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IMPACT OF COMMUNICATION PROTOCOL ON PERFORMANCE 

Patrick H. Worley 

We use the PSTSWM compact application benchmark code to characterize the per- 

formance behavior of interprocessor communication on the SGI/Cray Research Origin 

2000 and T3E-900. We measure 

1. single processor performance, 

2. point-to-point communication performance, 

3. performance variation as a function of communication protocols and transport layer 

for collective communication routines, and 

4. performance sensitivity of full application code to choice of parallel implementation. 

We also compare and contrast these results with similar results for the previous gener- 

ation of paralIe1 platforms, evaluating how the relative importance of communication 

performance has changed. 
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1. Introduction 

Communication costs often represent a significant fraction of the run time of parallel 

application codes, and the choice of communication protocol is an important step in 

porting and tuning codes. Here we refer to communication protocol as any aspect of 

the interprocessor communication logic that does not change the basic functionality of 

the parallel algorithms. Low-level examples include the transport layer (e.g., MPI or 

PVM) and the message-passing commands (MPIBSEND, MPI-SEND, MPLISEND, 

etc.). Higher-level examples include the number, order, and size of messages sent in 

some collective or extended operation, as long as the final locations of the results are 

fixed, or code restructuring to overlap communication with computation. Differences 

in parallel algorithms that affect problem decomposition, computational complexity, or 

load balance are not communication protocol issues. 

Although general techniques exist for optimizing interprocessor communication, the 

importance of optimization and efficacy of the different techniques are often platform 

specific. For example, in previous work we examined the effect of different communica- 

tion protocols on performance for such platforms as the Intel Paragon, IBM SPZ, and 

Cray Research T3D [4],[14]. Although these machines are all c‘classic” distributed- 

memory MIMD parallel systems, their performance characteristics differ significantly, 

as do their optimal tuning techniques and parameters. In this paper we examine 

communication performance sensitivities of the SGI/Cray Research Origin 2000 and 

T3E-900 systems. We also compare and contrast these results with similar results for 

the older platforms, evaluating how the performance characteristics of interprocessor 

communication have changed. 

A typical approach to evaluating interprocessor communication and communica- 

tion libraries is to measure the performance of individual commands in isolation or in 

small kernels representing common communication functions [2], [7]. For example, this 

approach has been used in [9] and [8] to evaluate communication performance on the 

Origin 2000 and the T3E. Although these types of experiments are an important step 

in an evaluation, the communication protocols and the controlled measurement envi- 

ronment used in the experiments may not be typical of how the commands are used in 

practice, making it difficult for an application developer to interpret the results. The 

“low-level” measurements are also not sufficient for evaluating many of the optimization 



techniques, for example, latency hiding or overlapping communication and computa- 

tion. The performance of full application codes can also be used to report performance, 

but the protocols used in these are typically fixed, and the sensitivities are not easily 

identified. To deal with these issues, benchmark suites that include low-level measure- 

ment codes, kernel codes, and compact application codes can be used [1],[6],[7],[12]. But 

the linkages between the different levels of measurement are often difficult to establish, 

primarily because the measurements specified in the benchmark suite are not focused 

on any particular performance question. Instead, large data sets are generated, often 

requiring significant computational resources, that hopefully are sufficient to address 

the desired performance questions. How to use the data to address such questions is 

left to the user. 

To help assess the performance impact of tuning interprocessor communication 

protocols, we use an integrated suite of tests that are derived from or motivated by 

the Parallel Spectral Transform Shallow Water Model (PSTSWM) parallel application 

code [15], [16]. PSTSWM was developed to evaluate strategies for parallelizing spec- 

tral global atmospheric circulation models [4], [5], and has imbedded a large number of 

parallel algorithm options. Among these options are numerous choices for the commu- 

nication protocols used to implement the different parallel algorithms and numerous 

choices of message-passing layer. We use PSTSWM to examine 

1. single processor performance, 

2. peak achievable point-to-point communication performance, 

3. performance variation as a function of communication protocols and transport layer 

for parallel fast Fourier transforms (FFT), transpose, and global vector sum algo- 

rithms, 

4. performance of vendor-supplied collective communication routines, and 

5. performance sensitivity of full application code to choice of parallel implementation 

(including both choice of parallel algorithm and choice of communication protocol) 

using both the MPI [lo] and SHMEM libraries to implement interprocessor commu- 

nication. The performance of PSTSWM is sensitive to communication performance, 

both point-to-point and collective, and both local and distant. Thus, while the results 
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of this study necessarily reflect the peculiarities of the PSTSWM application code, 

the overall conclusions as to communication performance sensitivities should be more 

generally applicable. 

2. PSTSWM 

The PSTSWM is a message-passing parallel benchmark code and parallel algorithm 

testbed that solves the nonlinear shallow water equations on a rotating sphere using 

the spectral transform method. PSTSWM was developed by the author and by I. 

T. Foster at Argonne National Laboratory from the serial code STSWM, written by 

J. J. Hack and R. Jakob of the National Center for Atmospheric Research (NCAR). 

PSTSWM was used to evaluate parallel algorithms for the spectral transform method 

as it is used in global atmospheric circulation models. It is also a “compact application” 

in the Parallel Kernels and Benchmarks Suite (ParkBench) [7]. 

PSTSWM is a spectral timestepping code. During each timestep of the model simu- 

lation, the state variables of the problem are transformed between the physical domain, 

where most of the physical forces are calculated, and the spectral domain, where the 

terms of the differential equations are evaluated. The physical domain is a tensor 

product longitude-latitude-vertical grid, and transforming from physical coordinates to 

spectral coordinates involves performing a real FFT for each line of constant latitude, 

followed by integration over latitude using Gaussian quadrature, approximating the 

Legendre transform (LT). The inverse transform involves evaluating sums of spectral 

coefficients (“inverse LT”) and inverse real FFTs. 

The parallel algorithms in PSTSWM are based on decompositions of the physi- 

cal and spectral computational domains over a logical two-dimensional processor mesh 

of size PX x PY. For the FFT and LT, there are two general families of parallel algo- 

rithms: distributed algorithms, using a fixed data decomposition and computing results 

where they are assigned, and transpose algorithms, remapping the domains to allow 

the transforms to be calculated serially. 

The supported domain, decompositions all have the property that FFTs in different 

processor rows are independent. Each row of PX processors collaborates in computing 

a “block” of FFTs, and all interprocessor communication for a given FFT is restricted 

to a given processor row. Similarly, the LTs in different processor columns are inde- 
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pendent. Each column of PY processors collaborates in computing a block of LTs, and 

all interprocessor communication for a given LT is restricted to a given processor col- 

umn. It is important to keep this in mind in the later discussion of the communication 

patterns for the different parallel algorithms. 

Parallel performance of PSTSWM is determined by 

l communication costs in the parallel FFT and LT algorithms, 

l copy costs in the parallel FFT and LT algorithms, 

l computation rate, and 

l load balance. 

As is described later, our choices of parallel algorithms and domain decompositions used 

in the experiments minimize load imbalance, and the performance variation between the 

different parallel algorithms is primarily attributable to differences in communication 

costs and related issues (like copy costs). 

We have found PSTSWM to have many characteristics that make it useful for per- 

formance studies. First of all, it is easy to use. It was designed for these types of studies, 

and we have previously developed numerous scripts and other tools for running and 

analyzing experiments. PSTSWM also makes interesting and varied demands on the 

communication subsystem, both in terms of communication protocol and communica- 

tion patterns. Finally, PSTSWM is still relevant to an important application area. It is 

an excellent predictor of performance of parallel spectral atmospheric models, and op- 

timized algortihms developed in PSTSWM can be ported easily to the NCAR spectral 

atmosphericmodels. See http://www.epm.ornl.gov/chammp/pstswm/index,html for 

a partial bibliography of other performance studies using PSTSWM. 

3. Communication Protocols 

Performance-critical interprocessor communication in PSTSWM is implemented using 

two basic types of commands: SWAP and SENDRECV. The message-passing transport 

layer used to implement these commands is specified at compile time, while the rest of 

the communication protocols are specified at run time. For the Origin 2000 and the 

T3E-900, we use either MPI or SHMEM. 
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The options in PSTSWM for implementing SWAP using MPI are listed in Ta- 

ble 1. (Analogous options exist for SENDRECV.) Two general classes of communi- 

cation protocols are available: unordered (ping-ping) and ordered (ping-pong), where . i, 
the unordered protocols attempt to exploit bidirectional bandwidth and the ordered 

explicitly avoid it. Note that the examples have been simplified (to save space) and 

do not accurately represent the MPI implementations. For example, handshaking mes- 

sages required for correct use of the ready send command have been omitted. These 

protocols are described in more detail in [16]. 

Table 1. MPI SWAP protocols (simplified) 

Unordered Ordered 

(0,O): simple 
Processors 1 and 2 
MPIBSEND 
MPLRECV 

(0,l): nonblocking send 
Processors 1 and 2 
MPIlSEND 
MPIRECV 

(0,2): nonblocking receive 
Processors 1 and 2 
MPLIRECV 
MPISEND . 

(0,3): nonblocking send & receive 
Processors 1 and 2 
MPIlRECV 
MPUSEND 

(0,4): ready send 
Processors 1 and 2 
MPIJRECV 
MPIJLSEND 

(0,5): nonblocking ready send 
Processors 1 and 2 
MPIJRECV 
MPIJRSEND 

(0,6): native sendrecv 
Processors 1 and 2 
MPISENDRECV 

(LO): 

W): 

W): 

(173): 

(174): 

(L5): 

(194): 

simple 
Processor 1 Processor 2 
MPISEND MPIRECV 
MPIllECV MPISEND 

nonblocking send 
Processor 1 Processor 2 
MPIJSEND MPLRECV 
MPLRECV MPISEND 

nonblocking receive 
Processor 1 Processor 2 
MPIXLECV MPLRECV 
MPISEND MPISEND 

nonblocking send & receive 
Process& 1 Processor 2 
MPIJRECV MPILRECV 
MPIlSEND MPISEND 

ready send 
Processor 1 Processor 2 
MPLIRECV MPIRECV 
MPIXSEND MPLRSEND 

nonblocking ready send 
,Processor 1 Processor 2 
MPIJRECV MPLRECV 
MPIJRSEND MPI+SEND 

synchronous 
Processor 1 Processor 2 
- MPIRECV 
MPISEND - 
- MPISEND 
MPLRECV - 
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For a single SWAP request, we would expect MPISENDRECV to be the most 

efficient implementation. We examine the other options for three reasons. 

1. In some previous studies on other platforms, MPI-SENDRECV was not the optimal 

implementation for SWAP or SENDRECV. 

2. Many of the other message-passing systems do not have an equivalent to MPISENDRECV, 

although they do have equivalents to the other protocol options. Including these 

options provides for a consistent testing methodology. 

3. Techniques for overlapping communication with computation or for hiding latency 

require that we “expand” the SWAP command, posting some requests early (send 

or receive) and delaying other requests as long as possible. We can also combine 

these components for multiple SWAPS, allowing us to increase the granularity of 

the communication. The non-MPISENDRECV protocols are used as the basis for 

these expansions and reorganizations. 

However, we refer to the (0,6) (MPI-SENDRECV) protocol as the generic or default 

MPI communication protocol, as it is what we would expect to be optimal knowing 

nothing else about the platform. 

There are many other MPI communication commands that can be used to im- 

plement SWAP and SENDRECV. Our choices are primarily historical, reflecting the 

capabilities of the NX [ll] communication library more than MPI. However, little is 

actually being ignored. The communication patterns, message sizes, and buffer ad- 

dresses vary throughout the code, and the MPI persistent communication requests are 

not appropriate for this code. The MPI synchronous commands are also unlikely to 

be performance enhancers. Generally, relaxing the order requirements specified by the 

communication routines is the most effective way of improving communcation perfor- 

mance in situations when MPISENDRECV is not the optimal protocol. 

The SHMEM protocols are not as straightforward. SHMEM provides the ability to 

write directly into or read directly from another processor’s address space, using the 

commands put and get, respectively. For PSTSWM, we implement SWAP using the 

protocols described in Table 2. 

There are also analogous ordered protocols: (l,l), (1,2), and (1,6). Although the 

SHMEM put and get commands are themselves “blocking,” we refer to these SWAP 
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Table 2. Unordered SHMEM SWAP protocols (simplified) 

(0,l): nonblocking send 
put address of outgoing message on the other processor 
wait for address of incoming message 
get incoming message from’the other processor 

(0,2): nonblocking receive 
put address where to ‘put incoming message on the other processor 
wait for address of where to put outgoing message 
put outgoing message on the other processor 

implementations as nonblocking. Once processor 1 has put the address of the buffer 

on processor 2, processor 1 does not need to wait for processor 2 to complete the 

SWAP before doing something else. Processor 1 must simply check that the SWAP 

has completed before (re)using the message buffers, as is characteristic of nonblocking 

communication. As with the descriptions of the MPI options, the descriptions of the 

SHMEM protocols have been simplified. 

Unlike the MPI implementations, there is no obvious default SHMEM protocol. On 

the T3D, put is twice as fast as get. On the T3E, get’is somewhat faster than put. 

For the purposes of this study, we (arbitrarily) choose (0,l) to be the default SHMEM 

protocol. 

Until MPI-2, and its one-sided communication primitives, become more common- 

place, SHMEM functionality will not be generally available on non-SGI/Cray platforms. 

For this reason we will use the performance of the MPI (0,6) protocol as the baseline 

upon which to compare the performance improvements possible from optimizing the 

communication protocols. We will also compare performance when using the optimal 

MPI protocol to that when using the optimal SHMEM protocol as an indicator of what 

is being lost by using MPI instead of a lower-level transport layer. 

4. Platforms 

Although we focus on the Origin 2000 and T3E-900 in these studies, we also include 

some measureqents from all $.t$e platforms listed in.T&iF, 3. ,--The platforms are listed . . . . 

by the approximate date of introduction of the architecture. L’. .,_..” 
The SGI Origin 2000, henceforth referred to simply as the Origin, is a distributed 
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shared memory (DSM) parallel system made up of “nodes” consisting of two proces- 

sors sharing a common memory. Nodes are interconnected via a high-performance, 

highly connected, but still nonuniform access, network. Thus, although all memory is 

globally accessible, access time varies with the network distance between the memory 

and accessing processor. The Origin supports traditional shared memory programming 

models, but current experience indicates that the “programming discipline” natural to 

message-passing is important for performance, and message-passing is a reasonable ap- 

proach to using the machine. For these experiments we used version 6.5 of the IRIX 

operating system, MPI and SHMEM from version 1.2.0.1 of the SGI Message Passing 

Toolkit, and the MipsPro 7.20 Fortran compiler with compilier options -03 -64. 

The T3E900, henceforth referred to as the T3E, is the second-generation dis- 

tributed memory parallel system designed by Cray Research. Each node consists of a 

single processor/memory pair interconnected via a high-performance, three-dimensional 

bidirectional torus network. Hardware support exists for accessing remote memory di- 

rectly, but experience has shown that message-passing is still the best programming 

paradigm to use if high performance is required. For these experiments we used version 

2.0.2.28 of the UNICOS/mk operating system, MPI and SHMEM from version 1.2.0.2 

of the Message Passing Toolkit, and the Cray CF90 version 3.0.2.1 Fortran compiler 

with compilier options -dp -0scalar3. Other details about the Origin and the T3E used 

in these experiments are described in Table 3. 

Performance metrics are rarely static over time, so please note the date that data 

were collected and the system specifics before extrapolating performance to current 

machines. In particular, the Origin 2000 system used at Los Alamos National Lab- 

oratory is part of a research effort to build a large parallel system from individual 

commerical-scale component systems, and performance may not reflect that at a more 

production-oriented site. The variability in performance is still interesting and impor- 

tant data. 

As is shown in the section describing serial performance, an important performance 

enhancer is optimized math libraries. For PSTSWM, the most important routines are 

real and complex FFTs for multiple vectors (block transforms). The vectors being 

transformed are relatively short, but many independent transforms are needed. Thus, 

nonblock FFT routines are not useful, often being slower than simple Fortran rou- 
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Table 3. Parallel platforms 

Paragon: Intel Paragon XP/S 150 MP at Oak.Ridge National Laboratory. This machine 
has 1024 MP nodes (3 50-MHz iPSC/860 processors per node) in a 16x64 grid inter- 
connect. Only one processor per node was used for computation. The OSF operating 
system, NX and MPI message-passing libraries, and Kuck and Associates (KAI) math 
routines were used. Some measurements were also taken using the SUNMOS operating 
system. OSF measurements were taken in January 1998. SUNMOS measurements were 
taken earlier. 

T3D: CR1 T3D at Cray Research in Eagen, Minn.. This machine had 128 150-MHz 
DEC Alpha EV4 processors. SHMEM and CRI/EPCC MPI message-passing libraries 
were used. No math libraries were available. Measurements were taken in August 1996. 

SP2/66: IBM SP2 at NASA Ames Research Center:,~, ,l\l”,, This machine had 160 RS6000/590 .I-.. .^ -_. a;..**. ~ -1. “.__ / 
nodes (“wide,” 66.7 MHz POWER2). MPL and MPI message-passmg hbrariei”%d ESSL 
math routines were used. Measurements were taken in August 1996. 

SPP-1200: Convex SPP-1200 at the National Center for Supercomputer Applications. ..I , /. ,_ ~I _. , _.r,^, 
This machine has 64 12O:MHz HP PA-RISC 7200 processors (8 Hypernodes). The MPI _ 
message-passing library was used. No m&i libraries were ‘available. Measurements were 
taken in September 1996. 

T3E900: SGI/CR T3E-900 at the National Energy Research Scientific.C,omputing Cen- 
ter. This machine has 532 450-MHz DEC Alpha EV5 RISC processors. SHMEM and 
CRI/EPCC MPI message-passing libraries and LIBSCI math routines were used. Mea- 
surements were taken in May 1998. 

SPP-2000: HP/CONVEX SPP-2000 at the Nati,onal Center for Supercomputer Appli- 
cations. This machine has 64 180-MHz HP PA-RISC 8000 processors (4 Hypernodes). 
The MPI message-passing library and VECLIB math routines were used. Measurements 
were taken in April 1998. 

PII/266: Intel PII- cluster at Oak Ridge National Laboratory. This machine has 10 
266-MHz dual Pentium II nodes. Portland Group f77 compilers were used. Only serial 
measurements were taken for this report. Measurements were taken in February 1998. 

Origin/l95: SGI/CR Origin 2000 at Los Alamos National Laboratory. This machine has 
128 195-MHz MIPS RlOOOO processors. SHMEM and MPI message-passing libraries and 
SCSL math routines were used. Measurements were t&ken in May 1998. 
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tines that do block the transforms. The description for each system indicates whether 

optimized math libraries with the needed capabilities were available at the time the 

performance data were collected. 

5. Serial Performance 

To determine parallel scalability (and the effect of communication costs on perfor- 

mance), it is important to establish a serial baseline. The goal of the study described 

in this section was to determine the “peak achieveable” serial performance that would 

be attained in long (production) simulations. 

PSTSWM computes the solution by timestepping, advancing the approximation to 

a new time level (in simulation time) by using the approximations at the two previous 

time levels. In the following, we will refer to the process of advancing the approximation 

to a new time level as a step. 

The computational complexity and code executed for a step in PSTSWM are iden- 

tical for all steps, and all steps “should” have the same execution time. The code 

was run multiple times for a given problem size, and the fastest time was used. We 

also measured the minimum and maximum execution times for individual steps for a 

given run, and this information was used to determine whether extraneous effects (rare 

system interrupts or other users) contaminated the timing unacceptably. 

To better approximate the performance achieved in long simulations when timing 

only a relatively short run, we calculated one step, then reinitialized, before beginning 

timing. This guaranteed that the code and data memory were all “touched” before 

timing began, eliminating some transient caching effects. It also eliminated the time 

for loading and initializing the program. 

The results (in Fig. 1 and Table 4) are presented in terms of MFlop/second rates for 

one processor runs for a number of different problem sizes. The MFlop rate was approx- 

imated using the floating point operation count returned by the hardware performance 

monitor for a single processor run on a Cray C90. Multiple runs were performed with 

differing compiler optimization options, and we used the minimum number of float- 

ing point operations measured. The number of steps computed were also varied in 

the measurements, so that operations corresponding to initialization and other startup 

overhead could be removed, and the operation counts used correspond to the timings. 
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This MFlop rate metric is not the actual MFlop rate on any of the given platforms. But 

the ratings are consistent between problem sizes and across platforms and are easier to 

use for comparisons than the raw timings. 

We used the standard benchmark problem for the shallow water equations, global 

steady-state nonlinear zonal geostrophic flow [13], and three problem size classes: T42, 

T85, and T170, characterized by the following computational grids and complexity. 

physical grid Fourier grid spectral coefficients flops per timestep 

T42 64x 128 64x64 946 4129859 

T85 128x256 128x 128 3741 24235477 

T170 256 x512 256x256 14706 153014243 

The problem size also has a vertical, component. For example, T42L16 is a T42 

horizontal grid with 16 vertical levels. The complexity of solving the problem is linear 

in the number of vertical levels. 

In all experiments, a 64bit precision floating point computation was used. Timings 

were taken for 241 and 481 steps for the T42 problem sizes and for 49 and 97 steps for 

the T85 and T170 problem sizes. 

The plots in Fig. 1 describe the best results for each platform, using math library 

routines when available. Note that the x-axis does not use a uniform coordinate system. 

Table 4 compares performance with and without math routines,for those platforms for 

which this was an option. 

Table 4. Serial MFlop/second rates with (m) and without math libraries 

T42Ll T42L16 T85Ll T85L16 T170Ll 
8.9 8.9 9.1 

” “’ > . . . .‘ . Paragon 
Paragon (m) 13.9 13.9 13.1 
T3E-900 95.2 78.6 100.2 81.2 107.6 

These performance results are typical of what we have observed for spectral atmo- 

spheric models, especially those with a “vector” heritage. The C90 hardware perfor- 
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Figure 1. Serial MFlop/second rates. 

12 



mance monitor indicated that the ratio of floating point operations to floating point 

loads is only 1.3, so there is relatively little reuse of operands in the code. 

From these data it is clear that the (serial) performance of the processors used 

in massively parallel processor systems (MPP) has generally improved over the past 

few years and that optimized math libraries are important performance enhancers. 

Also note that some effects of the memory hierarchy on performance can be observed 

from the variation in the MFlop/second rate as the problem size varies. This is im- 

portant in understanding the performance of the parallel runs. For example, for the 

transpose-based parallel algorithms, increasing the number of processors typically in- 

volves a further decomposition of the vertical dimension, resulting in fewer vertioal 

levels assigned to each processor. In this situation, we would expect the computational 

rate to increase with increasing numbers of processors. 

6. Point-to-Point Communication Performance 

Communication overhead is best measured in the context of the full code, but it is 

useful to establish a performance baseline by determining the peak achieveable point-to- 

point interprocessor communicatio,n performance, analogous to the serial computation 

baseline described previously. To characterize the basic communication capabilities 

in terms relevant to PSTSWM, we used the PSTSWM SWAP command. Using the 

SWAP commands adds one or two extra subroutine calls to the overhead of calling 

the underlying transport layer, and multiple “native” commands may be required to 

implement the SWAP semantics. Thus the measurements will not necessarily agree 

with the measurements reported by other researchers, but they should be comparable. 

More importantly, our measurements correspond exactly to the basic interprocessor 

communication primitives in PSTSWM and should be consistent and fair across the 

different platforms. 

PSTSWM performance is more sensitive to bandwidth than to latency, and the pri- 

mary focus of these experiments was on determining the achievable bandwidth when 

exchanging moderate- to large-size messages. To achieve this, we measured the time 

required to exchange 262,144 64-bit floating point numbers between two neighbor- 

ing processors. The experiments varied the packet size/number of messages used to 

exchange the informationand the- protocol used for the exchange (using the SWAP 

13 



protocols described in Sect. 3). The smallest message sent was 2 KB (256 REAL*8 

values), and the largest was 2 MB. In the results that follow, we refer to these as the 

ZA4” experiments. For completeness sake, we also measured the time to swap 1024 and 

16,384 64-bit values, using message sizes ranging from 8 B to 8 KBs and from 128 B 

to.128 KB, respectively. We refer to these as the 8KB and 128KB experiments. 

By varying the number of messages and message size, but leaving the total vol- 

ume fixed, we can easily observe both the constant overhead in sending and receiving 

messages (looking at differences between measurements) and the achieved bandwidth. 

If communication performance satisfied a (latency, bandwidth) linear model [3], these 

parameters would be determined exactly, but the effects of changes in protocol, con- 

tention for shared resources, and the memory hierarchy make the observed parameters 

functions of the message packet size (and the state of the system). Spot estimates of 

the parameters are still of interest, and the minimum timing can be used to calculate 

the maximum achieved bandwidth for a given experiment. 

These experiments also have the practical advantage of not requiring the measure- 

ment of either very small or very large execution times. For the larger message counts, 

the experiments are similar to the typical measurements of communication cost using 

repeated sends and receives. Note however that they move linearly through memory, 

with each send and receive accessing unique memory locations. For the smaller mes- 

sage counts, the larger overhead of the first call (instruction cache miss) becomes more 

noticeable, but the smaller message counts involve the largest messages, so the data 

movement itself should dominate the cost. Some intrinsic interest also exists in deter- 

mining whether it is better to explicitly send a large message in packets, or whether the 

message-passing transport layer takes care of such optimization issues automatically. 

Table 5 contains the maximum observed bandwidth and typical SWAP overhead 

(“latency”) for the corresponding communication protocol. (Note that this protocol 

does not necessarily have the smallest latency.) Figure 2 is a graphical representation 

of the bandwidth data. Figure 3 shows details for the 2MB experiments for the optimal 

and default protocols for the Origin and T3E platforms. 

The following general observations on communication performance on the T3E and 

the Origin can be drawn from the summary data: 

l The T3E and the Origin demonstrate significant performance improvement over 
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Table 5. Peak observed bandwidth (megabytes/second) and latency (mi- 
croseconds) for optimal protocol 

Paragon 
: MPI 
: NX 
: SUNMOS 

T3D 
: SHMEM 

SP2 
: MPI 

SPP-1200 
: MPI 

T3E900 
: MPI 
: SHMEM 

SPP-2000 
: MPI 

Origin/l95 
: MPI 
: SHMEM 

Paragon 
: MPI 
: NX 
: SUNMOS 

T3D 
: SHMEM 

SP2 
: MPI 

SPP-1200 
: MPI 

T3E-900 
: MPI 
. SHMEM 

SPP-2000 
: MPI 

Origin/l95 
: MPI 
: SHMEM 

2MB 
BW lat. prot. 

73 82 (0,6) 
76 32 CO,31 
293 63 (0>3) 

183 19 W) 

96 136 (0,4) 

45 104 (0,4) 

286 30 u42) 
543 7 (OJ) 

654 39 KV3) 

142 39 (OJ) 
287 15 W) 

2MB 
BW lat. prot. 

118 75 PJo 
118 50 W) 
154 35 w 

126 12 OS9 

71 74 (1J) 

29 27 (1,3) 

163 29 (176) 
336 9 (W 

541 ‘20 tw 

126 33 (L5) 
166 8 (1,1) 

Unordered 
128KB 

BW lat. prot. 

70 136 (0,3) 
71 83 (073) 
- - - 

- - - 

- - - 

245 24 Km 
494 7 641) 

629 15 W) 

128 29 W 
222 14 W) 

Ordered 
128KB 

BW lat. prot. 

107 105 (1,3) 
114 62 (170) 
- - - 

- - - 

- - - 

- - - 

134 20 (LO) 
340 5 w 

547 9 (LO) 

98 17 (L3) 
140 8 w 

8KB 
BW lat. prot. 

48 139 (0,3) 
57 74 (0,3) 
- - - 

- - - 

- - - 

- - - 

66 
258 

145 23 642) 

57 30 (OJ) 
114 12 w4 

8KB 
BW lat. prot. 

52 82 (L’J> 
75 52 (LO) 
- - - 

- - - 

- - - 

- - - 

47 21 0,0) 
210 5 W) 

158 5 W) 

40 17 (LO) 
71 10 (1,2) 
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Figure 2. Peak observed bandwidth (megabytes/second). 

previous generation MPPs of like architecture. (Note that the SPP-2000 perfor- 

mance is better than both, for these particular tests.) 

l SHMEM achieves considerably higher bandwidth and lower latency than MPI, 

but MPI performance is still an improvement over what was achieveable on earlier 

systems. 

l Significant bidirectional bandwidth is possible on the T3E using either MPI or 

SHMEM. On the Origin, MPI does not support bidirectional communication, 

although SHMEM does. 

l Looking just at the ratio of serial computation and communication rates described 

here and in the previous section, the Origin is nearly as sensitive to communica- 

tion costs as the most sensitive of the previous generation machines, the SP2/66. 
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By the same metric, the T3E is more sensitive to communicati,on cost than its 

predecessor, the T3D, but not by a large margin. 

Space considerations prevent us from presenting the detailed timing data for all of 

the different communication protocols, but from these data we conclude the following. 

l Latency hiding techniques are not effective on the T3E. 

l Latency hiding techniques are effective on the Origin when using SHMEM but 

not when using MPI. 

l The best performance using MPISENDRECV is near the MPI optimal for both 

the Origin and T3E. On the T3E this is somewhat misleading as the optimal 

MPISENDRECV performance requires that the message be manually broken 

into packets. 
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On the T3E, the achievable bandwidth shows little sensitivity to the communication 

protocol when using MPI, and generally the simple protocols are slightly better. On the 

Origin, MPI performance is somewhat more sensitive to the communication protocol 

but the communication protocol is still not too important. This is a significant differ- 

ence from earlier results on the Paragon and the SP2, but is similar to the T3D results, 

and appears to reflect the SGI/CR implementation of MPI. When using SHMEM, the 

variability is higher (for both systems), but the get-based protocols are optimal or near 

optimal. 

7. Parallel Algorithm Sensitivities 

Some indication of the impact of communication protocol on performance can be seen 

from the point-to-point communication tests, but it is difficult to use these results to 

predict the effect on application code performance. Here we examine this issue in more 

detail, looking at the effect on the performance of specific parallel algorithm options in 

PSTSWM. 

As described previously, PSTSWM parallel performance is primarily a function of 

the performance of the parallel FFT and of the parallel LT, and these have both dis- 

tributed and transpose-based implementations. The transpose-based algorithms use 

communication within either rows (for the FFT) or columns (for the LT) of the pro- 

cessor grid to redo the domain decomposition and allow the use of serial transforms. 

Three communication algorithms for the transpose were examined, each of which 

is functionally equivalent to MPIALLTOALLV: 

l srtrans- sends P-l messages using SENDRECV to transpose across P proces- 

sors; 

l swtrans- sends P-l messages using SWAP to transpose across P processors; 

and 

l logtrans- sends O(logP) messages using SWAP to transpose across P proces- 

sors. 

The algorithms srtrans, swtrans, and logtrans each use different orderings of in- 

terprocessor communication between processors, and logtrans sends more data than 
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the other two. For this paper, we restrict our discussion of the communication algo- 

rithms to their use in transpose-based parallel FFTs. However, the performance of the 

algorithms is not dependent on whether they are used for the FFT or LT except in 

the amount of data being moved, and results for the parallel LT were similar.. One 

distributed FFT was also examined: 

l dfft- sends @(log P) messages using SWAP to calculate Fourier transform dis- 

tributed across P processors. 

The distributed LT algorithms in PSTSWM are based on the evaluation of dis- 

tributed vector sums (within processor columns). Four distributed vector sum algo- 

rithms were examined: 

l exchsum- an exchange-based algorithm implemented using SWAP; 

l halfsum- a recursive halving-based algorithm implemented using SWAP; 

l ringsum- a ring-based algorithm implemented using SENDRECV; and 

l ringpipe- a pipeline-based algorithm implemented using SENDRECV. 

The first three algorithms are functionally equivalent to MPIALLREDUC& The algo- 

rithm ringpipe interleaves communication with the computation of the LT., ringpipe 

also employs a different decomposition of the spectral domain than the other distributed 

LT algorithms, resulting in a slightly smaller parallel complexity. 

Each of these eight algorithms can be implemented using the protocols described 

in Table 1 in two different ways. The first uses the basic SWAP and SENDRECV 

commands to exchange the data. The second reorders the elements of the SWAP or 

SENDRECV protocol in an attempt to overlap communication with computation and 

to hide communication latency. These algorithms and protocols are described in more 

detail in [ 161. The overlap algorithms using unordered and ordered communication pro- 

tocols will be designated by (2,~) and (3, z), respectively, where z E (0, 1,2,3,4,5, S}. 

To compare the performance of the different implementation options, we ran the 

following experiments. We used one-dimensional decompositions of the form 8x1 or 

1 x 8 and 32 x 1 or 1 x 32, where the first decomposition in each pair was for examining 

parallel Fourier transform algorithms and the second was for examining parallel LT 
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algorithms. Thus the “other” transform was computed serially, and all interproces- 

sor communication was restricted to the parallel algorithm under examination. The 

problem sizes were based on T42L16 and T85L32 as they would appear on a two- 

dimensional processor grid of size 8x8, 16x32, or 32x16. This was accomplished by 

modifying the problem size to achieve the desired granularity (problem size per pro- 

cessor) as described in Table 6 and allowed us to examine the performance for problem 

granularities that are typical of what would be seen in practice. 

Table 6. Problem sizes used for parallel algorithm 

Distributed LT Algorithms 

studies 

Problem Identifier Simulated Problem Actual Problem 
Problem P Problem P 

J 
Problem physical grid P 

T42 8 T42L16 8x8 T42L2 64x128~2 8x1 
T42 32 T42L16 32x16 T42Ll 64x128~1 32x1 
T85 8 T85L32 8x8 T85L4 64x128~4 8x1 
T85 32 T85L32 32x16 T85L2 64x128~2 32x1 

/ 

Transpose FFT Algorithms 

Problem Identifier Simulated Problem Actual Problem 
Problem P Problem P Problem physical grid P 

T42 8 T42L16 8x8 T21L8 32x64~8 8x1 
T42 32 T42L16 32x16 TlOL16 16x32~16 32x1 
T85 8 T85L32 8x8 T42L16 64x128~16 8x1 
T85 32 T85L32 32x16 T21L32 32x64~32 32x1 

Results for the individual parallel algorithms are presented in Tables 7 and 8. In 

Table 7, the first column shows the overall best SHMEM protocol for each parallel 

algorithm. Multiple protocols are given when no single protocol is good for all problem 

sizes and numbers of processors. The other columns indicate how much performance is 

lost by using the (OJ) protocol instead of the optimal SHMEM protocol. In Table 8, 

the first column is the overall best MPI protocols for each parallel algorithm. The other 

columns indicate how much performance is lost by using the (0,6) protocol instead of 

the optimal MPI protocol and by using the optimal MPI protocol instead of the optimal 

SHMEM protocol. Note that the run times used in determining performance are for 

the full code, not just the individual algorithms, and that the indicated performance 
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loss is a function of both the, size of the messages and the communication/computation 

ratio for a given experiment. 

Table 7. Effect of SHMEM protocol on performance of parallel algorithms 

T3E-900 

1 good I 
~(o,l),sl~mem-~opt,shmem 

t oDt.shmem -’ 

1 SHMEM 
1 DrOtOCOlS 

i 
, 
I io,w,1) 

exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

p&-’ P = 32 
T42 T85 T42 T85 
0% 3% 0% 1% 
2% 0% 4% 0% 
0% 0% 0% 0% 
0% 0% 0% 1% 
8% 10% 2% 17% 
0% 0% 1% 0% 
1% 0% 10% 2% 
0% 1% 1% 1% 

. .“_. 

dfft 

dfft 
exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

good 

SHMEM 
protocol: 

(0,2),(3,1 
(072) 
tw 
W) 
CT4 
cw 

W,P,1 
w,(271 

Origin/l95 
t(O,l),shmen 

p=8to,t, 
T42 
0% 
5% 
0% 
0% 
5% 
1% 
3% 
2% 

T85 
1% 
2% 
0% 
0% 
3% 
0% 
0% 
0% 

I- - 
shx 

t opt,shmem 
. . 1,“” . . 

nem 

P = 32 
T42 
10% 
0% 
0% 
1% 
1% 
5% 
3% 
3% I 

T85 
7% 
2% 
0% 
0% 
2% 
2% 
0% 
4% 
, 

On the T3E, (0,6) is a good MPI communication protocol for every algorithm 

except ringpipe and logtrans, where overlap protocols are sometimes significantly 

better. It is surprising, however, to see the good performance of the (0,O) protocol, 

involving as it does an explicit local buffer copy via the MPLBSEND command. This 

may indicate something about how the other varian+ of SEND are implemented on the . 

T3E. The default SHMEM protocol (OJ) is also a good SHMEM protocol for all but a 

few algorithms, in which case overlap protocols are superior. SHMEM performance is 

significantly better than that of MPIfqall algorithms and problem granularities. 

On the Origin, the conclusions are less clear. Although (06) is generally a good 
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Table 8. Effect of MPI protocol on performance of parallel algorithms 

dfft 
exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

dfft 
exchsum 
halfsum 
logtrans 
ringpipe 
ringsum 
srtrans 
swtrans 

good 

MPI 
protocols 

(W 
wL@,2) 

W)> CM 
(W, c&2) 

w> 
Km 
(W) 
(076) 

good 

MPI 

T3E900 
t(0,6),mpi-topt,mpi 

p = 8 topt7mpip = 32 
T42 T85 T42 T85 
1% 1% 0% 1% 
1% 2% 1% 0% 
0% 2% 1% 1% 
0% 1% 8% 2% 
7% 9% 2% 1% 
0% 0% 0% 0% 
2% 0% 0% 0% 
1% 1 1% i 0% 1 0% 

Origin/l95 
t(0,6),mpi-topt,mpi 

p = 8 toptfmp'p = 32 
protocols T42 T85 
(0,6),(2,3) 1% 22% 
(0,1),(0,4) 0% 21% 
(O&(0,4) 1% 0% 

(0,6) 0% 3% 
(2,l) 6% 3% 
(0,l) 1% 0% 
(OJ) 1% 0% 
(0,l) 1 0% ) 0% 

t opt mpi-&pt,shmem 

’ to*t,shmem 

P=8 1 P=32 
T42 
14% 
9% 
9% 
16% 
19% 
11% 
18% 
16% 

T85 
14% 
15% 
12% 
22% 
49% 
28% 
31% 
29% 

t opt,mpi-topt,shmem 

p = 8topt’~h”““p = 32 

T42 T85 T42 
8% 11% 3% 
-1% 2% -17% 
2% 5% 11% 
3% 12% 57% 
2% -3%. 66% 
2% -8% 79% 
1% 0% 112% 
1% -1% 115% 

MPI protocol, when it is bad, it is very bad. There is some indication that the poor 

performance occurs when large messages are being exchanged. The performance of 

the default SHMEM protocol is more consistent,’ with only one case where it should 

not be used. Unlike on the T3E, MPI is competitive with (or better than) SHMEM in 

many cases. Although MPI performs much worse than SHMEM for most of the smaller 

granularity cases, where latency is more important than bandwidth, these experiments 

are not relevant,. The Origin being tested has only 128 processors, so the simulated 

512 processor runs do not reflect the granularities of interest. Concentrating solely 

on the 8-processor experiments, SHMEM still appears to be the better choice, but the 

bandwidth advantage of SHMEM over MPI that is evident in the SWAP tests in Sect. 6 

does not have a noticeable performance impact in these experiments. 
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8. Parallel Algorithm Comparisons 

The three transpose algorithms logtrans, srtrans, and swtrans are functionally 

equivalent to each other and to MPIALLTOALLV. Similarly, the three distributed 

LT algorithms are functionally equivalent to MPLALLREDUCE, Changing from one 

algorithm to another within one of these subsets changes only the communication cost, 

not the computational complexity or the load balance. Thus the performance dif- 

ferences between the algorithms in each subset are also issues of the commu.nication 

protocol, where the protocol now includes the number, size, and order of messages. 

In this section, we use the data collected in the experiments described in Sect. 7 to 

compare performance within the sets of equivalent algorithms. For each algorithm, we 

use the optimal communication protocol for a given problem size and number of pro- 

cessors. We include in the comparison the performance of a “generic” algorithm, using 

a robust protocol that represents what we would choose having no other information 

about the performance characteristics of the platform. For the transpose FFT, the 

generic algorithm is srtrans, using the (0,6) protocol for MPI and the (0,l) protocol 

for SHMEM. For the distributed LT, the generic algorithm is ringsum, using (0,6) for 

MPI and (0,l) for SHMEM. 

We also -include in the comparison the performance of MPIALLTOALLV and 

MPIALLREDUCE. We would hope that the collective commands provided with the 

communication library would perform better than our hand-coded Fortran implemen- 

tations, but that was not true in our previous studies [14]. 

The results are given in Figs. 4 and 5. In each figure, the left column of graphs is 

for the Origin and the right column is for the T3E. The first row compares the MPI 

algorithms, including MPIALLTOALLV or MPI_ALLR,XJUCE. The second row of ..,....~ .(._ ‘. ___ ., ‘_ , 

graphs compares the SHMEM algorithms. The third row of graphs compares the best 

MPI algorithm, the best SHMEM algorithm, and the implementation using the MPI 

collective communication routine. The comparisons are in terms of the relative perfor- 

mance degradation from not using the best algorithm in the relevant set: (t-to&/+. 

As before, these are timings of the entire code, not just the collective communication 

routines, using the one-dimensional parallel decompositions and modified problem sizes 

described in Sect. 7. 
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degradation as compared to best algorithm. 
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Figure 5. Distributed LT algorithm comparisons: relative performance 
degradation as compared to best algorithm. 
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Tranpose FFT Analysis. 

l Excluding MPIALLTOALLV, srtrans or swtrans is optimal for the large gran- 

ularity cases, and logtrans is optimal for the smallest granularity case in the 

MPI comparisons on the Origin and on the T3E. 

l The srtrans or swtrans algorithms are optimal for all cases in the SHMEM 

comparisons on the Origin and on the T3E. 

l MPIALLTOALLV is the optimal MPI implementation for the T3E but it is not 

competitive on the Origin. 

l The optimal SHMEM algorithms are better than the optimal MPI algorithms on 

the T3E, especially for large numbers of processors. 

l The optimal SHMEM algorithms are near optimal in all cases on the Origin, but 

the best MPI algorithms are competitive in the large granularity cases. 

l When compared with the best SHMEM algorithms, MPI-ALLTOTALLV perfor- 

mance is never competitive. 

In summary, the T3E and the Origin performance comparisons have many similarities. 

The major differences are in the comparisons between MPI and SHMEM and in the 

relative performance of MPIALLTOALLV. 

Distributed LT Analysis. 

l The halfsum algorithm is optimal or near optimal in both the MPI and SHMEM 

comparisons on the Origin and on the T3E. 

l MPIALLREDUCE performance is very poor compared with other MPI algo- 

rithms on the Origin and on the T3E. 

l The optimal SHMEM algorithms are consistently better than the optimal MPI 

algorithms on the T3E. 

l The optimal SHMEM algorithms are near optimal in all cases on the Origin, but 

the best MPI algorithms are competitive in all but the smallest granularity case. 

26 



l MPI-ALLREDUCE performance is never competitive. 

In summary, the Origin and the T3E distributed LT performance results are very 

similar. The only significant differences are in the comparisons between MPI and 

SHMEM, and even here the differences are more quantitative than qualitative. 

When compared with results on older platforms, the areas of commonality between 

the Origin and the T3E are also areas of more general agreement. Either swtrans or 

srtrans is best for most problem granularities, and both are competitive. The best 

MPI-ALLREDUCE-equivalent distributed LT algorithm is halfsum. The two MPI 

collective commands generally perform poorly. The optimality of MPLALLTOALLV 

in the T3E MPI comparisons stands out as the most significant difference. 

9. Full Simulation Performance 

Efficient parallelizations of PSTSWM exploit two-dimensional decompositions of the 

domain, parallelizing both the FFTs and LTs [4]. The studies described in Sect. 8 

used one-dimensional decompositions that do not capture the performance issues of 

process placement and network contention that affect two-dimensional decompositions. 

Although some of these deficiencies can be addressed by modifying the one-dimensional 

experiments, it is just as convenient to run full two-dimensional simulations at this 

stage. We made the assumption that only the most competitive of the many protocol 

options examined earlier needed to be reexamined in this context. (However, we were 

conservative in this reexamination, retaining 3 to 6 of the most promising protocols 

for each algorithm.) Note that some elimination was required. The studies described 

in Sect. 7 and Sect. 8 involved approximately 3500 experiments for each platform 

and communication library. Retaining all of these options was not feasible for the 

,experiments described subsequently. 

We considered two classes of parallel algorithms. 

l DTH: double transpose for the FFT and halfsum for the LT.’ The double 

transpose algorithm uses a transpose to serialize the FFTs, then another trans- 

pose to return to a domain decomposition analogous to the original. This ap- 

proach has the best load balance among the parallel algorithm options. The 

best MPLALLREDUCEequivalent algorithm is clearly halfsum, being optimal 
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on both the T3E and the Origin and for both MPI and SHMEM. We do not 

reexamine this evaluation here. 

l DR: dfft/ringpipe. This parallel aglorithm combination has good load balance 

and has the maximum potential for communication/computation overlap. 

DTH and DR stress the underlying transport mechanisms in significantly different 

ways and represent different tests of the communication protocol sensitivity. Because 

of their good load balances, the performance differences between them reflect primarily 

the differences in communication costs. 

For each platform we measured the run times when simulating 5 days of the standard 

benchmark problem for problem sizes T42L16 and T85L16 using 

l SHMEM- the best transpose algorithms (for DTH) and the best communication 

protocols for each parallel algorithm for SHMEM implementations, determined 

empirically; 

l MPI- the best transpose algorithms (for DTH) and the best communication 

protocols for each parallel algorithm for MPI implementations, determined em- 

pirically; 

l GE&-- srtrans (for DTH) and (0,6)-based MPI parallel implementations; and 

l COL- MPI collective communication routines MPIALLTOALLV and 

MPIALLREDUCE (for DTH), 

for logical processor meshes of sizes: 4 x 4, 4 x 8, 8 x 8, 8 x 16, 16 x 16, and 16 x 32. 

Algorithms GEN and COL represent the typical algorithm choices if nothing is known 

about the communication protocol sensitivities. Measurements were also taken using 

8 x 14 for DR and 14 x 8 for DTH since the 128-processor experiments may not run 

efficiently on a 128 processor Origin (because of competition with system processes). 

Note, however, that the ring algorithm used in DR is sensitive to load imbalances, 

and 14 does not divide the chosen problem sizes as well as the powers of two. This is 

especially clear in the plots of the T3E results. 

Results are presented in Figs. 6 and 7. In each figure, the left column of graphs is 

for the Origin and the right is for the T3E. The first row describes performance for the 
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Figure 6. DTH comparisons. 

T42L16 problem size and the second row describes performance for the T85L16 problem 

size. The average Mflop rate per processor is graphed as a function of the number of 

processors for each problem class and problem size. This allows scaling behavior to be 

observed easily. Remember that load balance is,very good for these parallel.algorithms 

and that the computational rate tends to .&crease wjtlrthe number of processors, so V.~ ..t _. , .,, _ _ 

performance degradation is primarily caused by increased communication costs. 

All of the graphs begin with per-processor rates between 40 and 70 Mflops, indi- 

cating significant degradation from the peak serial rates described in Sect. 5. Note, 

however, that the total volume of data moved in the parallel algorithms is only a weak 

function of the number of processors and that significant data movement is required 

even when using small numbers of processors. This is a distinct difference between 

spectral models like PSTSWM and models having primarily local dependencies (like 

finite difference models) that have a ,“surface-to-volume” communication-cost scaling 
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behavior. 

DTH Analysis. 

l SHMEM implementations were significantly better than the MPI-based approaches 

on the T3E. On the Origin, SHMEM had some advantage over MPI for T85L16 

when using small numbers of processors, but the advantage disappeared for 

smaller problem granularities. SHMEM was also less robust on the Origin and 

was unable to complete the T85L16 problem when using more than 64 processors. 

l On the Origin, the MPI collective communication implementation CCL per- 

formed poorly, especially for T85L16. On the T3E, COL performed worse than 

the other MPI-based implementations except for the very smallest granularity 

cases and was never competitive with the SHMEM implementations. 
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l On both the Origin and the T3E, GEiVperformance was reasonably close to that 

of the optimal MPI implementation. 

l Performance was better on the Origin than on the T3E when using no more 

than 64 processors. However, T3E performance scaled much better than Origin 

performance for larger numbers of processors. 

These results agree well with those of the earlier sections, especially the relative insen- 

sitivity of MPI implementations to the choice of protocol and the poor performance of 

the MPI collective communication routines. One,.surprise was the strong showing of 

SHMEM on the Origin for the large granularity cases, indicating better bandwidth, but 

not elsewhere, demonstrating no practical impact of the lower latency. This analysis 

is the opposite of that in Sect. 7, and is caused at least partially by a deficiency in 

the testing methodology. The smallest simulated processor array used in the earlier 

section was 8x8, although the bandwidth effect shows up for even smaller numbers of 

processors. Similarly, the practical effect of lower latency using SHMEM was apparent 

in the simulated 512-processor runs, which is a much smaller granularity than used in 

these experiments. 

The difference in scaling between the Origin and the T3E is not unexpected. Part 

of the difficulty for the Origin is that the operating system was still in development for 

the 128 processor machine .at the time of these experiments. ,However, the T3E was 

built to allow scalable performance, but Origin’s shared memory architecture is more 

susceptible to contention for bandwidth. 

DR Analysis. 

l The SHMEM performance behavior was identical to that observed for t,he PTH 

experiments. Performance was significantly better than the MPI-based approaches 

on the T3E. On the Origin, the SHMEM advantage was limited to the large gran- 

ularity cases and it suffered from stability problems. 

l On the T3E, GEN performance was reasonably close to that of the optimal MPI 

implementation. On the Origin, performance was somewhat worse for T42L16 

and significantly worse for T85L16. Apparently, the message patterns used by 
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DR are subject to performance problems on the Origin that can be avoided if 

the communication protocol is chosen appropriately. 

l Performance on the T3E was comparable to or better than that on the Origin for 

small numbers of processors and demonstrated better scaling for all numbers of 

processors. 

One of the major differences between DR and DTH is the potential for communica- 

tion/computation overlap in DR. This may be one reason that the generic protocol 

does not perform as well as the MPI optimal on the Origin. As indicated earlier, over- 

lap does not seem to be supported in MPI on the T3E, so GENis essentially equivalent 

to the optimal MPI implementation there. 

An additional difference between the Origin and the T3E is the relative performance 

of DR and DTH. Qualitatively, the two algorithm classes perform very similarly on 

the Origin. However, on the T3D, DR performance begins much better but scales 

much worse and is worse for more than 128 processors. 

10. Conclusions 

Both the T3E and the Origin 2000 results indicate the importance of considering the 

interprocessor communication protocols when tuning performance, but the similarity 

in the results ends there. On the T3E, performance is optimized primarily by using 

the SHMEM communication library. However, the choice of SHMEM protocol also 

makes a difference, and overlap techniques can be very effective. Because SHMEM 

communication is blocking, this simply indicates that the relaxed scheduling constraints 

. 

of the overlapping logic leads to better performance. 

Even the choice of the parallel algorithm can have a significant impact on the T3E, 

as indicated by the different scaling behaviors of the DR and DTH parallel algorithms. 

If an MPI implementation is required, either for portability or for specific MPI func- 

tionality, the simple (0,6) or (0,O) protocols perform well. Some tuning may still be re- 

quired to determine whether overlap is worth exploiting. Note that MPI-ALLTOALLV 

is worth using in an MPI implementation, but that MPLALLREDUCE should be 

avoided. 

On the Origin, indications are that SHMEM can improve performance for either 
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very large granularity (improved bandwidth) or very small granularity (lower latency), 

but neither of these were, relevant for the number of processors or problem sizes ex- 

amined here. Moreover, the SHMEM implementations were not as stable~,as, the MPI 

implementations. The (0,6) MPI protocol performed well in most cases, but other 

choices performed better overall and were more robust. In particular, certain condi- 

tions saw the performance of the simple protocols degrade seriously, and care must be 

taken to examine protocol sensitivity using the full codes with the number of proces- 

sors and problem sizes to be used in production. The two MPI collective commands 

examined here performed very poorly. 

The methodology described here for examining communication protocol sensitivity 

proved very useful. Although some of the results were initially misleading, because 

of inappropriate problem granularities, the complete set, from “peak achieveable” to 

full code measurements, allowed us to identify and understand the important issues. 

We were able to investigate multiple aspects of communication protocol sensitivity 

without consuming an inordinate amount of resources and ,have~ some confidence that . .^, 

we understand many of the reasons behind the observed performance. We also have 

some understanding as to how performance will change if problem size or numbers of 

processors are scaled further. 

This study concentrated on determining how sensitive performance is to the choice 

of communication protocol. The results for the Origin and the T3E show that this 

continues to be an issue but that the particulars are platform specific. Note, however, 

that this sensitivity is a feature, not a bug, and simply reflects a continued high com- 

putation rate/communication rate ratio. The sensitivity would diminish if the vendors 

used slower processors, which is not an acceptable solution. Given that the sensitivity 

is a feature, it is a feature that the user needs to be aware of to write codes that perform 

well. 
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