
ORNUTM-13682

OAK RIDGE
NATIONAL
LABORATORY

LOCKHEED MARTI

Impact of Communication
Protocol on Performance

P.H. Worley

MANAGED AND OPERATED BY
LOCKHEED MARTIN ENERGY RESEARCH CORPORATlON

FOR THE UNITED STATES
DEPARTMENT OF ENERGY

OWL-27 (3-sq

ORNL/TM- 13682

IMPACT OF COMMUNICATION PROTOCOL ON PERFORMANCE

P. H. Worley
Computer Science and Mathematics Division

Date Published: February 1999

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 3783 1-6285
managed by

LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-960R22464

CONTENTS

LIST OF FIGURES . ,

Page

V

vii

ix

1

3

4

7

10

13

18

22

27

32

33

35

LIST OF TABLES

ABSTRACT

1. Introduction.

2. PSTSWM

3. Communication Protocols
/

4. Platforms

5. Serial Performance

6. Point-to-Point Communication Performance

7. Parallel Algorithm Sensitivities

8. Parallel Algorithm Comparisons

9. Full Simulation Performance

10. Conclusions

11. Acknowledgements

REFERENCES

. . .
- 111 -

LIST OF FIGURES

1.

2.

3.

4.

5.

6.

7.

Serial MFlop/second rates.

Peak observed bandwidth (megabytes/second).

2MB SWAP experiments.

Transpose FFT algorithm comparisons: relative performance degrada-

tion as compared to best algorithm.

Distributed LT algorithm comparisons: relative performance degrada-

tion as compared to best algorithm.

DTH comparisons.

DR comparisons.

-v-

12

16

17

24

25

29

30

LIST OF TABLES

Table

1.

2.

3.

4.

5.

Page

MPI SWAP protocols (simplified) . 5

Unordered SHMEM SWAP protocols (simplified) 7

Parallel platforms . 9

Serial MFlop/second rates with (m) and without math libraries. 11

Peak observed bandwidth (megabytes/second) and latency (microsec-

onds) for optimal protocol . 15

6. Problem sizes used for parallel algorithm studies 20

7. Effect of SHMEM protocol on performance of parallel algorithms 21

8. Effect of MPI protocol on performance of parallel algorithms 22

- vii -

IMPACT OF COMMUNICATION PROTOCOL ON PERFORMANCE

Patrick H. Worley

We use the PSTSWM compact application benchmark code to characterize the per-

formance behavior of interprocessor communication on the SGI/Cray Research Origin

2000 and T3E-900. We measure

1. single processor performance,

2. point-to-point communication performance,

3. performance variation as a function of communication protocols and transport layer

for collective communication routines, and

4. performance sensitivity of full application code to choice of parallel implementation.

We also compare and contrast these results with similar results for the previous gener-

ation of paralIe1 platforms, evaluating how the relative importance of communication

performance has changed.

- ix -

k

R

1. Introduction

Communication costs often represent a significant fraction of the run time of parallel

application codes, and the choice of communication protocol is an important step in

porting and tuning codes. Here we refer to communication protocol as any aspect of

the interprocessor communication logic that does not change the basic functionality of

the parallel algorithms. Low-level examples include the transport layer (e.g., MPI or

PVM) and the message-passing commands (MPIBSEND, MPI-SEND, MPLISEND,

etc.). Higher-level examples include the number, order, and size of messages sent in

some collective or extended operation, as long as the final locations of the results are

fixed, or code restructuring to overlap communication with computation. Differences

in parallel algorithms that affect problem decomposition, computational complexity, or

load balance are not communication protocol issues.

Although general techniques exist for optimizing interprocessor communication, the

importance of optimization and efficacy of the different techniques are often platform

specific. For example, in previous work we examined the effect of different communica-

tion protocols on performance for such platforms as the Intel Paragon, IBM SPZ, and

Cray Research T3D [4],[14]. Although these machines are all c‘classic” distributed-

memory MIMD parallel systems, their performance characteristics differ significantly,

as do their optimal tuning techniques and parameters. In this paper we examine

communication performance sensitivities of the SGI/Cray Research Origin 2000 and

T3E-900 systems. We also compare and contrast these results with similar results for

the older platforms, evaluating how the performance characteristics of interprocessor

communication have changed.

A typical approach to evaluating interprocessor communication and communica-

tion libraries is to measure the performance of individual commands in isolation or in

small kernels representing common communication functions [2], [7]. For example, this

approach has been used in [9] and [8] to evaluate communication performance on the

Origin 2000 and the T3E. Although these types of experiments are an important step

in an evaluation, the communication protocols and the controlled measurement envi-

ronment used in the experiments may not be typical of how the commands are used in

practice, making it difficult for an application developer to interpret the results. The

“low-level” measurements are also not sufficient for evaluating many of the optimization

techniques, for example, latency hiding or overlapping communication and computa-

tion. The performance of full application codes can also be used to report performance,

but the protocols used in these are typically fixed, and the sensitivities are not easily

identified. To deal with these issues, benchmark suites that include low-level measure-

ment codes, kernel codes, and compact application codes can be used [1],[6],[7],[12]. But

the linkages between the different levels of measurement are often difficult to establish,

primarily because the measurements specified in the benchmark suite are not focused

on any particular performance question. Instead, large data sets are generated, often

requiring significant computational resources, that hopefully are sufficient to address

the desired performance questions. How to use the data to address such questions is

left to the user.

To help assess the performance impact of tuning interprocessor communication

protocols, we use an integrated suite of tests that are derived from or motivated by

the Parallel Spectral Transform Shallow Water Model (PSTSWM) parallel application

code [15], [16]. PSTSWM was developed to evaluate strategies for parallelizing spec-

tral global atmospheric circulation models [4], [5], and has imbedded a large number of

parallel algorithm options. Among these options are numerous choices for the commu-

nication protocols used to implement the different parallel algorithms and numerous

choices of message-passing layer. We use PSTSWM to examine

1. single processor performance,

2. peak achievable point-to-point communication performance,

3. performance variation as a function of communication protocols and transport layer

for parallel fast Fourier transforms (FFT), transpose, and global vector sum algo-

rithms,

4. performance of vendor-supplied collective communication routines, and

5. performance sensitivity of full application code to choice of parallel implementation

(including both choice of parallel algorithm and choice of communication protocol)

using both the MPI [lo] and SHMEM libraries to implement interprocessor commu-

nication. The performance of PSTSWM is sensitive to communication performance,

both point-to-point and collective, and both local and distant. Thus, while the results

2

of this study necessarily reflect the peculiarities of the PSTSWM application code,

the overall conclusions as to communication performance sensitivities should be more

generally applicable.

2. PSTSWM

The PSTSWM is a message-passing parallel benchmark code and parallel algorithm

testbed that solves the nonlinear shallow water equations on a rotating sphere using

the spectral transform method. PSTSWM was developed by the author and by I.

T. Foster at Argonne National Laboratory from the serial code STSWM, written by

J. J. Hack and R. Jakob of the National Center for Atmospheric Research (NCAR).

PSTSWM was used to evaluate parallel algorithms for the spectral transform method

as it is used in global atmospheric circulation models. It is also a “compact application”

in the Parallel Kernels and Benchmarks Suite (ParkBench) [7].

PSTSWM is a spectral timestepping code. During each timestep of the model simu-

lation, the state variables of the problem are transformed between the physical domain,

where most of the physical forces are calculated, and the spectral domain, where the

terms of the differential equations are evaluated. The physical domain is a tensor

product longitude-latitude-vertical grid, and transforming from physical coordinates to

spectral coordinates involves performing a real FFT for each line of constant latitude,

followed by integration over latitude using Gaussian quadrature, approximating the

Legendre transform (LT). The inverse transform involves evaluating sums of spectral

coefficients (“inverse LT”) and inverse real FFTs.

The parallel algorithms in PSTSWM are based on decompositions of the physi-

cal and spectral computational domains over a logical two-dimensional processor mesh

of size PX x PY. For the FFT and LT, there are two general families of parallel algo-

rithms: distributed algorithms, using a fixed data decomposition and computing results

where they are assigned, and transpose algorithms, remapping the domains to allow

the transforms to be calculated serially.

The supported domain, decompositions all have the property that FFTs in different

processor rows are independent. Each row of PX processors collaborates in computing

a “block” of FFTs, and all interprocessor communication for a given FFT is restricted

to a given processor row. Similarly, the LTs in different processor columns are inde-

3

pendent. Each column of PY processors collaborates in computing a block of LTs, and

all interprocessor communication for a given LT is restricted to a given processor col-

umn. It is important to keep this in mind in the later discussion of the communication

patterns for the different parallel algorithms.

Parallel performance of PSTSWM is determined by

l communication costs in the parallel FFT and LT algorithms,

l copy costs in the parallel FFT and LT algorithms,

l computation rate, and

l load balance.

As is described later, our choices of parallel algorithms and domain decompositions used

in the experiments minimize load imbalance, and the performance variation between the

different parallel algorithms is primarily attributable to differences in communication

costs and related issues (like copy costs).

We have found PSTSWM to have many characteristics that make it useful for per-

formance studies. First of all, it is easy to use. It was designed for these types of studies,

and we have previously developed numerous scripts and other tools for running and

analyzing experiments. PSTSWM also makes interesting and varied demands on the

communication subsystem, both in terms of communication protocol and communica-

tion patterns. Finally, PSTSWM is still relevant to an important application area. It is

an excellent predictor of performance of parallel spectral atmospheric models, and op-

timized algortihms developed in PSTSWM can be ported easily to the NCAR spectral

atmosphericmodels. See http://www.epm.ornl.gov/chammp/pstswm/index,html for

a partial bibliography of other performance studies using PSTSWM.

3. Communication Protocols

Performance-critical interprocessor communication in PSTSWM is implemented using

two basic types of commands: SWAP and SENDRECV. The message-passing transport

layer used to implement these commands is specified at compile time, while the rest of

the communication protocols are specified at run time. For the Origin 2000 and the

T3E-900, we use either MPI or SHMEM.

4

The options in PSTSWM for implementing SWAP using MPI are listed in Ta-

ble 1. (Analogous options exist for SENDRECV.) Two general classes of communi-

cation protocols are available: unordered (ping-ping) and ordered (ping-pong), where . i,
the unordered protocols attempt to exploit bidirectional bandwidth and the ordered

explicitly avoid it. Note that the examples have been simplified (to save space) and

do not accurately represent the MPI implementations. For example, handshaking mes-

sages required for correct use of the ready send command have been omitted. These

protocols are described in more detail in [16].

Table 1. MPI SWAP protocols (simplified)

Unordered Ordered

(0,O): simple
Processors 1 and 2
MPIBSEND
MPLRECV

(0,l): nonblocking send
Processors 1 and 2
MPIlSEND
MPIRECV

(0,2): nonblocking receive
Processors 1 and 2
MPLIRECV
MPISEND .

(0,3): nonblocking send & receive
Processors 1 and 2
MPIlRECV
MPUSEND

(0,4): ready send
Processors 1 and 2
MPIJRECV
MPIJLSEND

(0,5): nonblocking ready send
Processors 1 and 2
MPIJRECV
MPIJRSEND

(0,6): native sendrecv
Processors 1 and 2
MPISENDRECV

(LO):

W):

W):

(173):

(174):

(L5):

(194):

simple
Processor 1 Processor 2
MPISEND MPIRECV
MPIllECV MPISEND

nonblocking send
Processor 1 Processor 2
MPIJSEND MPLRECV
MPLRECV MPISEND

nonblocking receive
Processor 1 Processor 2
MPIXLECV MPLRECV
MPISEND MPISEND

nonblocking send & receive
Process& 1 Processor 2
MPIJRECV MPILRECV
MPIlSEND MPISEND

ready send
Processor 1 Processor 2
MPLIRECV MPIRECV
MPIXSEND MPLRSEND

nonblocking ready send
,Processor 1 Processor 2
MPIJRECV MPLRECV
MPIJRSEND MPI+SEND

synchronous
Processor 1 Processor 2
- MPIRECV
MPISEND -
- MPISEND
MPLRECV -

5

For a single SWAP request, we would expect MPISENDRECV to be the most

efficient implementation. We examine the other options for three reasons.

1. In some previous studies on other platforms, MPI-SENDRECV was not the optimal

implementation for SWAP or SENDRECV.

2. Many of the other message-passing systems do not have an equivalent to MPISENDRECV,

although they do have equivalents to the other protocol options. Including these

options provides for a consistent testing methodology.

3. Techniques for overlapping communication with computation or for hiding latency

require that we “expand” the SWAP command, posting some requests early (send

or receive) and delaying other requests as long as possible. We can also combine

these components for multiple SWAPS, allowing us to increase the granularity of

the communication. The non-MPISENDRECV protocols are used as the basis for

these expansions and reorganizations.

However, we refer to the (0,6) (MPI-SENDRECV) protocol as the generic or default

MPI communication protocol, as it is what we would expect to be optimal knowing

nothing else about the platform.

There are many other MPI communication commands that can be used to im-

plement SWAP and SENDRECV. Our choices are primarily historical, reflecting the

capabilities of the NX [ll] communication library more than MPI. However, little is

actually being ignored. The communication patterns, message sizes, and buffer ad-

dresses vary throughout the code, and the MPI persistent communication requests are

not appropriate for this code. The MPI synchronous commands are also unlikely to

be performance enhancers. Generally, relaxing the order requirements specified by the

communication routines is the most effective way of improving communcation perfor-

mance in situations when MPISENDRECV is not the optimal protocol.

The SHMEM protocols are not as straightforward. SHMEM provides the ability to

write directly into or read directly from another processor’s address space, using the

commands put and get, respectively. For PSTSWM, we implement SWAP using the

protocols described in Table 2.

There are also analogous ordered protocols: (l,l), (1,2), and (1,6). Although the

SHMEM put and get commands are themselves “blocking,” we refer to these SWAP

6

Table 2. Unordered SHMEM SWAP protocols (simplified)

(0,l): nonblocking send
put address of outgoing message on the other processor
wait for address of incoming message
get incoming message from’the other processor

(0,2): nonblocking receive
put address where to ‘put incoming message on the other processor
wait for address of where to put outgoing message
put outgoing message on the other processor

implementations as nonblocking. Once processor 1 has put the address of the buffer

on processor 2, processor 1 does not need to wait for processor 2 to complete the

SWAP before doing something else. Processor 1 must simply check that the SWAP

has completed before (re)using the message buffers, as is characteristic of nonblocking

communication. As with the descriptions of the MPI options, the descriptions of the

SHMEM protocols have been simplified.

Unlike the MPI implementations, there is no obvious default SHMEM protocol. On

the T3D, put is twice as fast as get. On the T3E, get’is somewhat faster than put.

For the purposes of this study, we (arbitrarily) choose (0,l) to be the default SHMEM

protocol.

Until MPI-2, and its one-sided communication primitives, become more common-

place, SHMEM functionality will not be generally available on non-SGI/Cray platforms.

For this reason we will use the performance of the MPI (0,6) protocol as the baseline

upon which to compare the performance improvements possible from optimizing the

communication protocols. We will also compare performance when using the optimal

MPI protocol to that when using the optimal SHMEM protocol as an indicator of what

is being lost by using MPI instead of a lower-level transport layer.

4. Platforms

Although we focus on the Origin 2000 and T3E-900 in these studies, we also include

some measureqents from all $.t$e platforms listed in.T&iF, 3. ,--The platforms are listed

by the approximate date of introduction of the architecture. L’. .,_..”
The SGI Origin 2000, henceforth referred to simply as the Origin, is a distributed

7

shared memory (DSM) parallel system made up of “nodes” consisting of two proces-

sors sharing a common memory. Nodes are interconnected via a high-performance,

highly connected, but still nonuniform access, network. Thus, although all memory is

globally accessible, access time varies with the network distance between the memory

and accessing processor. The Origin supports traditional shared memory programming

models, but current experience indicates that the “programming discipline” natural to

message-passing is important for performance, and message-passing is a reasonable ap-

proach to using the machine. For these experiments we used version 6.5 of the IRIX

operating system, MPI and SHMEM from version 1.2.0.1 of the SGI Message Passing

Toolkit, and the MipsPro 7.20 Fortran compiler with compilier options -03 -64.

The T3E900, henceforth referred to as the T3E, is the second-generation dis-

tributed memory parallel system designed by Cray Research. Each node consists of a

single processor/memory pair interconnected via a high-performance, three-dimensional

bidirectional torus network. Hardware support exists for accessing remote memory di-

rectly, but experience has shown that message-passing is still the best programming

paradigm to use if high performance is required. For these experiments we used version

2.0.2.28 of the UNICOS/mk operating system, MPI and SHMEM from version 1.2.0.2

of the Message Passing Toolkit, and the Cray CF90 version 3.0.2.1 Fortran compiler

with compilier options -dp -0scalar3. Other details about the Origin and the T3E used

in these experiments are described in Table 3.

Performance metrics are rarely static over time, so please note the date that data

were collected and the system specifics before extrapolating performance to current

machines. In particular, the Origin 2000 system used at Los Alamos National Lab-

oratory is part of a research effort to build a large parallel system from individual

commerical-scale component systems, and performance may not reflect that at a more

production-oriented site. The variability in performance is still interesting and impor-

tant data.

As is shown in the section describing serial performance, an important performance

enhancer is optimized math libraries. For PSTSWM, the most important routines are

real and complex FFTs for multiple vectors (block transforms). The vectors being

transformed are relatively short, but many independent transforms are needed. Thus,

nonblock FFT routines are not useful, often being slower than simple Fortran rou-

8

Table 3. Parallel platforms

Paragon: Intel Paragon XP/S 150 MP at Oak.Ridge National Laboratory. This machine
has 1024 MP nodes (3 50-MHz iPSC/860 processors per node) in a 16x64 grid inter-
connect. Only one processor per node was used for computation. The OSF operating
system, NX and MPI message-passing libraries, and Kuck and Associates (KAI) math
routines were used. Some measurements were also taken using the SUNMOS operating
system. OSF measurements were taken in January 1998. SUNMOS measurements were
taken earlier.

T3D: CR1 T3D at Cray Research in Eagen, Minn.. This machine had 128 150-MHz
DEC Alpha EV4 processors. SHMEM and CRI/EPCC MPI message-passing libraries
were used. No math libraries were available. Measurements were taken in August 1996.

SP2/66: IBM SP2 at NASA Ames Research Center:,~, ,l\l”,, This machine had 160 RS6000/590 .I-.. .^ -_. a;..**. ~ -1. “.__ /
nodes (“wide,” 66.7 MHz POWER2). MPL and MPI message-passmg hbrariei”%d ESSL
math routines were used. Measurements were taken in August 1996.

SPP-1200: Convex SPP-1200 at the National Center for Supercomputer Applications. ..I , /. ,_ ~I _. , _.r,^,
This machine has 64 12O:MHz HP PA-RISC 7200 processors (8 Hypernodes). The MPI _
message-passing library was used. No m&i libraries were ‘available. Measurements were
taken in September 1996.

T3E900: SGI/CR T3E-900 at the National Energy Research Scientific.C,omputing Cen-
ter. This machine has 532 450-MHz DEC Alpha EV5 RISC processors. SHMEM and
CRI/EPCC MPI message-passing libraries and LIBSCI math routines were used. Mea-
surements were taken in May 1998.

SPP-2000: HP/CONVEX SPP-2000 at the Nati,onal Center for Supercomputer Appli-
cations. This machine has 64 180-MHz HP PA-RISC 8000 processors (4 Hypernodes).
The MPI message-passing library and VECLIB math routines were used. Measurements
were taken in April 1998.

PII/266: Intel PII- cluster at Oak Ridge National Laboratory. This machine has 10
266-MHz dual Pentium II nodes. Portland Group f77 compilers were used. Only serial
measurements were taken for this report. Measurements were taken in February 1998.

Origin/l95: SGI/CR Origin 2000 at Los Alamos National Laboratory. This machine has
128 195-MHz MIPS RlOOOO processors. SHMEM and MPI message-passing libraries and
SCSL math routines were used. Measurements were t&ken in May 1998.

9

tines that do block the transforms. The description for each system indicates whether

optimized math libraries with the needed capabilities were available at the time the

performance data were collected.

5. Serial Performance

To determine parallel scalability (and the effect of communication costs on perfor-

mance), it is important to establish a serial baseline. The goal of the study described

in this section was to determine the “peak achieveable” serial performance that would

be attained in long (production) simulations.

PSTSWM computes the solution by timestepping, advancing the approximation to

a new time level (in simulation time) by using the approximations at the two previous

time levels. In the following, we will refer to the process of advancing the approximation

to a new time level as a step.

The computational complexity and code executed for a step in PSTSWM are iden-

tical for all steps, and all steps “should” have the same execution time. The code

was run multiple times for a given problem size, and the fastest time was used. We

also measured the minimum and maximum execution times for individual steps for a

given run, and this information was used to determine whether extraneous effects (rare

system interrupts or other users) contaminated the timing unacceptably.

To better approximate the performance achieved in long simulations when timing

only a relatively short run, we calculated one step, then reinitialized, before beginning

timing. This guaranteed that the code and data memory were all “touched” before

timing began, eliminating some transient caching effects. It also eliminated the time

for loading and initializing the program.

The results (in Fig. 1 and Table 4) are presented in terms of MFlop/second rates for

one processor runs for a number of different problem sizes. The MFlop rate was approx-

imated using the floating point operation count returned by the hardware performance

monitor for a single processor run on a Cray C90. Multiple runs were performed with

differing compiler optimization options, and we used the minimum number of float-

ing point operations measured. The number of steps computed were also varied in

the measurements, so that operations corresponding to initialization and other startup

overhead could be removed, and the operation counts used correspond to the timings.

10

This MFlop rate metric is not the actual MFlop rate on any of the given platforms. But

the ratings are consistent between problem sizes and across platforms and are easier to

use for comparisons than the raw timings.

We used the standard benchmark problem for the shallow water equations, global

steady-state nonlinear zonal geostrophic flow [13], and three problem size classes: T42,

T85, and T170, characterized by the following computational grids and complexity.

physical grid Fourier grid spectral coefficients flops per timestep

T42 64x 128 64x64 946 4129859

T85 128x256 128x 128 3741 24235477

T170 256 x512 256x256 14706 153014243

The problem size also has a vertical, component. For example, T42L16 is a T42

horizontal grid with 16 vertical levels. The complexity of solving the problem is linear

in the number of vertical levels.

In all experiments, a 64bit precision floating point computation was used. Timings

were taken for 241 and 481 steps for the T42 problem sizes and for 49 and 97 steps for

the T85 and T170 problem sizes.

The plots in Fig. 1 describe the best results for each platform, using math library

routines when available. Note that the x-axis does not use a uniform coordinate system.

Table 4 compares performance with and without math routines,for those platforms for

which this was an option.

Table 4. Serial MFlop/second rates with (m) and without math libraries

T42Ll T42L16 T85Ll T85L16 T170Ll
8.9 8.9 9.1

” “’ >‘ . Paragon
Paragon (m) 13.9 13.9 13.1
T3E-900 95.2 78.6 100.2 81.2 107.6

These performance results are typical of what we have observed for spectral atmo-

spheric models, especially those with a “vector” heritage. The C90 hardware perfor-

11

Serial MFlopskecond for problem T42

I I 1 I I I
180

160

140

120

100

80

Origin/l95 +-
SPP-2000 -f--

T3E-900 a--
_ SP2/66 x-

PW266 A -
T3D Xc-,

SPP-1200 0
Paragon t-

40 - B --.-._ --A-.-.-.- --A---.-.-.

20 - +.-. .._. .-.+.-. --.. _... -_.. -.-f-.. ..-. .-.. ..-. ---. .-+

0’ I I I I I I
1 2 3 * . 16

Levels

Serial MFlopskecond for problem T86
I I I

_.
I I I I

180

160

140

120

100

80

60

40

20

0

+-

~----.-.-&.~.~.~~~~
‘-‘-‘-‘---‘-----.---------~

-..+-.. -.-. ..-+
I I I I 1 1
1 2 3 16 .

Levels

200 I

Serial MFlopskecond for problem T170

I I I I I I
180 -

160 -

140 -

120 -

100 -

80 -

60 -

40-

20 -
>t--.-. -.-.*.-.-.-.-.J<

Origin/l95 Q- _
SPP-2000 +-

T3E-900 a-- _
PIW266 X-

01 I

1
I

2
I I I I I
3

Levels
16

Figure 1. Serial MFlop/second rates.

12

mance monitor indicated that the ratio of floating point operations to floating point

loads is only 1.3, so there is relatively little reuse of operands in the code.

From these data it is clear that the (serial) performance of the processors used

in massively parallel processor systems (MPP) has generally improved over the past

few years and that optimized math libraries are important performance enhancers.

Also note that some effects of the memory hierarchy on performance can be observed

from the variation in the MFlop/second rate as the problem size varies. This is im-

portant in understanding the performance of the parallel runs. For example, for the

transpose-based parallel algorithms, increasing the number of processors typically in-

volves a further decomposition of the vertical dimension, resulting in fewer vertioal

levels assigned to each processor. In this situation, we would expect the computational

rate to increase with increasing numbers of processors.

6. Point-to-Point Communication Performance

Communication overhead is best measured in the context of the full code, but it is

useful to establish a performance baseline by determining the peak achieveable point-to-

point interprocessor communicatio,n performance, analogous to the serial computation

baseline described previously. To characterize the basic communication capabilities

in terms relevant to PSTSWM, we used the PSTSWM SWAP command. Using the

SWAP commands adds one or two extra subroutine calls to the overhead of calling

the underlying transport layer, and multiple “native” commands may be required to

implement the SWAP semantics. Thus the measurements will not necessarily agree

with the measurements reported by other researchers, but they should be comparable.

More importantly, our measurements correspond exactly to the basic interprocessor

communication primitives in PSTSWM and should be consistent and fair across the

different platforms.

PSTSWM performance is more sensitive to bandwidth than to latency, and the pri-

mary focus of these experiments was on determining the achievable bandwidth when

exchanging moderate- to large-size messages. To achieve this, we measured the time

required to exchange 262,144 64-bit floating point numbers between two neighbor-

ing processors. The experiments varied the packet size/number of messages used to

exchange the informationand the- protocol used for the exchange (using the SWAP

13

protocols described in Sect. 3). The smallest message sent was 2 KB (256 REAL*8

values), and the largest was 2 MB. In the results that follow, we refer to these as the

ZA4” experiments. For completeness sake, we also measured the time to swap 1024 and

16,384 64-bit values, using message sizes ranging from 8 B to 8 KBs and from 128 B

to.128 KB, respectively. We refer to these as the 8KB and 128KB experiments.

By varying the number of messages and message size, but leaving the total vol-

ume fixed, we can easily observe both the constant overhead in sending and receiving

messages (looking at differences between measurements) and the achieved bandwidth.

If communication performance satisfied a (latency, bandwidth) linear model [3], these

parameters would be determined exactly, but the effects of changes in protocol, con-

tention for shared resources, and the memory hierarchy make the observed parameters

functions of the message packet size (and the state of the system). Spot estimates of

the parameters are still of interest, and the minimum timing can be used to calculate

the maximum achieved bandwidth for a given experiment.

These experiments also have the practical advantage of not requiring the measure-

ment of either very small or very large execution times. For the larger message counts,

the experiments are similar to the typical measurements of communication cost using

repeated sends and receives. Note however that they move linearly through memory,

with each send and receive accessing unique memory locations. For the smaller mes-

sage counts, the larger overhead of the first call (instruction cache miss) becomes more

noticeable, but the smaller message counts involve the largest messages, so the data

movement itself should dominate the cost. Some intrinsic interest also exists in deter-

mining whether it is better to explicitly send a large message in packets, or whether the

message-passing transport layer takes care of such optimization issues automatically.

Table 5 contains the maximum observed bandwidth and typical SWAP overhead

(“latency”) for the corresponding communication protocol. (Note that this protocol

does not necessarily have the smallest latency.) Figure 2 is a graphical representation

of the bandwidth data. Figure 3 shows details for the 2MB experiments for the optimal

and default protocols for the Origin and T3E platforms.

The following general observations on communication performance on the T3E and

the Origin can be drawn from the summary data:

l The T3E and the Origin demonstrate significant performance improvement over

14

Table 5. Peak observed bandwidth (megabytes/second) and latency (mi-
croseconds) for optimal protocol

Paragon
: MPI
: NX
: SUNMOS

T3D
: SHMEM

SP2
: MPI

SPP-1200
: MPI

T3E900
: MPI
: SHMEM

SPP-2000
: MPI

Origin/l95
: MPI
: SHMEM

Paragon
: MPI
: NX
: SUNMOS

T3D
: SHMEM

SP2
: MPI

SPP-1200
: MPI

T3E-900
: MPI
. SHMEM

SPP-2000
: MPI

Origin/l95
: MPI
: SHMEM

2MB
BW lat. prot.

73 82 (0,6)
76 32 CO,31
293 63 (0>3)

183 19 W)

96 136 (0,4)

45 104 (0,4)

286 30 u42)
543 7 (OJ)

654 39 KV3)

142 39 (OJ)
287 15 W)

2MB
BW lat. prot.

118 75 PJo
118 50 W)
154 35 w

126 12 OS9

71 74 (1J)

29 27 (1,3)

163 29 (176)
336 9 (W

541 ‘20 tw

126 33 (L5)
166 8 (1,1)

Unordered
128KB

BW lat. prot.

70 136 (0,3)
71 83 (073)
- - -

- - -

- - -

245 24 Km
494 7 641)

629 15 W)

128 29 W
222 14 W)

Ordered
128KB

BW lat. prot.

107 105 (1,3)
114 62 (170)
- - -

- - -

- - -

- - -

134 20 (LO)
340 5 w

547 9 (LO)

98 17 (L3)
140 8 w

8KB
BW lat. prot.

48 139 (0,3)
57 74 (0,3)
- - -

- - -

- - -

- - -

66
258

145 23 642)

57 30 (OJ)
114 12 w4

8KB
BW lat. prot.

52 82 (L’J>
75 52 (LO)
- - -

- - -

- - -

- - -

47 21 0,0)
210 5 W)

158 5 W)

40 17 (LO)
71 10 (1,2)

15

sP&xo 4-
T3E.900 -I--.

p--------O

olf
I

id”;; $3;

Pam OPJOSF P-
: SfsP.,, d--

200 -

lco -

0 I f I I
8KB 128KS 2MB

Atmuni of Data Sent Each Direction

Unidiredbnal Swap Bandwidth (MPI)

-ij

8KB l28KB 2MB
Amount of Ma Se”, Eao,, ,,irectbn

800,
Bkfireca’o~l Swap Bandtih (Optimal)

I f I I I

700 -

600 -

500 -

400 -

300 -

SPP.2oca 4-
T3E.900 +-- _

to-------

-o ParagonlSUNMOS Q.-
Orfgiil85 %-

130 d- _
SW66 x-7

Para N’OSF Q-
s&2ca +- -

t ,’
,i,’

203 -

loo -

cl- , I 1 I

8KB 128KB 2MB
hnf of Data Senf Each Direction

8M)

700 -

6cQ -

6co-

ml -

m-

2cm -

Unidirectional Swap Bazxhvkffh (Optimal)

1 , I 1
SPP-2m Q-

T3E-9w +-- _
Origirdl95 .El--

ParagC@SUNMOS SE-
T3D d- _

P--------*

ParagorVOSF +R--
sp2/66 Q-

I’
SPP/lzoo +- -

/
8’

1’
/ _-’

+-- ---.-._ *

/ .*-
//’

+9

0’

Figure 2. Peak observed bandwidth (megabytes/second).

previous generation MPPs of like architecture. (Note that the SPP-2000 perfor-

mance is better than both, for these particular tests.)

l SHMEM achieves considerably higher bandwidth and lower latency than MPI,

but MPI performance is still an improvement over what was achieveable on earlier

systems.

l Significant bidirectional bandwidth is possible on the T3E using either MPI or

SHMEM. On the Origin, MPI does not support bidirectional communication,

although SHMEM does.

l Looking just at the ratio of serial computation and communication rates described

here and in the previous section, the Origin is nearly as sensitive to communica-

tion costs as the most sensitive of the previous generation machines, the SP2/66.

16

Unordere+ SWAP pmtocd timings on oiigitVl95
1 I I I

L

0.01 I I ! I I
1 4 Ni?,ber 64 256 1024

of Messages

0.1 0.1

2
s B

d $
(.,.^

0.01 0.01

i

o.ml N

t

1 4
NL%%r oi hks&

256 1024 1 4 16 64 256 1024
Number 01 Messages

Figure 3. 2MB SWAP experiments.

Ordered SWAP protc-wl timings on origin095

‘/’

0.01
1 4 N:Lr

d
Me*&* 256 1024

Ordered SWAP prmoaDltimings on l38~303

By the same metric, the T3E is more sensitive to communicati,on cost than its

predecessor, the T3D, but not by a large margin.

Space considerations prevent us from presenting the detailed timing data for all of

the different communication protocols, but from these data we conclude the following.

l Latency hiding techniques are not effective on the T3E.

l Latency hiding techniques are effective on the Origin when using SHMEM but

not when using MPI.

l The best performance using MPISENDRECV is near the MPI optimal for both

the Origin and T3E. On the T3E this is somewhat misleading as the optimal

MPISENDRECV performance requires that the message be manually broken

into packets.

17

On the T3E, the achievable bandwidth shows little sensitivity to the communication

protocol when using MPI, and generally the simple protocols are slightly better. On the

Origin, MPI performance is somewhat more sensitive to the communication protocol

but the communication protocol is still not too important. This is a significant differ-

ence from earlier results on the Paragon and the SP2, but is similar to the T3D results,

and appears to reflect the SGI/CR implementation of MPI. When using SHMEM, the

variability is higher (for both systems), but the get-based protocols are optimal or near

optimal.

7. Parallel Algorithm Sensitivities

Some indication of the impact of communication protocol on performance can be seen

from the point-to-point communication tests, but it is difficult to use these results to

predict the effect on application code performance. Here we examine this issue in more

detail, looking at the effect on the performance of specific parallel algorithm options in

PSTSWM.

As described previously, PSTSWM parallel performance is primarily a function of

the performance of the parallel FFT and of the parallel LT, and these have both dis-

tributed and transpose-based implementations. The transpose-based algorithms use

communication within either rows (for the FFT) or columns (for the LT) of the pro-

cessor grid to redo the domain decomposition and allow the use of serial transforms.

Three communication algorithms for the transpose were examined, each of which

is functionally equivalent to MPIALLTOALLV:

l srtrans- sends P-l messages using SENDRECV to transpose across P proces-

sors;

l swtrans- sends P-l messages using SWAP to transpose across P processors;

and

l logtrans- sends O(logP) messages using SWAP to transpose across P proces-

sors.

The algorithms srtrans, swtrans, and logtrans each use different orderings of in-

terprocessor communication between processors, and logtrans sends more data than

18

the other two. For this paper, we restrict our discussion of the communication algo-

rithms to their use in transpose-based parallel FFTs. However, the performance of the

algorithms is not dependent on whether they are used for the FFT or LT except in

the amount of data being moved, and results for the parallel LT were similar.. One

distributed FFT was also examined:

l dfft- sends @(log P) messages using SWAP to calculate Fourier transform dis-

tributed across P processors.

The distributed LT algorithms in PSTSWM are based on the evaluation of dis-

tributed vector sums (within processor columns). Four distributed vector sum algo-

rithms were examined:

l exchsum- an exchange-based algorithm implemented using SWAP;

l halfsum- a recursive halving-based algorithm implemented using SWAP;

l ringsum- a ring-based algorithm implemented using SENDRECV; and

l ringpipe- a pipeline-based algorithm implemented using SENDRECV.

The first three algorithms are functionally equivalent to MPIALLREDUC& The algo-

rithm ringpipe interleaves communication with the computation of the LT., ringpipe

also employs a different decomposition of the spectral domain than the other distributed

LT algorithms, resulting in a slightly smaller parallel complexity.

Each of these eight algorithms can be implemented using the protocols described

in Table 1 in two different ways. The first uses the basic SWAP and SENDRECV

commands to exchange the data. The second reorders the elements of the SWAP or

SENDRECV protocol in an attempt to overlap communication with computation and

to hide communication latency. These algorithms and protocols are described in more

detail in [161. The overlap algorithms using unordered and ordered communication pro-

tocols will be designated by (2,~) and (3, z), respectively, where z E (0, 1,2,3,4,5, S}.

To compare the performance of the different implementation options, we ran the

following experiments. We used one-dimensional decompositions of the form 8x1 or

1 x 8 and 32 x 1 or 1 x 32, where the first decomposition in each pair was for examining

parallel Fourier transform algorithms and the second was for examining parallel LT

19

algorithms. Thus the “other” transform was computed serially, and all interproces-

sor communication was restricted to the parallel algorithm under examination. The

problem sizes were based on T42L16 and T85L32 as they would appear on a two-

dimensional processor grid of size 8x8, 16x32, or 32x16. This was accomplished by

modifying the problem size to achieve the desired granularity (problem size per pro-

cessor) as described in Table 6 and allowed us to examine the performance for problem

granularities that are typical of what would be seen in practice.

Table 6. Problem sizes used for parallel algorithm

Distributed LT Algorithms

studies

Problem Identifier Simulated Problem Actual Problem
Problem P Problem P

J
Problem physical grid P

T42 8 T42L16 8x8 T42L2 64x128~2 8x1
T42 32 T42L16 32x16 T42Ll 64x128~1 32x1
T85 8 T85L32 8x8 T85L4 64x128~4 8x1
T85 32 T85L32 32x16 T85L2 64x128~2 32x1

/

Transpose FFT Algorithms

Problem Identifier Simulated Problem Actual Problem
Problem P Problem P Problem physical grid P

T42 8 T42L16 8x8 T21L8 32x64~8 8x1
T42 32 T42L16 32x16 TlOL16 16x32~16 32x1
T85 8 T85L32 8x8 T42L16 64x128~16 8x1
T85 32 T85L32 32x16 T21L32 32x64~32 32x1

Results for the individual parallel algorithms are presented in Tables 7 and 8. In

Table 7, the first column shows the overall best SHMEM protocol for each parallel

algorithm. Multiple protocols are given when no single protocol is good for all problem

sizes and numbers of processors. The other columns indicate how much performance is

lost by using the (OJ) protocol instead of the optimal SHMEM protocol. In Table 8,

the first column is the overall best MPI protocols for each parallel algorithm. The other

columns indicate how much performance is lost by using the (0,6) protocol instead of

the optimal MPI protocol and by using the optimal MPI protocol instead of the optimal

SHMEM protocol. Note that the run times used in determining performance are for

the full code, not just the individual algorithms, and that the indicated performance

20

loss is a function of both the, size of the messages and the communication/computation

ratio for a given experiment.

Table 7. Effect of SHMEM protocol on performance of parallel algorithms

T3E-900

1 good I
~(o,l),sl~mem-~opt,shmem

t oDt.shmem -’

1 SHMEM
1 DrOtOCOlS

i
,
I io,w,1)

exchsum
halfsum
logtrans
ringpipe
ringsum
srtrans
swtrans

p&-’ P = 32
T42 T85 T42 T85
0% 3% 0% 1%
2% 0% 4% 0%
0% 0% 0% 0%
0% 0% 0% 1%
8% 10% 2% 17%
0% 0% 1% 0%
1% 0% 10% 2%
0% 1% 1% 1%

. .“_.

dfft

dfft
exchsum
halfsum
logtrans
ringpipe
ringsum
srtrans
swtrans

good

SHMEM
protocol:

(0,2),(3,1
(072)
tw
W)
CT4
cw

W,P,1
w,(271

Origin/l95
t(O,l),shmen

p=8to,t,
T42
0%
5%
0%
0%
5%
1%
3%
2%

T85
1%
2%
0%
0%
3%
0%
0%
0%

I- -
shx

t opt,shmem
. . 1,“” . .

nem

P = 32
T42
10%
0%
0%
1%
1%
5%
3%
3% I

T85
7%
2%
0%
0%
2%
2%
0%
4%
,

On the T3E, (0,6) is a good MPI communication protocol for every algorithm

except ringpipe and logtrans, where overlap protocols are sometimes significantly

better. It is surprising, however, to see the good performance of the (0,O) protocol,

involving as it does an explicit local buffer copy via the MPLBSEND command. This

may indicate something about how the other varian+ of SEND are implemented on the .

T3E. The default SHMEM protocol (OJ) is also a good SHMEM protocol for all but a

few algorithms, in which case overlap protocols are superior. SHMEM performance is

significantly better than that of MPIfqall algorithms and problem granularities.

On the Origin, the conclusions are less clear. Although (06) is generally a good

21

Table 8. Effect of MPI protocol on performance of parallel algorithms

dfft
exchsum
halfsum
logtrans
ringpipe
ringsum
srtrans
swtrans

dfft
exchsum
halfsum
logtrans
ringpipe
ringsum
srtrans
swtrans

good

MPI
protocols

(W
wL@,2)

W)> CM
(W, c&2)

w>
Km
(W)
(076)

good

MPI

T3E900
t(0,6),mpi-topt,mpi

p = 8 topt7mpip = 32
T42 T85 T42 T85
1% 1% 0% 1%
1% 2% 1% 0%
0% 2% 1% 1%
0% 1% 8% 2%
7% 9% 2% 1%
0% 0% 0% 0%
2% 0% 0% 0%
1% 1 1% i 0% 1 0%

Origin/l95
t(0,6),mpi-topt,mpi

p = 8 toptfmp'p = 32
protocols T42 T85
(0,6),(2,3) 1% 22%
(0,1),(0,4) 0% 21%
(O&(0,4) 1% 0%

(0,6) 0% 3%
(2,l) 6% 3%
(0,l) 1% 0%
(OJ) 1% 0%
(0,l) 1 0%) 0%

t opt mpi-&pt,shmem

’ to*t,shmem

P=8 1 P=32
T42
14%
9%
9%
16%
19%
11%
18%
16%

T85
14%
15%
12%
22%
49%
28%
31%
29%

t opt,mpi-topt,shmem

p = 8topt’~h”““p = 32

T42 T85 T42
8% 11% 3%
-1% 2% -17%
2% 5% 11%
3% 12% 57%
2% -3%. 66%
2% -8% 79%
1% 0% 112%
1% -1% 115%

MPI protocol, when it is bad, it is very bad. There is some indication that the poor

performance occurs when large messages are being exchanged. The performance of

the default SHMEM protocol is more consistent,’ with only one case where it should

not be used. Unlike on the T3E, MPI is competitive with (or better than) SHMEM in

many cases. Although MPI performs much worse than SHMEM for most of the smaller

granularity cases, where latency is more important than bandwidth, these experiments

are not relevant,. The Origin being tested has only 128 processors, so the simulated

512 processor runs do not reflect the granularities of interest. Concentrating solely

on the 8-processor experiments, SHMEM still appears to be the better choice, but the

bandwidth advantage of SHMEM over MPI that is evident in the SWAP tests in Sect. 6

does not have a noticeable performance impact in these experiments.

22

8. Parallel Algorithm Comparisons

The three transpose algorithms logtrans, srtrans, and swtrans are functionally

equivalent to each other and to MPIALLTOALLV. Similarly, the three distributed

LT algorithms are functionally equivalent to MPLALLREDUCE, Changing from one

algorithm to another within one of these subsets changes only the communication cost,

not the computational complexity or the load balance. Thus the performance dif-

ferences between the algorithms in each subset are also issues of the commu.nication

protocol, where the protocol now includes the number, size, and order of messages.

In this section, we use the data collected in the experiments described in Sect. 7 to

compare performance within the sets of equivalent algorithms. For each algorithm, we

use the optimal communication protocol for a given problem size and number of pro-

cessors. We include in the comparison the performance of a “generic” algorithm, using

a robust protocol that represents what we would choose having no other information

about the performance characteristics of the platform. For the transpose FFT, the

generic algorithm is srtrans, using the (0,6) protocol for MPI and the (0,l) protocol

for SHMEM. For the distributed LT, the generic algorithm is ringsum, using (0,6) for

MPI and (0,l) for SHMEM.

We also -include in the comparison the performance of MPIALLTOALLV and

MPIALLREDUCE. We would hope that the collective commands provided with the

communication library would perform better than our hand-coded Fortran implemen-

tations, but that was not true in our previous studies [14].

The results are given in Figs. 4 and 5. In each figure, the left column of graphs is

for the Origin and the right column is for the T3E. The first row compares the MPI

algorithms, including MPIALLTOALLV or MPI_ALLR,XJUCE. The second row of ..,....~ .(._ ‘. ___ ., ‘_ ,

graphs compares the SHMEM algorithms. The third row of graphs compares the best

MPI algorithm, the best SHMEM algorithm, and the implementation using the MPI

collective communication routine. The comparisons are in terms of the relative perfor-

mance degradation from not using the best algorithm in the relevant set: (t-to&/+.

As before, these are timings of the entire code, not just the collective communication

routines, using the one-dimensional parallel decompositions and modified problem sizes

described in Sect. 7.

23

0.6
Transpose FFTcomparisons on origiil95 (MPI)

I I I c

0.5 -

,9$g 0

snrans 0 -
swtrans x
alitoalv A

0.4 -

.5

E 0.3 -

.c
+ + A

;
E 0.2 -

E
B

0.1 - X
A A *

0 -............... + . . . @ . . .@_.. a__-

-0.1 1 1 ! I

P=32Xl P&Xl P=32xl PZQXl
TlOL16 T21LtJ T21 L32 T42L16

0.4 - -I-

,z
+

1
.E 0.3

f
f +

z 0.2 -

0.1 -

g

0 -................ x?g ~...............-

1 I I I

P=32Xl P=W Px32Xl P=6Xl
TlOLl6 T2lL9 T2lL32 T42L16

0.9 -

.t
2 0.6 -
.G

ii

0
0.4 -

‘5 +
0

0.2 -

0
0 -............... q @ . .._............ B @ _....._.____..__

-0.2 , I t I J
P-32x1 P=6Xl P=3.%1 P=6Xl
TlOI.16 TZlL6 721132 T42Ll6

‘comparisons on 139-903 (MPI) Transpobe FFT
0.5

0.45

0.4 s*ran* 0
swans x

0.35
allealiv A

-I

.E 0.3 - X’

x
.; 0.25 - +

’ 0.2 - +

e
3 0.15 - +

+
0.1 -

0.05 -

0 -............... * .._....... 5 _.__._.__...__.:

-0.05 . I I 1 1

P=32Xl P=6%1 P=32Kl P=SXl
TlOLl6 T21L9 T2lL32 T42L16

0.2
Tranqmse FFTcemparisons on f3e-9W (SHMEM)

4
1 f I

0.19 -

0.14 - 0 +
0.12 -

+

.c
5

0.1 -

ii
0.06 - +

‘S 0.06 -

0.04 -
El X

0.02 -
0 z X

0 - x +g_.._... D .._......... B .___..._......._

-.--
P=32Xl P&Xl P=32X1 P&Xl
TlOLl6 T21L6 12lL32 T42Ll6

0.6
Trawose FFT i&iii aawns on “e-900

I I I 1
0 alnoauv 0

0.7 - mpi + -
shrcem El

0.6 -

TlOLl6 T2lL6 T2lL32 T42L16

Figure 4. Transpose FFT algorithm comparisons: relative performance
degradation as compared to best algorithm.

24

i_ltv xi
o .___.__._ .,.._ 8 _.__..,..___.___ 6 _....__.___.__., g 8 . . .

-0.5 I 1 I I I

P.W2 P=l X8
‘f&E

P&i8
T42Ll T42U TS5L4

Distrib,ded LT comparisons on origirJW5 (SHMEM)
1.6 1 I

4
L

generic 0
1.4 - + exchsum + -

halkum 0

1.2 -
ringsum A

l-

0.8 -

0.6 -

0.4 -
+

0.2 - 2 +

0 _.__........._.. Q_. f) . 6-

-02 I I t I

‘ZZ2
P=t&

‘GE
P&8

T42U T8SL4

Distrhumd LT intedibmly compsrisons on odginW5
l.8 1 t ‘I 1

allreduce 0
1.6 - mpi + -

shmem 0
1.4 -

12 -

.g 0
I-

1
.E

z

0.8 -

z 0.6 -

0.4 - 0

0

0.2 -

o f- ____.____.,.___ & __.__.......,.._ * .__............. Jg p-

-0.2 I I I I I

%2E
P=lx8

‘Fd2T
P=lx8

T42U T85L4

0.5 0.5

0.4 0.4

0.8 0.8

0.2 0.2

0.1 0.1 t t A A

x x 4 4
5 5

1 1

o
1

..___.._...._._ q_.._._ g _.............. a @ . . .
i

0.1 I 1 I I I

pz2E
P=lx8

pTiE
P=ix8

T42U T65L4

Diilrbutd LT compadsons on Me-900 (SHMEMI
0.9 L t , I

+
0.8 -

generic 0
exchsum + -

hallsum q
0.7 - + ringsum A -

0.6 -

0.5 -

0.4 -

0.3 -
a

0.2 -
+’

0.1 - +

o __._.,..____..._ B .._.._._........ a .__._.__........ 4 .._...r......... r$_

4.1 t t 1 I

p%E
P=lx8

‘22
P=lx8

T42U T85L4

0.6 -

0.4
+

-

0
0.2 - 0

c
+ 0 .._......__... 8_..._. t:_......... a ..___..._....... 6 ___............ 1

a.24

%%I?
P=lx8

p%E
P=lx8

T42L2 T85L4

Figure 5. Distributed LT algorithm comparisons: relative performance
degradation as compared to best algorithm.

25

Tranpose FFT Analysis.

l Excluding MPIALLTOALLV, srtrans or swtrans is optimal for the large gran-

ularity cases, and logtrans is optimal for the smallest granularity case in the

MPI comparisons on the Origin and on the T3E.

l The srtrans or swtrans algorithms are optimal for all cases in the SHMEM

comparisons on the Origin and on the T3E.

l MPIALLTOALLV is the optimal MPI implementation for the T3E but it is not

competitive on the Origin.

l The optimal SHMEM algorithms are better than the optimal MPI algorithms on

the T3E, especially for large numbers of processors.

l The optimal SHMEM algorithms are near optimal in all cases on the Origin, but

the best MPI algorithms are competitive in the large granularity cases.

l When compared with the best SHMEM algorithms, MPI-ALLTOTALLV perfor-

mance is never competitive.

In summary, the T3E and the Origin performance comparisons have many similarities.

The major differences are in the comparisons between MPI and SHMEM and in the

relative performance of MPIALLTOALLV.

Distributed LT Analysis.

l The halfsum algorithm is optimal or near optimal in both the MPI and SHMEM

comparisons on the Origin and on the T3E.

l MPIALLREDUCE performance is very poor compared with other MPI algo-

rithms on the Origin and on the T3E.

l The optimal SHMEM algorithms are consistently better than the optimal MPI

algorithms on the T3E.

l The optimal SHMEM algorithms are near optimal in all cases on the Origin, but

the best MPI algorithms are competitive in all but the smallest granularity case.

26

l MPI-ALLREDUCE performance is never competitive.

In summary, the Origin and the T3E distributed LT performance results are very

similar. The only significant differences are in the comparisons between MPI and

SHMEM, and even here the differences are more quantitative than qualitative.

When compared with results on older platforms, the areas of commonality between

the Origin and the T3E are also areas of more general agreement. Either swtrans or

srtrans is best for most problem granularities, and both are competitive. The best

MPI-ALLREDUCE-equivalent distributed LT algorithm is halfsum. The two MPI

collective commands generally perform poorly. The optimality of MPLALLTOALLV

in the T3E MPI comparisons stands out as the most significant difference.

9. Full Simulation Performance

Efficient parallelizations of PSTSWM exploit two-dimensional decompositions of the

domain, parallelizing both the FFTs and LTs [4]. The studies described in Sect. 8

used one-dimensional decompositions that do not capture the performance issues of

process placement and network contention that affect two-dimensional decompositions.

Although some of these deficiencies can be addressed by modifying the one-dimensional

experiments, it is just as convenient to run full two-dimensional simulations at this

stage. We made the assumption that only the most competitive of the many protocol

options examined earlier needed to be reexamined in this context. (However, we were

conservative in this reexamination, retaining 3 to 6 of the most promising protocols

for each algorithm.) Note that some elimination was required. The studies described

in Sect. 7 and Sect. 8 involved approximately 3500 experiments for each platform

and communication library. Retaining all of these options was not feasible for the

,experiments described subsequently.

We considered two classes of parallel algorithms.

l DTH: double transpose for the FFT and halfsum for the LT.’ The double

transpose algorithm uses a transpose to serialize the FFTs, then another trans-

pose to return to a domain decomposition analogous to the original. This ap-

proach has the best load balance among the parallel algorithm options. The

best MPLALLREDUCEequivalent algorithm is clearly halfsum, being optimal

27

on both the T3E and the Origin and for both MPI and SHMEM. We do not

reexamine this evaluation here.

l DR: dfft/ringpipe. This parallel aglorithm combination has good load balance

and has the maximum potential for communication/computation overlap.

DTH and DR stress the underlying transport mechanisms in significantly different

ways and represent different tests of the communication protocol sensitivity. Because

of their good load balances, the performance differences between them reflect primarily

the differences in communication costs.

For each platform we measured the run times when simulating 5 days of the standard

benchmark problem for problem sizes T42L16 and T85L16 using

l SHMEM- the best transpose algorithms (for DTH) and the best communication

protocols for each parallel algorithm for SHMEM implementations, determined

empirically;

l MPI- the best transpose algorithms (for DTH) and the best communication

protocols for each parallel algorithm for MPI implementations, determined em-

pirically;

l GE&-- srtrans (for DTH) and (0,6)-based MPI parallel implementations; and

l COL- MPI collective communication routines MPIALLTOALLV and

MPIALLREDUCE (for DTH),

for logical processor meshes of sizes: 4 x 4, 4 x 8, 8 x 8, 8 x 16, 16 x 16, and 16 x 32.

Algorithms GEN and COL represent the typical algorithm choices if nothing is known

about the communication protocol sensitivities. Measurements were also taken using

8 x 14 for DR and 14 x 8 for DTH since the 128-processor experiments may not run

efficiently on a 128 processor Origin (because of competition with system processes).

Note, however, that the ring algorithm used in DR is sensitive to load imbalances,

and 14 does not divide the chosen problem sizes as well as the powers of two. This is

especially clear in the plots of the T3E results.

Results are presented in Figs. 6 and 7. In each figure, the left column of graphs is

for the Origin and the right is for the T3E. The first row describes performance for the

28

8 16 32 64 128 256 512 1024
PVXl3SSOE

Figure 6. DTH comparisons.

T42L16 problem size and the second row describes performance for the T85L16 problem

size. The average Mflop rate per processor is graphed as a function of the number of

processors for each problem class and problem size. This allows scaling behavior to be

observed easily. Remember that load balance is,very good for these parallel.algorithms

and that the computational rate tends to .&crease wjtlrthe number of processors, so V.~ ..t _. , .,, _ _

performance degradation is primarily caused by increased communication costs.

All of the graphs begin with per-processor rates between 40 and 70 Mflops, indi-

cating significant degradation from the peak serial rates described in Sect. 5. Note,

however, that the total volume of data moved in the parallel algorithms is only a weak

function of the number of processors and that significant data movement is required

even when using small numbers of processors. This is a distinct difference between

spectral models like PSTSWM and models having primarily local dependencies (like

finite difference models) that have a ,“surface-to-volume” communication-cost scaling

29

8 16 32 64 128 256 512 1024

dis!dbufedfWdngpipe on Be-900

Figure 7. DR comparisons.

behavior.

DTH Analysis.

l SHMEM implementations were significantly better than the MPI-based approaches

on the T3E. On the Origin, SHMEM had some advantage over MPI for T85L16

when using small numbers of processors, but the advantage disappeared for

smaller problem granularities. SHMEM was also less robust on the Origin and

was unable to complete the T85L16 problem when using more than 64 processors.

l On the Origin, the MPI collective communication implementation CCL per-

formed poorly, especially for T85L16. On the T3E, COL performed worse than

the other MPI-based implementations except for the very smallest granularity

cases and was never competitive with the SHMEM implementations.

30

l On both the Origin and the T3E, GEiVperformance was reasonably close to that

of the optimal MPI implementation.

l Performance was better on the Origin than on the T3E when using no more

than 64 processors. However, T3E performance scaled much better than Origin

performance for larger numbers of processors.

These results agree well with those of the earlier sections, especially the relative insen-

sitivity of MPI implementations to the choice of protocol and the poor performance of

the MPI collective communication routines. One,.surprise was the strong showing of

SHMEM on the Origin for the large granularity cases, indicating better bandwidth, but

not elsewhere, demonstrating no practical impact of the lower latency. This analysis

is the opposite of that in Sect. 7, and is caused at least partially by a deficiency in

the testing methodology. The smallest simulated processor array used in the earlier

section was 8x8, although the bandwidth effect shows up for even smaller numbers of

processors. Similarly, the practical effect of lower latency using SHMEM was apparent

in the simulated 512-processor runs, which is a much smaller granularity than used in

these experiments.

The difference in scaling between the Origin and the T3E is not unexpected. Part

of the difficulty for the Origin is that the operating system was still in development for

the 128 processor machine .at the time of these experiments. ,However, the T3E was

built to allow scalable performance, but Origin’s shared memory architecture is more

susceptible to contention for bandwidth.

DR Analysis.

l The SHMEM performance behavior was identical to that observed for t,he PTH

experiments. Performance was significantly better than the MPI-based approaches

on the T3E. On the Origin, the SHMEM advantage was limited to the large gran-

ularity cases and it suffered from stability problems.

l On the T3E, GEN performance was reasonably close to that of the optimal MPI

implementation. On the Origin, performance was somewhat worse for T42L16

and significantly worse for T85L16. Apparently, the message patterns used by

31

DR are subject to performance problems on the Origin that can be avoided if

the communication protocol is chosen appropriately.

l Performance on the T3E was comparable to or better than that on the Origin for

small numbers of processors and demonstrated better scaling for all numbers of

processors.

One of the major differences between DR and DTH is the potential for communica-

tion/computation overlap in DR. This may be one reason that the generic protocol

does not perform as well as the MPI optimal on the Origin. As indicated earlier, over-

lap does not seem to be supported in MPI on the T3E, so GENis essentially equivalent

to the optimal MPI implementation there.

An additional difference between the Origin and the T3E is the relative performance

of DR and DTH. Qualitatively, the two algorithm classes perform very similarly on

the Origin. However, on the T3D, DR performance begins much better but scales

much worse and is worse for more than 128 processors.

10. Conclusions

Both the T3E and the Origin 2000 results indicate the importance of considering the

interprocessor communication protocols when tuning performance, but the similarity

in the results ends there. On the T3E, performance is optimized primarily by using

the SHMEM communication library. However, the choice of SHMEM protocol also

makes a difference, and overlap techniques can be very effective. Because SHMEM

communication is blocking, this simply indicates that the relaxed scheduling constraints

.

of the overlapping logic leads to better performance.

Even the choice of the parallel algorithm can have a significant impact on the T3E,

as indicated by the different scaling behaviors of the DR and DTH parallel algorithms.

If an MPI implementation is required, either for portability or for specific MPI func-

tionality, the simple (0,6) or (0,O) protocols perform well. Some tuning may still be re-

quired to determine whether overlap is worth exploiting. Note that MPI-ALLTOALLV

is worth using in an MPI implementation, but that MPLALLREDUCE should be

avoided.

On the Origin, indications are that SHMEM can improve performance for either

32

very large granularity (improved bandwidth) or very small granularity (lower latency),

but neither of these were, relevant for the number of processors or problem sizes ex-

amined here. Moreover, the SHMEM implementations were not as stable~,as, the MPI

implementations. The (0,6) MPI protocol performed well in most cases, but other

choices performed better overall and were more robust. In particular, certain condi-

tions saw the performance of the simple protocols degrade seriously, and care must be

taken to examine protocol sensitivity using the full codes with the number of proces-

sors and problem sizes to be used in production. The two MPI collective commands

examined here performed very poorly.

The methodology described here for examining communication protocol sensitivity

proved very useful. Although some of the results were initially misleading, because

of inappropriate problem granularities, the complete set, from “peak achieveable” to

full code measurements, allowed us to identify and understand the important issues.

We were able to investigate multiple aspects of communication protocol sensitivity

without consuming an inordinate amount of resources and ,have~ some confidence that . .^,

we understand many of the reasons behind the observed performance. We also have

some understanding as to how performance will change if problem size or numbers of

processors are scaled further.

This study concentrated on determining how sensitive performance is to the choice

of communication protocol. The results for the Origin and the T3E show that this

continues to be an issue but that the particulars are platform specific. Note, however,

that this sensitivity is a feature, not a bug, and simply reflects a continued high com-

putation rate/communication rate ratio. The sensitivity would diminish if the vendors

used slower processors, which is not an acceptable solution. Given that the sensitivity

is a feature, it is a feature that the user needs to be aware of to write codes that perform

well.

11. Acknowledgements

This research was supported by the U.S. Department of Energy under Contract DE

AC05-960R22464 with Lockheed Martin Energy Research Corp. We thank NASA-

Ames for access to their SP2 system and Cray Research for access to a T3D system.

We thank the Advanced Computing Laboratory at Los Alamos National Laboratory for

33

access to the SGI/Cray Research Origin 2000. The Intel XP/S 150 MP Paragon oper-

ated by the Center for Computational Science at ORNL is funded by the Department

of Energy’s Mathematical, Information and Computational Sciences Division of the

Office of Computational and Technology Research. Access to the CONVEX Exemplar

SPP-1200 and the HP/CONVEX Exemplar SPP-2000 was supported by the National

Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

under grant ASC960028N. Access to the SGI/Cray Research T3E900 at the National

Energy Research Scientific Computing Center was supported by the Environmental

Sciences Division, U.S. Department of Energy.

34

REFERENCES

[l] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,

R. A. Fatoohi, P. 0. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishan, and S. K. Weeratunga, The NAS Para&l Benchmarks, Inter-

nat. J. Supercomputer Applications, 5 (1991), pp. 63-73.

[2] J. D. Dongarra and T. H. Dunigan, Message-passing performance of variozls com-

pzlters, Concurrency: Practice and Experience, 9 (1997), pp. 915-926.

[3] I. Foster, Designing and Building Parallel Programs, Addison-Wesley Publishing

Company, Reading, Massachusetts, 1995.

[4] I. T. Foster, B. Toonen, and P. H. Worley, Performance of paraEEeE computers for

spectral atmospheric models, J. Atm. Oceanic Tech, 13 (1996), pp. 1031-1045.

[5] I. T. Foster and P. H. Worley, ParaEZeZ aZgorithms for the spectraZ transform method,

SIAM J. Sci. Comput., 18 (1997), pp. 806-837.

[6] A. J. G. Hey, The Genesis distributed-mq+ry benchmarks, Parallel Computing,

17 (1991), pp. 1275-1283.

[7] R. Hackney and M. B. (Eds.), PubZic international benchmar&? for paraZZeZ comput-

ers, parkbench committee report-l, Scientific Programming, 3 (1994), pp. 101-146.

[8] G. R. Luecke and J. J. Coyle, Comparing the performance of MPI on

the Cray T3E-900, the Gray Origin 2000 and the IBM PZSC, Perfor-

mance Evaluation and Modelling of Computer Systems, (1998). http://hpc-

journals.ecs.soton.ac.uk/PEMCS/.

[9] G. R. Luecke, J. J. Coyle, and W. ul Haque, Comparing communication

performance of MPI on the Cray Research T3E-600 and IBM SP-2, Perfor-

mance Evaluation and Modelling of Computer Systems, (1997). http://hpc-

journals.ecs.soton.ac.uk/PEMCS/.

[lo] MPI Committee, MPI: a message-passing interface standard, Internat. J. Super-

computer Applications, 8 (1994), pp. 165-416.

35

[ll] P. Pierce, The NX message-passing interface, Parallel Computing, 20 (1994),

pp. 463-480.

[12] A. J. van der Steen, EuroBen experiences with the SGI Origin 2000 and the

Cruy T3E, Performance Evaluation and Modelling of Computer Systems, (1998).

http://hpc-journals.ecs.soton.ac.uk/PEMCS/.

[13] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, A

standard test set for numerical approximations to the shallow water equations on

the sphere, Tech. Report ORNL/TM-11773, Oak Ridge National Laboratory, Oak

Ridge, TN, 1991.

[14] P. H. Worley, MPI performance evaluation and characterization using a compact

application benchmark code, in Proceedings of the Second MPI Developers Confer-

ence and Users’ Meeting, IEEE Computer Society Press, Los Alamitos, CA, 1996,

pp. 170-177.

[15] P. H. Worley and I. T. Foster, Parallel Spectral Transform Shallow Water Model:

a run time-tunable parallel benchmark code, in Proc. Scalable High Performance

Computing Conf., J. J. Dongarra and D. W. Walker, eds., IEEE Computer Society

Press, Los Alamitos, CA, 1994, pp. 207-214.

[16] P. H. Worley and B. Toonen, A users ’ guide to PSTSWM, Tech. Report

ORNL/TM-12779, Oak Ridge National Laboratory, Oak Ridge, TN, July 1995.

36

17.

18.

19.

20.

21.

22.

23.

24.

ORNL/TM-13682

INTERNAL DISTRIBUTION

1. A. S. Bland
2. J. B. Drake
3. T. H. Dunigan
4. M. R. Leuze
5. C. E. Oliver

6. C. H. Romine
7-11. P. H. Worley

12. T. Zacharia
13. Central Research Library
14. Laboratory Records-RC

15-16. Laboratory Records-OSTI

m EXTERNAL DISTRIBUTION

David C. Bader, Environmental Sciences Division, SC-74, Department of Energy,
19901 Germantown, Rd., Germantown, MD 20874-1290

Patrick A. Crowley, Environmental Sciences Division, SC-74, Department of En-
ergy, 19901 Germantown, Rd., Germantown, MD 20874-1290

Jerry W. Elwood, Environmental Sciences Division, SC-74, Department of Energy,
19901 Germantown, Rd., Germantown, MD 208741290

Dan Hitchcock, Acting Division Director, Division of Mathematical, Information,
and Computational Sciences. U. S. Department of Energy, ER-31,199Ol German-
town Road, Germantown, MD 208741290

Fred Howes, Division of Mathematical, Information, and Computational Sciences.
U. S. Department of Energy, ER-31,199Ol Germantown Road, Germantown, MD
208741290

Tom Kitchens, Division of Mathematical, Information, and Computational Sci-
ences. U. S. Department of Energy, ER-31, 19901 Germantown Road, German-
town, MD 208741290

Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop B265, Los
Alamos, NM 87545

Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, Los
Alamos, NM 87545

