation Y permits left-right 

centering of the monochromator over the rotation center. The w rotation turns the 

entire monochromator unit to achieve the desired 20~. 
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3. DOUBLE REFLECTION MONOCHROMATOR 

3.1. Double crystal focusing conditions 

Double crystal arrangements are widely used in monochromators for 

synchrotron radiation, but only with flat crystals or sagitahy curved crystals. The first 

analysis of two-bent-crystal Bragg optics came from neutron scattering [ 111. 

Subsequently the analysis was extended to synchrotron radiation [16]. 

For single reflection monochromators the tracing of the trajectories and the 

dispersive properties (the associate wavevectors) can be treated separately. In double 

monochromators only trajectories giving the same wavevector on successive Bragg 

reflections are allowed. For double reflection of high efficiency the phase space 

diagrams of the two bent crystals must be matched. In the general case two matching 

conditions must be satisfied [ 111, but only one condition applies if a point source (or a 

point object) is considered [ 161. 

For a point source located at distance b before the first crystal, the image after 

reflection by the first crystal will be placed at a distance Li: 

(3.1) fh ; fl: = 1 
43 Li 

The definitions for fr, and fi,* were given in section 2.1, relations 2.2a,b. A similar 

relation is valid for the virtual point source placed at the distance Lr-Li before the 

second crystal and giving a second image at a distance LZ after it: 

(3.2) f fi*e r, ZLi +L,=l, 

Lr being the distance between the two crystals. 

Matching conditions are obtained by requiring the orientations of the phase 

space diagrams of both crystals to be identical: 

(3.3) cot8,(1-- Li 1 = -cotq1 -4) b 

* WI' 2f2 

This relation may be brought to the form [16]: 
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(3.3’) Li hBLi =qa-l) a-- 
fl' fi 

where a = - tan 92 / tane1 

Consider the spatial spread of the neutron beam at the point Li. To match the 

correlation between the spatial position and the angular deviation (the acceptance 

diagrams) the following condition must be fulfilled: 

(3.4) f, +fl* =$ 

By combining the relations (3.3’) and (3.4), the basic focal length conditions for an 

extended source non-dispersive* two-crystal configuration are obtained [ 111: 

(3.5a) A’ = 
a4 

2(a - 1) 

(3.5b) f2= h 2(1-a) 

For given crystals and distances between crystals, the focal lengths are fmed. A special 

case is the (+, -) setting with identical crystals, when a=1 and fr*, fi + 00. This is the 

parallel setting for flat crystals, well known to be non-dispersive, 

The antiparallel (+, +) setting of two bent crystals turns out to have a 

remarkable property of allowing strong spatial focusing, named microfocusing 

[ 17,181. For equal d-spacings (a= -1): 

(3.6a) 

(3.6b) 

where br, bz are the asymmetry factors Sin<@ + a )/Sin(ej - x ). The demagnification 

of the lens system in the horizontal plane (ratio between the beam width at sample 

position and at source) is given by the formula: 

* The condition that all neutrons reflected by the first crystal are reflected also by the second cxystal. 
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(3.7) Me 
1 z-x Lo 

b1b2 8-3F 0 

The horizontal demagnification of arrangements with identical crystals may be smaller 

by an order of magnitude than for single reflection arrangements (Me = Lr/Lo). The 

neutron flux is correspondingly higher. The flux gain is associated with a larger 

angular divergence of the beam at the sample, which is finally determined by the 

dimensions of the second crystal and the distance to sample L2. The gain reaches its 

maximum value of 1M when the second crystal is large enough to intercept the 

whole beam from the first crystal 

To have a narrow powder. diffraction line at a scattering angle 28s one has to 

satisfy the condition (2.5). Leting as = - tan&/tar& , the condition (2.5) becomes: 

(3.8) T=2-L =2 

f2 as 

Using the relations (3.6-3.8) one obtains the demagnification as function of as: 

1 2 -- 
Me=3 

462 

With identical crystals in (+,+) setting a value of as close to 2 will ensure strong 

demagnification. The diffraction lines will be narrow around 90” if the take-off angle 

of the crystals is close to 53” [17]. 

The value of a, will determine not only the optimal detector angle but also the 

entire diffractometer geometry: < 

(3.10) b2Lz -2% -I 
r, 4% 

(3.11) 4 r, _ 4(as - 2) 
Lo 2a, -3 

When as=2 the double reflection monochromator acts like a telescope (L&m). 

However, having the source image at the sample position is less important than having 
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narrow diffraction lines at a specified detector angle. For this reason the relation (3.11) 

will not be an imposed constraint in the following. 

Similar relations are available in the general case (a f -1): 

(3.6’) 

2-a+,% 
b2L2 -= LO 

r, b&l 2(1-a)2 -a(l-2a)y 

44 -a- 

(3.7’) =&x Me 
LO 

wl 1 2 2(1-a)2 -a(l-2a)- 
LO 

l+l-ca 
(3.9’) M, = aas 

w2 

(3.10’) 

1-L 
b2L2 2% -= 
r, l-a 

(3.11’) 
1+1-a 

!+(l-L) _ s 
0 a ,+.laa2a 

2aa, 

The optimal value for as in the general case is a.s=l-l/a. By considering the Bragg 

angle of the first crystal (0,) one can define as*=-tan&/tar@ or as*= - axas . The 

optimal value for as* is l-a, which means that larger take-off angles for the fist 

crystal are possible when Ial< 1. 

In the vertical (axial) plane the successive reflections are not affected in the 

first approximation by the Bragg law and the crystals are simple mirrors. At fixed 

distances I-Q, Li, and LZ one relation only between the axial focal lengths &I, fa - see 

relation (2.4) for the definition - must be satisfied: 



(3.12) 

The axial demagnification will be determined by the formula: 

(3.13) 

=2 -- 
M, = Lo 

l+LLLL 
Lo fd 

and if the first crystal is vertically flat the axial demagnification is approximately the 

ratio between L2 and Lo, which is much smaller than unity. 

The flux gain at the sample from vertical focusing is limited by the second 

crystal height. If both crystals are equally high then the second crystal will be fully 

illuminated by the neutron beam only when: 

(3.14) f,i > Lo or far c Li/(2+Li/Lo). 

If (3.14) is satisfied the flux gain produced by vertical focusing will be the same at any 

curvatures satisfying (3.12). 

3.2 Double reflection with identical crystals 

The case of identical bent crystals in double reflection was examined [17]. For 

strain measurements with the Fe (2 11) line the best double reflection monochromator 

was found to be Cu (200) of small mosaic (3’ true), deformed by plastic bending. 

Although such monochromators are still in the development stage, it was this option 

that was taken as basis for double reflection simulations. 
c 

The DAX program was used to compute linewidths and peak intensities 

(relative to the existing single reflection monochromator) versus detector angle, full 

beam intensity, flux and beam size at sample. The distance Li was chosen by taking 

into account the real configuration at the FIB-2 bearnport and k was then calculated 

through relation (3.10). The radii of curvature were selected by numerical 

optimization. Five basic double crystal options considered were: Cu (200) in 
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symmetric reflection; Si (220) in symmetric reflection and with x = 150; Si (311) with 

x = 21”; Si (400) in symmetric reflection. 

The crystal size for Cu (200) was 7.6 cm wide, 12.7 cm high and 2.5 mm thick. 

An effective mosaic of 0.1 degrees was considered in simulations. For silicon the 

multi-wafer options are necessary to achieve the high curvature that is required. To 

obtain decent resolution the second crystal was set to 2.2 mm thick (3 wafers). The 

first unit was assumed to be 10 mm thick (14 wafers). The reason of this difference is 

for the first crystal to have a broader phase space window. For perfect crystals like 

silicon the width of the phase space window is fully determined by the crystal 

thickness, thus a larger thickness is needed to broaden the window. For mosaic crystals 

it is the mosaic contribution that,& usually decisive and increasing the thickness is not 

effective (particularly for Cu) due to the influence of absorption. 

The main results of DAX simulations are summarized in Tables 3.1 and 3.2. 

Table 3.1 contains the basic performances of each of the double reflection 

arrangements examined. The last two columns require some explanations. The first of 

them contains the angular 28s range inside which the instrumental linewidth is smaller 

than 0.5’. The last column contains. the harmonics cont~amination (fraction of neutrons 

having a wavelength half of the wavelength corresponding to the main reflected 

beam). The flux gains and beam sizes are impressive. 

However, a simple evaluation shows that the maximum possible gain in the 

beam divergence solid angle is only 16x for the Cu (200) double reflection 

arrangement relative to the Si (331) single reflection. The larger values in Table 3.1 

are at the expense of broadening the phase space windows, which increases linewidths 

too. Not only are the linewidths at 28s = 90” larger but the linewidth variation is much 

sharper in comparison with single reflection options. To illustrate this point Fig. 3.1 

gives a map of linewidths as a function of take-off angle and sample d-spacing for 

double reflection Cu (200). The optimum radii for a take-off angle of 53” were 

considered in this evaluation. .& is seen thatmeasurements vvjth “a-resolution of 0.359 . I. ._ a” *-rx*iix-ir.;. _ .‘ 
0.40” are possible in a narrow range of d-spacings (indicated by the thick lines 

corresponding to detector angles of SO” and 100”. Changing the take-off angle does not 

help because the flux rapidly decreases on going away from the focusing condition. 

31 



The silicon option is more flexible from this point of view, but the intensity gains are 

not so large. 

Table 3.2 contains the optimum parameters of the double reflection 

arrangements considered. Two possibilities for the vertical curvatures are shown: both 

crystals with the same radius or the first crystal flat and only the second bent. Both 

possibilities give about the same intensity as already noticed in the previous section 

(3.14). 

Table 3.1 

Type 
26 

Beam Flux FWHM 0.5’ Z-nd 
h cross relative at width order 

section to 2es=900 range contami 
Weg.1 Ml [mm] s@&e [deg.] We&l -nation 

( ) [%] 
cu (200) 57.2 1.73 3x5 32 0.31 73-97 10 
cu 200 
cu200 liEi Si220 
Si220 
Si220 l!I!!B Si400 
Si311 

10 
10 
2 
Q 

uv-eu 

1.71 1 4x3 1 24 1 0.31 81-97 5 
AB#cl I c I nr)” ae r\A 

73-97 
69-93 
80-98 

OCPYL) 

75-96 

Table 3.2 

Ll X1 RHI RHZ RVI Rv2 LP 
TYPe 

[ml [deg.] [ml Ml [ml [ml ml 
cu (200) 1.64 0 1 1.75 0.53 0.62 
cu (200) 1.64 0 1 1.75 opo40 0.39 0.62 
Cu(200) 1.80 0 1.4 2.1 0.40 0.40 0.69 
Si(220) 1.64 0 2.5 1.75 
Si(220) 1.80 0 2.3 2.04 opo40 

0.53 0.62 
0.40 0.69 

Si(220) 1.80 15 3.8 2.04 0.40 0.40 0.69 
Si(400) 1.80 0 2.3 2.04 0.40 0.40 0.69 

1.64 21 , Si(311) , , 5 2.7 , 0.40 0.36 , 0.82 
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_. 

From the point of view of design constraints at HB-2 the double reflection 

monochromator with identical crystals would need a special shutter to extract the 

monochromatic beam after the fnst crystal This shutter must be inclined at about 55” 

to the shield wall In these circumstances for ,the single reflection option the distance 

between monochromator and sample stays about 2.9 m and the flux at the sample 

decreases with a factor of about 2.5 from geometrical considerations. For this reason 

this single reflection configuration was not analyzed in the previous chapter. 

3.3 Double reflection with different crystals 

For neutron microfocusing (quasi-telescopic arrangement) with different 

crystals optimum take-off angles, corresponding to the canceling of &, are given by 

the relation (3.9’). For the detector angle 28s = 90”, the necessary take-off angles are 

given in Fig. 3.2 versus the ratio between d-spacings of the two reflections (dr/dz). The 

ratio between b and Li is then given by a simple formula: 

(3.15) 2-a b2L2 - 
r, 2(1- aI2 

and the radii of curvature can be deduced from relations (3.5). The numerical results 

are shown in Fig. 3.3. It is seen that the microfocusing conditions are very restrictive 

and do not allow large take-off angles for the first crystal. 

These restrictions can be overcome by. assuming that the sample can be 

considered point-like for strain measurements, The synchrotron radiation matching 

condition (3.3) can then be used. Ratio bL2/Li becomes then free. The radius of the 

second crystal results from relation (3.8) and the matching radius of the first crystal 

results from the following relation: 

1 f2 f,’ ---- 

(3.16) f,*= =24 
=I 2 l --4(‘-$$ 

a 2 

This relation is independent of the value of as. If the first crystal is thicker than the 

second, its radius of curvature may be different from the value prescribed by the 

relation (3.16). The only problem is that the second crystal must be fully illuminated 
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by the neutron beam. The condition for a full illumination can be written also in a 

general form: 

(3.17) R, >: 24 

=l sin(8, -x1) +Lsin(8, -x2) + sin<@, +x2) 
2 

where Rz is the horizontal radius of curvature for the second crystal. 

The DAX program was used as a first step in computing arrangements with 

two different crystals. A take-off angle of 86.5’ for the first crystal was considered 

with the aim of preserving the single reflection options. The reflections (311), (400), 

(331), (422) and (511) of silicon were examined for the first crystal. The d-spacing of 

the second reflection must be larger than that of the fast reflection. The options 

considered for the second reflection were Cu (200), Si (220) and Si (400). The results 

are summarized in Table 3.3 and 3.4. Flux gains are less than for identical double 

reflections, but instrumental linewidths are comparable with the single reflection 

option. The optimum values of the crystal radii and of the distance between the second 

monochromator and sample are presented in Table 3.4. First crystals are in beam 

condensation setting (Fankuchen) and second crystals are in symmetrical reflection. 

Table 3.3 

I 

Si (311) 
Si (400) 
Si(331) 
Si(331) 
Si(331) 
Si(422) 
Si(422) 
Si(511) 

Beam Flux FWHM 0.5’ 2-nd 
h cross relative at width order 

II section to 2e9=!Joo range contami 
14 [mm] single [deg.1 uw=l -nation 

(331) [%] 
Si(220) 2.24 5x3 a -29 73-107 - 

Cu(200) 1.86 3x6 4 .I5 65-111 23 
Si(220) 1.71 3x3 10 .24 62-104 - 
Cu(200) 1.71 3x7 12 .20 58-108 - 
Si(400) 1.71 5x5 9 .24 65-1.10 - 
Cu(200) 1.52 3xa 16 .31 45-104 IO 
Si(400) 1.52 3x6 14 -25 72-103 3 . 
Si(400) 1.43 3x3 6 -17 68-105 - 

34 



Table 3.4 

x1 RHI RHO RVI Rv2 LP 
I II 

[deg] [ml [ml [ml [ml [ml 
~ Si (311) Si(220) 25.3 4.5 1.8 0.51 0.51 0.66 

Si (400) Cu(200) 
Si(331) Si(220) 
Si(331) Cu(200) 
Si(331) Si(400) 
Si(422) Cu(200) 
Si(422) Si(400) 
Si(511) Si(400) 

30.5 
35.2 
35.2 
15.8 

5.5 
a 

10.7 

2.1 
2.6 
2.4 ! 

4.5 
IO 
7.3 
10 

.G 0.69 0.47 
00 0.68 
00 0.65 
00 0.66 

0.69 
01 0.5 I.‘“*. x”.. ̂ . 

0.70 

t-- 0.75 CIII&. 

To confirm these results and to find the best design solution, phase space 

diagram simulations were used (described in section 2.4). The first take-off angle was 

fixed at 88’ (the basic shutter position). The monochromator location at HB-2 is 

sketched in Fig. 3.4. The distance LO is 20 cm larger than in the single reflection 

option. Note that shutter rotation of 180” around its horizontal axis is needed to 

accommodate this increase (i.e. opening is furthest away from source). Distances Lt, 

and Lz were chosen to maintain the same sample location on changing the wavelength. 

The distance between the axis of the beam produced by the first monochromator unit 

and the goniometer center was taken as 80 cm. A multi-.wafer unit made from [lOO] I.. 

silicon wafers was assumed for the fast crystal, A multi-wafer unit made from [ 1 lo] 

wafers with the Si (331) reflection at 13.3” cutting angle was also considered. The 

second unit was assumed to be of multi-wafer type made of [ 1 lo] or [ 1001 oriented 

wafers. Other design dimensions are listed below: 

- distance from source to first unit: 7.88 m 

- diameter of source: 18 cm 

- opening of in-pile shutter: 10x 10cm 

- first unit dimensions: 16.5 x 15.2 x 1.0 cm 

- opening of the reflected beam shutter: 7.6 x 12.7 cm 

- second unit dimensions: 16.5 x 15.2 x 0.35 cm 

- distance between second unit and sample: 80 cm 
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- slits before and after sample: 2x2 mm 

- distance from sample to PSD: 80 cm 

- PSD spatial resolution: 2mm 

The best results are summarized in Tables 3.5 and 3.6. Table 3.5 contains the 

following parameters: 

- horizontal (Ay) and vertical (As) angular beam divergences at sample position; 

- peak reflectivity P,r and P;tz for each unit; 

- flux gain relative to (331) single reflection; 

- FWHM at 20, = 90’. 

Table 3.6 contains: 

- cutting angles ~1 and ~2 ; 

- optimum~horizontal (RHI , Rm) and vertical (RvI, RVZ) radii for 2@ = 90”; 

- distance Lr between units and La from the second crystal to goniometer center. 

Table 3.5 

Table 3.6 

x2 RHI k-I2 RVI Rv2 

r&ii I [ml I [ml [ml [ml 
L -J-J2 

[ml b-d 
-0 a 5.7 2.24 00 0.81 1.87 I 0.84 
58.84 3.7 8.1 M 0.81 1.64 0.94 
53.59 1 2.4 I 7.6 I co I 0.81 I 1.53 I 0.9m 
69.11 1 5.5 I 8.8 1 Q) 1 0.81 1 1.82 1 0.86 
64.65 1 4.1 8.5 I 00 I 0.81 I 1.74 I 0.89 

The linewidth variation with detector angle 29, is shown in Fig. 3.5 - 3.8. 

Similar to Figs. 2.20-2.23 for single reflection options, configurations are taken with 
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either fixed radius or variable optimal radius. There is .a “rem-a&@? difference 

between the single reflection arrangement compared with the. double, &k&on 

arrangement. With single reflection it was possible to practically conserve linewidths 

in the whole range of scattering angles of interest by optimizing the horizontal 

curvature. Double reflection arrangements show a distinct worsening of linewidths at 

high scattering angles even at optimal radii (derived by numerical optimization of the 

figure of merit). The figure of merit with and without radiis v~~~~~.~ln,i?r,s~~wn~~~,~ig. 

3.9 - 3.10. Without radius variation (Fig. 3.9) the gain in figure of merit is high for 

only a limited range of sample d-spacings. With radius adjustment (Fig. 3.10) the gain 

in the figure of merit lies between 3 and 9 in the whole range of sample d-spacings of 

interest (0.095 - 0.18 nm). 

3.4 Recommended configuration 

A way to improve the performance of the double reflection monochromators is 

to consider adjustable wafer cutting angles, as discussed for single reflection 

configurations. For the second unit with [l lo] wafers symmetrical reflection is 

optimal. For the same unit with [lOO] wafers a small offset of 4 degrees seems to be 

beneficial. 

The first unit with wafer orientation of, about 12’ relative to, [lOO] (the same 

choice as for single reflection) shows minor improvement of figures of merit for the 

(311) and (400) reflections, a small gain for the (5 11) reflection and a significant 

improvement for the (422) reflection only. More important seems to be the choice of 

crystal thickness. First crystal thickness must be large to accommodate a different 

phase space diagram inclination when the two crystals do not match. This occurs at 

detector angles larger that 90” if one tries to reach focusing in scattering, because the 

relation (3.16) prescribes unphysical values for the first crystal curvature radius. A 

value of 2.4 cm for the fust crystal thickness would be optimal, but would require big 

changes in the design mechanics with cost increase at unproven technical feasibility. 

For the second crystal five-wafer units are adequate in the 70-95” detector angle range. 

At higher angles a single wafer is sufficient to obtain a better figure of merit. 
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The basic performance and construction characteristics are given in Tables 3.7 

and 3.8. Linewidths versus detector angle for this arrangement are given in Figs. 3.11 

- 3.14. Figures of merit for fixed optimal radius at 28, = 90” are shown in Fig. 3.15, 

and for variable optimal radius in Fig. 3.16. Gains in figure of merit from 6 to 12 are 

reached in the sample d-spacing range from 0.095 nm to 0.16 nm. The gains are high 

even for samples with intrinsic micro-deformations because increased figures of merit 

come from increase of intensity, not from reduction of instrumental linewidths. 

Table 3.7 

Table 3.8 

Double reflection options increase the divergence solid angle of the neutron 

beam falling onto the sample by a factor of 4 to 7. Because of reflectivity losses the r 
flux gain is less than 2 for the reflections (400), (331) and (5 11). A higher gain is 

possible with the (311) and (422) reflections. The (331) reflection, which needs a 

special unit in the single reflection option, can be replaced with a (422) reflection 

accessible in the same unit that gives the (400), (3 11) and (511) reflections. 

. The best choice for a double reflection monochromator (DRM) configuration 

at the new HB-2 neutron stress-mapping instrument would consist of three multi-wafer 

units with the following characteristics: 
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1. First unit of DRM - used for (3 1 l), (400), (422) and (522) reflections: 

- silicon wafer orientation: 12” from [ 1001 toward [Ol l] direction; 

- wafer thickness: - 0.7 mm; 

- total crystal thickness: > 1.5 cm; 

- remotely adjustable radius of horizontal curvature from.,!. m.,to ,I8 m; 

- flat in the vertical plane. 

2. 

3. 

Second unit of DRM, option A - used for (220) reflection: 

- silicon wafer orientation: [ 1 lo]; 

- wafer thickness: - 0.7 mm; 

- wafer vertical segmentation : - 5 mm; 

- total crystal thickness : -0.35 cm; 

- remotely adjustable radius of horizontal curvature from 1.5 m to, 4 m; 

- fixed radius of vertical curvature:. 0.84” m. _ ~ 

Second unit of DFW, option B - used for (400) reflection: 

- silicon wafer orientation: 4” from [ 1001 toward [Ol l] direction; 

- wafer thickness: - 0.7 mm; 

- wafer vertical segmentation : - 5 mm; 

- total crystal thickness: - 0.35 cm; 

- remotely adjustable radius of horizontal curvature from 1.5 m to 4 m; 

- fixed vertical radius: 0.81 m 

The first unit will be placed inside the main shield. The second crystal units 

can be mounted on the same XYv monochromator stage. The whole stage must have 

the possibility to be translated about 35 cm along the beam reflected by the first crystal 

to maintain the same sample location on changing the wavelength. 

To improve the figure of merit of the double reflection monochromator (DRM) 

in the detector angle range lOO”- 1 10” for samples without microstrain, the second unit 

options can be replaced with one-wafer units (options C and D) of the same kind as 

options A and B. An additional gain with a factor of about 2 can be also reached by 

changing the silicon wafers with germanium wafers in the second unit, option B. 
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4. CONCLUSIONS 

1. For a beam cross section of 16.5 x 15.2 cm at the monochromator location within 

the new HB-2 shielding, the maximum deflection angle of the beam axis (relative 

to the beamport axis) is approximately ZO. The maximum angular acceptance at 

this monochromator position is approximately I0 in both the horizontal and the 

vertical planes. A primary beam shutter opening of 80-l 00 cm2 (width and height 

of 9 to 10 cm) gives an effective transmission for useful neutrons better than 85% 

(60 - 70% overall neutron transmission) in all considered configurations. Reducing 

the opening to 7x7 cm decreases the effective transmission to about 60% (40% 

overall neutron transmission). An opening in the nwnochromator shutter 7.6 cm 

wide and 12.7 cm high is adequate for an efficient extraction of focused beams for 

residual stress studies. For the single reflection option a trapezoidal coarse 

collimator can be placed inside the monochromator shutter opening to reduce the 

background. A fmed take@ angle .of the monochromator of 29)~=88* is 

recommended. A variable take-off angle would give only modest gains in the 

figure of merit, which would not justify the cost and would delay the construction 

of a special rotating shutter in the wall of the new HB-2 main shield. Better gains 

are obtained by adjusting the horizontal curvature for each specimen of interest of 

d-spacing between 0.09 and 0.19 nm. 

2. For the single reflection monochromator (SRM) option, two multi-wafer focusing 

units are adequate to cover a range of 0.09 - 0.19 nm in d-spacings at 20~=88”. 

Both units must have a remotely adjustable radius of horizontal curvature. Afied 

vertical curvature is adequate. Both units should have I8 wafer packets (12.5 mm 

thick). One unit (SRM option A) would use silicon wafers specially cut with 12’ 

offset from the [loo] toward the [Oil] direction. The basic silicon reflections for 

this unit would be (311), (400) and (511), with wavelengths of 0.227, 0.189, and 

0.145 nm, respectively. The other unit (SRM option B) would use silicon wafers of 

[IlO] orientatiun. The basic reflection would be (331) with a wavelength of 0.173 

nm. These two units can be mounted on the same remotely controlled XYv 

monochromator stage. 
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3. Successive Bragg reflections on two matching bent crystals in (+,+) configuration 

can give significant increases of neutron flux at the sample by strong spatial 

focusing. The only solution within the restrictions of HB-2 is a double re,Iect.jon 

configuration with the second crystal placed outside the main shield. A different 

position of the secondary shutter (rotation with 180” around its horizontal axis) is 

necessary to accommodate the diffractometer platform placement. For the double 

reflection monochromator (DRM) option the first multi-wafer unit would be 

placed inside the main shield. This unit would deliver the following wavelengths: 

0.227, 0.189, 0.154 and 0.145 corresponding to (31 l), (400), (422) and (511) 

respectively. The same orientations of the wafers as for SRM option A will be 

adequate, but in the first unit of double reflection monochromators the wafers 

should be vertically flat. A larger total crystal thickness is desirable. The units 

outside the main shield (second unit DRM option A and B) will have wafers of 

[lOO] and [l lo] orientation and packets of 5 wafers only. These two units can be 

mounted on the same remotely controlled XYv monochromator stage, as in the 

case of single reflection options. The stage has to be translated (-35 cm) along the 

reflected beam from the fast unit in order to deliver the secondary reflected beam 

to the center of the sample goniometer. 

4. Four optimal monochromator configurations, with an increasing degree of 

complexity, can be considered in conclusion. All make use of multi-wafer 

monochromator units with differe.nt specifications. The principal features and 

performances are summarized in Table 4.1. 

Research sponsored by the Assistant Secretary for Energy Efficiency and 

Renewable Energy, Office of Transportation Technologies, as part of the High 

Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, 

managed by Lockheed Martin Energy Research Corp. for the U.S. Department of 

Energy under contract number DE-AC05-960R22464. 
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Table 4.1 

Option 
I 

Material I Reflection 

A Si(100) lcm thick, commercial 
Single 

One unit 
B Si(100) 1.2cm thick, special cut (311) 

Single (400) 
Two units (511) 

Si( 110) 1.2cm thick, special cut (331) 
C Si( 100) 2.4cm thick, special cut (311)/(220) 

Double Si( 110) 3.5mm thick, special cut (400)/(220) 
Si(100) 3.5mm thick, (422)/(400) 

3 units commercial (5 11)/(400) 
D Si( 100) 2.4cm thick, special cut AsC 

Double Si( 110) 3.5mm thick, special cut 
Ge(100) 3.5mm thick, 

3 units commercial 

Figure of 
merit* 

Average 
gain** 

0.8/O-5/0.2 - 
4.0/2-l/0.9 
2.7/l-5/0.7 
2.1/1.3/0.6 2.0 
5.7/2.9/1.2 relative 
3.4/2.0/0.9 to A 
4.5/2.3/o-9 
6.813.911.8 2.4 
7.3/4-l/1.8 relative 
6.3/3.6/1.8 to B 
3.2/1.7/0.8 

X2 for 
(422)/(400) relive 

(5 1 la$OO) 
to B 

* The average relative figure of merit for three values of the microstrain (0, 0.002, 

0.004) are given. The figure of merit of the present Si (331) bulk crystal unit on 

measuring the (211) line of a-iron without microstrain was taken as reference (figure 

of merit = 1). The averaging d-spacing range was 0.09 - 0.19 nm. 

**The average was performed considering the best monochromator choice for every d- 

spacing in the range 0.09 - 0.19 nm and ah values corresponding for three values of 

the microstrain (0,0.002,0.004). 

New 
design 

No 

Yes 

Yes 

Yes 

c 
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Fig. 1.1 Monte Carlo simulation of peak position accuracy with a constant background. 
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Extraction efficiency without slits J . . . . . . VY. slits 
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l/R, [ rn-’ ] 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

l/R, [ rn-’ ] 

Fig.l.5. Extraction efficiency map - size of the source (18 cm diameter) taking into 
account. 

4. Extraction efficiency with shutter limitations cy with shutter limitations 

0.05 V.“” 0.10 “.IU v. I3 0.15 0.20 0.20 0.25 0.25 0.30 0.30 0.35 0.35 0.40 0.40 

l/R, [ m-’ ] 

Fig. 1.6. Extraction efficiency map - primary beam shutter opening: 10 x 10 cm; 
experiment shutter opening: 7.6 x 12.7 cm. 
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10 cm; experiment shutter opening: 7.6 x 12.7 cm. 
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Fig. 1.8. Extraction efficiency versus cutting angle - primary beam shutter horizontal 
opening dependence. 
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Fig. 1.9. Extraction efficiency versus monochromator vertical curvature radius - without 
limitations in the secondary beam. 
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Fig. 2.5 

Multi-wafer (1 cm thick) to bulk (breaking limit), Si(400), L, = 212 cm 
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Multi-wafer (1 cm thick) to bulk (breaking limit), Si(331), L, = 212 cm 
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Multi-wafer (1 cm thick) to bulk (breaking limit), Si(511), L, = 212 cm 
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Fig. 2.13 

Si(331), RH = 10.7 m 

Si(311), RH = 12.8 m 
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Si(311) multi-wafer, xM = 1.3.2” 
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Si(331) multi-wafer, xu = -13.3” 
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Diffractometer figure of merit for different micnxtrajn spread ( 28, = 70’ - 110’) 
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Fig. 3.1 

Double identical crystals Cu(200) 
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Si(31 i)/Si(220) double reflection monochromator, = 25.2” 
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Si(51 l)/Si(400) double reflection monochromator, hf = 15.8” 
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Optimal radius at 2e, = 90’ 

Diffractometer figure of merit for different microstrain spread ( 2eS = 70” - 1 lo” ) 

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

d, [ lQ’nm] 

Fig. 3.9 



Optimal radius for each scatten’ng angle 

Diffractometer figure of merit for different microstrain spread ( 20, = 70” - 110’) 
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Si(4OO)/Si(220) double reflection, first unit: 35 wafers, xu, = -12” 
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Optimal radius at 28, = 90” 

Diffractometer figure of merit for different microstrain spread ( 2e, = 70” - 110” ) 
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Optimal radius for each scattering angle 
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