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ABSTRACT

A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior

and damage evolution in random carbon fiber polymer matrix composites (RFPCs). To estimate the overall

elastoplastic damage responses, an effective yield criterion is derived based on the ensemble-volume averaging

process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers. The proposed

effective yield criterion, together with the assumed overall associative plastic flow rule and hardening law,

constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix

composites. First, an effective elastoplastic constitutive damage model for aligned fiber-reinforced composites

is proposed. A micromechanical damage constitutive model for RFPCs is then developed. The average

process over all orientations upon governing constitutive field equations and overall yield function for aligned

fiber-reinforced composites is performed to obtain the constitutive relations and effective yield function

of RFPCs. The discrete numerical integration algorithms and the continuum tangent operator are also

presented to implement the proposed damage constitutive model. The damage constitutive model forms the

basis for the progressive crushing in composite structures under impact loading.
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1. INTRODUCTION

The goal to provide lighter-weight, more fuel-efficient automobiles capable of greater crashworthiness

has provided an incentive for the continued development of advanced materials. Carbon fiber composites,

which are a new breed of high-strength materials, have attracted worldwide attention and hold great promise,

but are significantly more brittle in general, when compared with other polymer composites. Thus, they are

used in composites with a lightweight matrix, such as an epoxy resin (Donnet and Bansal, 1990). It is well

known that organic matrix, fiber-reinforced composites are very susceptible to impact damage, especially

at low velocities. Low-velocity impact can cause significant damage (i.e., matrix cracks and delaminations)

inside the composites. Such damage is very difficult to detect and may cause a significant reduction in the

strength and stiffness of the materials.

Damage accumulation in fiber-reinforced organic matrix composites is a complicated, progressive phe-

nomenon (Groves et al., 1987; Meraghni and Benzeggagh, 1995; Meraghni et al., 1996). It involves multiple

failure modes such as matrix cracking, fiber breakage, delamination, etc. Any of these failure modes may

begin in an early loading stage and progressively accumulate inside the materials (Wang, 1984; Caslini et al.,

1987). The presence of damage can affect the mechanical properties, and subsequent response of composites.

Accordingly, it is essential in structural application of the composites that the accumulated damage can be

predicted, and the effect of such damage on the response and failure of the structures can be determined

accurately. Analyses and tests to assess the crushing of composites during low-velocity impact have been

carried out (Keal, 1983; Price and Hull, 1987). Experimental investigations on fiber-reinforced tubes and

cones indicate a wide range of material damage, such as matrix crushing, delamination, and fiber breakage.

Matrix cracking and delamination often show a rather slowly progressing failure with high energy dissipa-

tion, while fiber breakage may initiate catastrophic collapse of the entire structure with little dissipation of

kinetic energy. It has been noted from these previous studies that the microscopic failure behavior of the

fiber-reinforced composites is still not completely understood. Nevertheless, several attempts to simulate

composite crash damage have been made (Murray, 1989; Matzenmiller and Schweizerhof, 1991; Simunovic

and Zacharia, 1996). A more detailed failure review of fiber-reinforced composites can be found in Matzen-

miller and Schweizerhof (1991), Kutlu and Chang (1995), and Meraghi and Benzeggagh (1995, 1996).

In general, the field of traditional continuum mechanics is based on the continuity, isotropy, and ho-

mogeneity of materials. Therefore, it cannot directly solve the problem for heterogeneous composites, since

fibers or particles are present within the composites and have a significant effect on the mechanical prop-

erties of materials. Hence, micromechanics has been developed to solve the problem on a finer scale and
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encompasses mechanics related to microstructures of materials. Although the concept of micromechanics

can be traced back to the late 1930s (e.g., Goodier, 1937; Eshelby, 1957, 1959, 1961), micromechanics has

only widely been developed since 1980s (e.g., Mura, 1987; Nemat-Nasser and Hori, 1993; Mura et al., 1996).

Micromechanical approaches enable us to evaluate and predict local stress and strain fields in each

constituent. Hence, the derivation of the constitutive equations in the form of a phenomenological parameter

model from entirely micromechanical considerations is required to perform the rigorous analysis of composite

structures. Such an approach is more justified in the case of composite materials reinforced with randomly

oriented discontinuous fibers. Indeed, the microstructure of these materials, the complexity of damage

mechanisms, and the diversity of their scenarios significantly influence their overall properties. Furthermore,

because of the natural tendency of the structure to acquire lower energy modes, both material and structural

damage processes need to be thoroughly understood and modeled to simulate and eventually design the

desirable sustained crush of the component. Therefore, accurate analysis and the ability to simulate the

complete response of components and systems of RFPCs are essential and require accurate micromechanical

damage constitutive models.

Choi and Chang (1992) developed a model for predicting damage in graphite/epoxy laminated compos-

ites resulting from low-velocity point impact. A transient dynamic finite element analysis was adopted for

calculating the stresses and strains inside the composites during impact. In their derivation, failure criteria

were proposed to predict the initial matrix cracking and the size of the interface delaminations in the com-

posites. On the other hand, a micromechanical analysis based on the modified Mori-Tanaka method was

performed by Meraghi and Benzeggagh (1995, 1996) to address the effect of matrix degradation and inter-

facial debonding on stiffness reduction in a random discontinuous-fiber composite. Their modeling relied on

an experimental approach, developed through a methodology of experimental identification of basic damage

mechanisms, which involved amplitude analysis of acoustic emission and microscopic observations. Tohgo

and Weng (1994) and Zhao and Weng (1995, 1996, 1997) proposed progressive interfacial damage models

for ductile matrix composites. They used Weibull’s (1951) probability distribution function to describe the

probability of particle debonding. Recently, Ju and Lee (1999) developed a micromechanical damage model

to predict the overall elastoplastic behavior and damage evolution in ductile matrix composites. In their

derivation, to estimate the overall elastoplastic-damage behavior, an effective yield criterion was derived

based on the ensemble-volume averaging procedure and the first-order effects of eigenstrains stemming from

the existence of inclusions.
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1.1 METHODOLOGY

Following the work of Zhao and Weng (1995) and Ju and Lee (1999), we propose three dimensional

micromechanical damage constitutive models to assess effective elastoplastic behavior of damaged composite

materials and address the damage response of RFPCs. The damage constitutive model forms the basis for

assessing the progressive crushing in composite structures under impact loading. In our derivation, fibers are

assumed to be elastic spheroids that are randomly dispersed in a ductile polymer matrix. Furthermore, the

ductile matrix behaves elastoplastically under arbitrary three-dimensional loading/unloading. All fibers are

assumed to be non-interacting for dilute composite medium and initially embedded firmly in the matrix with

perfect interfaces. After the interfacial debonding between fibers and the matrix, these partially debonded

fibers are regarded as equivalent, transversely isotropic inclusions. It should be noted that the scope of

this work is to predict the overall damage behavior of RFPCs globally; therefore, the local microcrack

propagation and void nucleation at the interfaces are ignored in our derivation. However, it is acceptible

to extend the proposed damage model to accommodate local damage evolution, once new damage growth

model and failure criterion are developed based on rigorous experiments. In the future, the present damage

constitutive model will be extended and be able to account for the effect of interactions of the composite

with high fiber volume fraction. In addition, a new failure criterion based on experimental verifications of

randomly oriented, discontinuous fiber-reinforced composites will also be proposed to perform failure analysis

for RFPCs. Finally, the present micromechanical damage constitutive models will be implemented into the

finite element code, DYNA-3D, to address the progressive crushing in composite structures under impact

loading.

1.2 ORGANIZATION

This report is organized as follows. In Section 2, to predict the overall elastoplastic-damage behavior

of RFPCs, an “effective yield criterion” is micromechanically constructed based on the ensemble-volume

averaging procedure and the first-order effects of eigenstrains due to the existence of discontinuous, randomly

oriented fibers. The proposed elastoplastic-damage formulation is applied to uniaxial, biaxial, and triaxial

loading conditions. An evolutionary, interfacial debonding model is considered in accordance with the

Weibull’s statistical function in Section 3. The explicit relationship is also derived in Section 3 to relate the

average internal stress inside a fiber and the macroscopic total strain. Computational aspects of the proposed

elastoplastic-damage model are the main concern in Section 4. The discrete numerical integration algorithm

is employed to integrate the rate equations in the effective elastoplastic model. The continuum tangent

operator, based on the continuous rate equations, is derived for a special case of implicit time integration
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algorithms in nonlinear finite element methods. In Section 5, the present predictions are compared with

other theoretical predictions and the experimental data. Finally, future research is summarized in Section 6.

4



2. OVERALL ELASTOPLASTIC BEHAVIOR OF RFPCs:

A MICROMECHANICAL FRAMEWORK

2.1 OVERVIEW

The prediction and estimation of the overall “effective” mechanical properties of random heterogeneous

multiphase materials are of great interest to researchers and engineers in many science and engineering

disciplines. The so-called “effective” properties of a heterogeneous composite are obtained by volume- and

ensemble-averaging processes over a representative volume element (RVE) featuring a “mesoscopic” length

scale, which is much larger than the characteristic length scale of inclusions (inhomogeneities), but smaller

than the characteristic length scale of a macroscopic specimen. In this report, all inclusions are assumed to

be embedded firmly in the matrix with perfect interfaces initially. Furthermore, we assume that statistical

homogeneity holds. Therefore, effective (averaged) material properties remain the same for arbitrary aver-

aging domains inside a composite medium. As a result, heterogeneous composites can be represented by

equivalent homogeneous continuum media with appropriately defined effective properties. Mathematically,

this procedure is related to the homogenization method. Examples of heterogeneous inclusions compos-

ites are abundant (e.g., graphite/epoxy composites, ceramic matrix composites, porous and cracked media,

polymer-blended soils, rocks, etc.).

To obtain “effective” constitutive equations and properties of random heterogeneous composites, one

typically performs the ensemble-volume averaging process (homogenization) within an RVE. To avoid the

truncation errors of Green’s functions outside the domain of an RVE, an ellipsoidal RVE itself is embedded

in an infinite (and identical) matrix material within our framework. The entire assembly is subjected to

specified far-field stresses or strains. The volume-averaged stress tensor is defined as

σ̄ ≡ 1
V

∫
σ(x)dx =

1
V

[∫
Vm

σ(x)dx +
n∑

r=1

∫
Vr

σ(x)dx

]
(1)

where V is the volume of an RVE, Vm is the volume of the matrix, Vr is the volume of the rth-phase

inhomogeneities, and n denotes the number of inclusions of different material properties (excluding the

matrix). Similarly, the volume-averaged strain tensor is defined as

ε̄ ≡ 1
V

∫
V

ε(x)dx =
1
V

[∫
Vm

ε(x)dx +
n∑

r=1

∫
Vr

ε(x)dx

]
≡ 1

V

[
Vmε̄m +

n∑
r=1

Vr ε̄r

]
(2)

Moreover, the effective elastic stiffness tensor C∗ of the composite is defined through

σ̄ ≡ C∗ : ε̄ (3)
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where “:” signifies the tensor contraction.

According to Eshelby’s equivalence principle (Eshelby, 1957, 1961), the perturbed strain field ε′(x)

induced by inhomogeneities (inclusions with properties different from those of the homogeneous matrix) can

be related to specified eigenstrain ε∗(x) by replacing the inhomogeneities with the matrix material. That is,

for the domain of q-phase inhomogeneities with the elasticity tensor Cq, we have

Cq : [εo + ε′(x)] = C0 : [εo + ε′(x)− ε∗(x)] (4)

where C0 is the stiffness tensor of the matrix and εo is the uniform strain field by far-field loads for a

homogeneous matrix material only. C0 and Cq could be isotropic or anisotropic if the eigenstrain field

ε∗(x) is uniform in V . In Figure 1, the strain at any point within an RVE is decomposed into two parts:

(a) the uniform strain εo (without inhomogeneities), and (b) the perturbed strain ε′(x) due to distributed

eigenstrains ε∗(x). It is emphasized that the eigenstrain ε∗(x) is nonzero in the inclusion domain and zero in

the matrix domain, respectively. In particular, the perturbed strain field induced by distributed eigenstrains

ε∗ can be expressed as

ε′(x) =
∫
V

G(x − x′) : ε∗(x′)dx′ (5)

where V is the volume of an RVE and x,x′ ∈ V . In addition, G is the second derivative of the Green’s

function in a linear elastic homogeneous matrix. For example, for a linear, elastic isotropic matrix, we have

Gijkl =
1

8π(1− ν0)r3
[−15ninjnknl + 3ν0(δiknjnl + δilnjnk + δjkninl + δjlnink)

+ 3δijnknl + 3(1− 2ν0)δklninj − (1− 2ν0)δijδkl + (1 − 2ν0)(δikδjl + δilδjk)]
(6)

where r = x − x′, r =‖ x − x′ ‖ and n = r/r. Further, summation convention applieds, δij denotes the

Kronecker delta and ν0 is Poisson’s ratio of the homogeneous matrix. Eshelby (1957, 1959) used a fourth-

rank tensor S, which is traditionally called Eshelby’s tensor, to describe the strain and stress fields in the

inclusion domain. The Eshelby’s tensor is defined as

S(x) =
∫

Ω

G(x− x′)dx′ (7)

in which x is the local point inside the inclusion domain Ω.

Total strain at any point x in the matrix is given by superposition of uniform strain εo and the perturbed

strain ε′ induced by inclusions (inhomogeneities)

ε(x) = εo + ε′(x) = εo +
∫
V

G(x− x′) : ε∗(x′)dx′ (8)
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Therefore, the volume-averaged strain tensor is given by

ε̄ = εo +
1
V

∫
V

∫
V

G(x− x′) : ε∗(x′)dx′dx = εo +
1
V

∫
V

[∫
V

G(x− x′)dx
]
: ε∗(x′)dx′ (9)

When considering the strain and stress fields at a local point x that is outside inclusion, we define a

fourth-rank tensor Ḡ(x), which is called the exterior-point Eshelby’s tensor as (see Eshelby, 1959; Mura,

1987)

Ḡ(x) ≡
∫

Ω

G(x− x′)dx′ (10)

where x ∈ V − Ω.

Exterior-point Eshelby’s tensor Ḡ(x) of an ellipsoidal inclusion can be derived by introducing an outward

unit normal vector n̂ at a matrix point x on the new imaginary ellipsoid surface (Figure 2) which can be

defind as

n̂i =
xi

(a2
I + ϑ)

√
Θ(ϑ)

(11)

where

Θ(ϑ) ≡ Θi(ϑ)Θi(ϑ) (12)

and

Θi(ϑ) ≡ xi

a2
I + ϑ

(13)

in which aI(I = 1, 2, 3) is one of the three semi-axes of the ellipsoid, and ϑ is taken as positive and can

be uniquely solved in terms of local point x of matrix and aI . With the help of the above definitions, the

exterior-point Eshelby’s tensor Ḡ(x) can be explicitly expressed as (see, Ju and Sun, 1999)

Ḡ(x) =S(1)
IK(ϑ)δijδkl + S(2)

IJ (ϑ)(δikδjl + δilδjk) + S(3)
I (ϑ)δij n̂kn̂l

+ S(4)
K (ϑ)δkln̂in̂j + S(5)

I (ϑ)(δikn̂j n̂l + δiln̂j n̂k) (14)

+ S(6)
J (ϑ)(δjk n̂in̂l + δjln̂in̂k) + S(7)

IJKL(ϑ)n̂in̂j n̂kn̂l

As a special case, if two of the three semi-axes of the ellipsoid are the same, then the ellipsoid will

become a spheroid. Let us assume that a1 �= a2 = a3, where the spheroid aspect ratio α is defined as

α ≡ a1/a2. Following Ju and Sun (1999), if all fibers are spheroid and the matrix is linear elastic, then the

components of the exterior-point Eshelby’s tensor can be written as

S(1)
11 (ϑ) =

[
−4ν0 − 2

α2 − 1

]
g(ϑ)− 2

3(α2 − 1)
ρ3
1(ϑ) +

[
4ν0 +

2
α2 − 1

]
ρ1(ϑ)ρ2

2(ϑ) (15)

S(1)
12 (ϑ) = S(1)

13 (ϑ) =
[
−4ν0 +

2α2 + 1
α2 − 1

]
g(ϑ) +

[
4ν0 − 2α2

α2 − 1

]
ρ1(ϑ)ρ2

2(ϑ) (16)
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S(1)
21 (ϑ) = S(1)

31 (ϑ) =
[
−2ν0 − 2α2 + 1

α2 − 1

]
g(ϑ)− 2α2

α2 − 1
ρ1(ϑ)ρ2

2(ϑ) (17)

S(1)
22 (ϑ) = S(1)

23 (ϑ) = S(1)
32 (ϑ) = S(1)

33 (ϑ) =
[
−2ν0 +

4α2 − 1
4(α2 − 1)

]
g(ϑ) +

α2

2(α2 − 1)
ρ4
2(ϑ)
ρ1(ϑ)

(18)

S(2)
11 (ϑ) =

[
−4ν0 +

4α2 − 2
α2 − 1

]
g(ϑ)− 2

3(α2 − 1)
ρ3
1(ϑ)−

[
4ν0 − 4α2 − 2

α2 − 1

]
ρ1(ϑ)ρ2

2(ϑ) (19)

S(2)
12 (ϑ) = S(2)

13 (ϑ) = S(2)
21 (ϑ) = S(2)

31 (ϑ) =
[
−ν0 − α2 + 2

α2 − 1

]
g(ϑ)−

[
2ν0 +

2
α2 − 1

]
ρ1(ϑ)ρ2

2(ϑ) (20)

S(2)
22 (ϑ) = S(2)

23 (ϑ) = S(2)
32 (ϑ) = S(2)

33 (ϑ) =
[
2ν0 − 4α2 − 7

4(α2 − 1)

]
g(ϑ) +

α2

2(α2 − 1)
ρ4
2(ϑ)
ρ1(ϑ)

(21)

where

g(ϑ) =




− α2

α2−1
ρ2
2(ϑ)

ρ1(ϑ) +
α

(α2−1)3/2 ln
[
(α2 − 1)1/2ρ2(ϑ) +

αρ2(ϑ)
ρ1(ϑ)

]
, for α > 1

− α2

α2−1
ρ2
2(ϑ)

ρ1(ϑ) +
α

(1−α2)3/2 tan
−1 α

(1−α2)1/2ρ1(ϑ)
, for α < 1

(22)

and

ρI(ϑ) ≡ aI√
a2
I + ϑ

(23)

ρ(ϑ) ≡ [ρ1(ϑ)ρ2(ϑ)ρ3(ϑ)]1/3 (24)

Furthermore, interior-point Eshelby’s tensor of a spheroidal inclusion can be obtained by letting ϑ = 0

in Equations 15-21 (dropping 0)

S(x) ≡
∫

Ω

G(x− x′)dx′, x ∈ Ω

=S(1)
IKδijδkl + S(2)

IJ (δikδjl + δilδjk) (25)

with

S(1)
11 =

[
4ν0 +

2
α2 − 1

]
η + 4ν0 +

4
3(α2 − 1)

(26)

S(1)
12 = S(1)

13 =
[
4ν0 − 2α2 + 1

α2 − 1

]
η + 4ν0 − 2α2

α2 − 1
(27)

S(1)
21 = S(1)

31 =
[
−2ν0 − 1 + 2α2

α2 − 1

]
η − 2α2

α2 − 1
(28)

S(1)
22 = S(1)

23 = S(1)
32 = S(1)

33 =
[
−2ν0 − 4α2 − 1

4(α2 − 1

]
η +

α2

2(α2 − 1)
(29)

S(2)
11 =

[
−4ν0 +

4α2 − 2
α2 − 1

]
η − 4ν0 +

12α2 − 8
3(α2 − 1)

(30)

S(2)
12 = S(2)

13 = S(2)
21 = S(2)

31 =
[
−ν0 − α2 + 2

α2 − 1

]
η − 2ν0 − 2

α2 − 1
(31)

S(2)
22 = S(2)

23 = S(2)
32 = S(2)

33 =
[
2ν0 − 4α2 − 7

4(α2 − 1)

]
η +

α2

2(α2 − 1)
(32)

where

η = g(0) =




α
(α2−1)3/2 [cosh−1α− α(α2 − 1)1/2], for α > 1

α
(1−α2)3/2 [α(1 − α2)1/2 − cos−1α], for α < 1

(33)
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Alternatively, Eshelby’s tensor for a spheroidal inclusion given in Equation 25 can be rephrased in a

transversely isotropic fourth-rank tensor form

Sijkl = F̃ijkl(S1, S2, S3, S4, S5, S6) (34)

where a transversely isotropic fourth-rank tensor F̃ is defined by six parameters bm (m = 1 to 6)

F̃ijkl(bm) =b1ñiñj ñkñl + b2(δikñj ñl + δilñj ñk + δjkñiñl + δjlñiñk)

+ b3δij ñkñl + b4δklñiñj + b5δijδkl + b6(δikδjl + δilδjk)
(35)

with the unit direction vector ñ and index m=1 to 6. For a spheroid of a1 �= a2 = a3, the 1-direction is

chosen as symmetric; and therefore, we have ñ1 = 1, ñ2 = ñ3 = 0. In addition, the six parameters on the

right-hand side of Equation 34 take the form

S1 =
1
16

16 + 45η + 54α2 + 60ηα2

(ν0 − 1)(1− α2)
(36)

S2 =
1
16

8 + 15η − 8ν0 − 12ην0 + 2α2 + 8ν0α
2 + 12ην0α

2

1− ν0 − α2 + ν0α2
(37)

S3 =
1
16

3η + 10α2 + 12ηα2

(ν0 − 1)(α2 − 1)
(38)

S4 =
1
16

3η + 16ν0 + 24ην0 + 10α2 + 12ηα2 − 16ν0α
2 − 24ν0ηα

2

(ν0 − 1)(α2 − 1)
(39)

S5 =
1
16

η − 8ην0 − 2α2 − 4ηα2 + 8ν0ηα
2

(ν1 − 1)(α2 − 1)
(40)

S6 =
1
16

−7η + 8ν0η − 2α2 + 4ηα2 − 8ν0ηα
2

1− ν0 − α2 + ν0α2
(41)

2.2 EFFECTIVE ELASTOPLASTIC BEHAVIOR OF COMPOSITES WITH ALIGNED DIS-

CONTINUOUS FIBERS

Let us start by considering an initially perfectly bonded two-phase composite consisting of a matrix

(phase 0) with bulk modulus κ0 and shear modulus µ0, and randomly dispersed, aligned spheroidal fibers

(phase 1) with bulk modulus κ1 and shear modulus µ1. When spheroidal inclusions (discontinuous fibers)

are aligned in the 1-direction, the composite as a whole is transversely isotropic. Subsequently, as loadings or

deformations are applied, some fibers are partially debonded (phase 2), and these partially debonded fibers

are regarded as equivalent, transversely isotropic inclusions.

Following Zhao and Weng (1996, 1997), a partially debonded isotropic fiber can be replaced by an

equivalent, perfectly bonded fiber which possesses yet unknown transversely isotropic moduli. The transverse

isotropy of the equivalent fiber can be determined in such a way that: (a) its tensile and shear stresses will
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always vanish in the debonded direction, and (b) its stresses in the bonded directions exist, since the fiber

is still able to transmit stresses to the matrix on the bonded surfaces.

When the 1-direction is chosen as symmetric and the plane 2-3 isotropic, the stress-strain relation of a

typical transversely isotropic solid can be written as


σ11

σ22

σ33

σ23

σ13

σ12




=




C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55







ε11

ε22

ε33

2ε23

2ε13

2ε12




(42)

The components of the stiffness matrix take the form

C22 + C23

2
= k, C12 = l, C11 = n̄,

C22 − C23

2
= C44 = m,C55 = p

(43)

where k is the plane stress bulk modulus for the lateral dilatation without longitudinal extension (k = κ+ µ
3 ),

m is the rigidity modulus for shearing in any transverse direction, n̄ denotes the modulus for the longitudinal

uniaxial straining, l denotes the associated cross-modulus, and p signifies the axial shear modulus (Hill, 1964).

Therefore, the stress-strain relations for partially debonded composite can be rephrased as

1
2
(σ22 + σ33) = k(ε22 + ε33) + lε11,

σ11 = l(ε22 + ε33) + nε11,

σ22 − σ33 = 2m(ε22 − ε33),

σ23 = 2mε23, σ12 = 2pε12, σ13 = 2pε13

(44)

It can be easily seen that, by using the inverse of generalized Hook’s law, the compliance matrix for a

transversely isotropic material may be expressed in the form




ε11

ε22

ε33

2ε23

2ε13

2ε12




=




k
l2+kn

l
2(l2−kn)

l
2(l2−kn) 0 0 0

l
2(l2−kn)

−l2+kn+mn
4m(−l2+kn)

l2−kn+mn
4m(−l2+kn) 0 0 0

l
2(l2−kn)

l2−kn+mn
4m(−l2+kn)

−l2+kn+mn
4m(−l2+kn) 0 0 0

0 0 0 1
m 0 0

0 0 0 0 1
p 0

0 0 0 0 0 1
p







σ11

σ22

σ33

σ23

σ13

σ12




(45)
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For the special case of uniaxial loading, Equation 45 can be simplified as

εij =




k
−l2+kn 0 0

0 l
2(l2−kn) 0

0 0 l
2(l2−kn)


σ11 (46)

The transversely isotropic fiber can be considered to be under the condition of plane stress with the

components in the 1-direction being zero. To ensure the equivalence between a partially debonded isotropic

fiber and an equivalent, perfectly bonded transversely isotropic fiber, the elastic moduli of a transversely

isotropic fiber, with the condition σ11 = σ12 = σ13 = 0, can be derived as

k2 =
µ1(3k1 − µ1)

k1 + µ1
, l2 = 0, n2 = 0, m2 = µ1, p2 = 0 (47)

where the subscripts 1 and 2 refer to phases 1 and 2 moduli, respectively.

In accordance with the notation given in Equation 43 and the the transversely isotropic fourth-rank

tensor F̃ defined in Equation 35, the stiffness tensor C2 for the equivalent, transversely isotropic fiber can

be represented as

C2 = F̃ijkl(t1, t2, t3, t4, t5, t6) (48)

where the six parameters on the right-hand side take the form

t1 = k2 + n2 +m2 − 4p2 − 2l2 (49)

t2 = −m2 + p2 (50)

t3 = −k2 +m2 + l2 (51)

t4 = −k2 +m2 + l2 (52)

t5 = k2 −m2 (53)

t6 = m2 (54)

The relationship between the stress tensor σ and the strain tensor ε at any point x in the q-phase (q =

0, 1, 2) is governed by

σ(x) = Cq : ε(x) (55)

where “:” denotes the tensor contraction and Cq is the elasticity tensor of the q-phase.

Effective elastic moduli of multi-phase composites containing randomly located, unidirectionally aligned

elastic ellipsoids were explicitly derived by Ju and Chen (1994a) accounting for far-field perturbations. For

a multi-phase composite, the effective (noninteracting) elasticity tensor C∗ reads

C∗ = C0 ·
{
I+B · (I− S ·B)−1

}
(56)
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where I is the fourth-rank identity tensor, “·” denotes the tensor multiplication and B takes the form

B =
n∑

q=1

φq(S+Aq)
−1 (57)

Here, n signifies the number of inclusion phases of different material properties, and φq denotes the volume

fraction of the q-phase. In addition, the fourth-rank tensor Aq is defined as

Aq = [Cq −C0]−1 ·C0 (58)

Accordingly, in the case of aligned (in the x1-direction) fiber-reinforced composites, the effective elastic

stiffness tensor C∗ can be explicitly derived as

C∗ = C
(1)
IKδijδkl + C

(2)
IJ (δikδjl + δildjk) (59)

where

C
(1)
IK = λ0 −

2∑
r=1

(
2µ0φr

(Ψr)IK
(ψr)II

+
λ0φr

(ψr)KK
− λ0φr

3∑
m=1

(Ψr)mK

(ψr)mm

)
(60)

C
(2)
IJ = µ0

2∑
r=1

(
1 +

φr

(ψr)IJ

)
(61)

with

(ψr)IJ = 2[(Zr)2 + (1− φr)S
(2)
IJ ] (62)

(Ψr)I1 =
(ξr)2[(Zr)1 + (1− φr)S

(1)
I1 ]− 2(ξr)4[(Zr)1 + (1− φr)S

(1)
I2 ]

(ξr)1(ξr)2 − 2(ξr)3(ξr)4
(63)

(Ψr)I2 = (Ψr)I3 =
(ξr)1[(Zr)1 + (1− φr)S

(1)
I2 ]− (ξr)3[(Zr)1 + (1 − φr)S

(1)
I1 ]

(ξr)1(ξr)2 − 2(ξr)3(ξr)4
(64)

and

(ξr)1 = (Zr)1 + (1− φr)S
(1)
11 + (ψr)11 (65)

(ξr)2 = 2(Zr)1 + 2(1− φr)S
(1)
22 + (ψr)22 (66)

(ξr)3 = (Zr)1 + (1− φr)S
(1)
12 (67)

(ξr)4 = (Zr)1 + (1− φr)S
(1)
21 (68)

where the components of Eshelby’s tensor S(1)
11 , ..., S

(1)
21 are given in Equations 26-32 and

(Zr)1 =
λ0µr − λrµ0

(µr − µ0)[2(µr − µ0) + 3(λr − λ0)]
(69)

(Zr)2 =
µ0

2(µr − µ0)
(70)
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It is noted that C(1)
12 = C

(1)
13 , C

(1)
21 = C

(1)
31 , C

(1)
22 = C

(1)
23 = C

(1)
32 = C

(1)
33 , C

(2)
12 = C

(2)
21 = C

(2)
13 = C

(2)
31 , C

(2)
22 =

C
(2)
33 = C

(2)
23 = C

(2)
32 . Thus, as expected, the overall elastic stiffness tensor C∗ in Equation 59 for aligned

fiber-reinforced composites is transversely isotropic.

We now consider the overall elastoplastic responses of progressively debonded fiber-reinforced compos-

ites, which initially feature perfect interfacial bonding between fibers and the matrix in two-phase composites.

It is known that partial interfacial debonding may occur in some fibers under applied loading. Therefore, an

original two-phase composite may gradually become a three-phase composite consisting of the matrix, per-

fectly bonded fibers, and partially debonded fibers. In what follows, for simplicity, we will regard partially

debonded fibers as equivalent, perfectly bonded transversely isotropic fibers. Also for simplicity, the von

Mises yield criterion with isotropic hardening law is assumed. Extension of the present framework to general

yield criterion and the general hardening law, nevertheless, is straightforward. Accordingly, at any matrix

material point, the stress σ and the equivalent plastic strain ēp must satisfy the following yield function:

F (σ, ēp) = H(σ)−K2(ēp) ≤ 0 (71)

in whichK(ēp) is the isotropic hardening function of the matrix-only material. Furthermore, H(σ) ≡ σ : Id :

σ denotes the square of the deviatoric stress norm, where Id signifies the deviatoric part of the fourth-rank

identity tensor I

Id ≡ I− 1
3
1⊗ 1 (72)

in which 1 represents the second-rank identity tensor and “⊗” denotes the tensor expansion.

According to the theory of continuum plasticity, the total strain ε can be decomposed into two parts

ε = εe + εp (73)

where εe is the elastic strain of the matrix or fibers, and εp represents the stress-free plastic strain in the

plastic matrix only. In addition, elastic response on elastic stain is defined as

σ̄ = C∗ : ε̄e (74)

In order to solve the elastoplastic response exactly, the stress at any local point has to be solved and

then used to determine the plastic response through the local yield criterion for all possible configurations.

This approach is generally infeasible due to the complexity of statistical and microstructural information.

Therefore, we propose a framework in which an ensemble-averaged yield criterion is constructed for the

entire composite. The methodology is generally parallel to the work of Ju and Chen (1994a) and Ju and Lee

(1999) in which only the first order effects are considered in the formulation of effective plastic response.
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In the following, small strains are assumed; and therefore, the statistical microstructure of fibers em-

bedded in a ductile matrix remains essentially the same. Hence, the microstructure is taken as statistically

homogeneous and isotropic with a virtually constant volume fraction for the summation of perfectly bonded

fibers and partially debonded fibers during the deformation process. Furthermore, both perfectly bonded

fibers and partially debonded fibers are considered as spheroids of uniform size. The extension to accommo-

date different or distributed sizes of fibers is readily feasible.

Following Ju and Lee (1999), we denote, by H(x|G), the square of the “current stress norm” at the local
point x, which determines the plastic strain in a composite for a given phase configuration G. Since there is
no plastic strain in the elastic perfectly bonded fibers or partially debonded fibers, H(x|G) can be written

as

H(x|G) =
{

σ(x|G) : Id : σ(x|G), if x in the matrix;

0, otherwise.
(75)

In addition, 〈H〉m(x) is defined as the ensemble average of H(x|G) over all possible realizations where x
is in the matrix phase. Here, the angled bracket 〈·〉 signifies the ensemble average operator. Let P (Gq) be the

probability density function for finding the q-phase (q = 1, 2) configuration Gq in the composite. 〈H〉m(x)
can be obtained by integrating H over all possible perfectly bonded fibers and partially debonded fibers

configurations (for a point x in the matrix)

〈H〉m(x) = Ho +
∫
G1

{H(x|G1)−Ho}P (G1) dG +
∫
G2

{H(x|G2)−Ho}P (G2) dG (76)

where Ho is the square of the far-field stress norm in the matrix:

Ho = σo : Id : σo (77)

Moreover, the total stress at any point x in the matrix is the superposition of the far-field stress σo and

the perturbed stress σ′ due to the presence of the particles and voids:

σ(x) = σo + σ′(x) (78)

in which σo and σ′ are defined as

σo ≡ C0 : εo (79)

σ′(x) ≡ C0 :
∫
V

G(x− x′) : ε∗1(x
′) dx′ +C0 :

∫
V

G(x− x′) : ε∗2(x
′) dx′ (80)

where εo is the elastic strain field induced by the far-field loading, ε∗q(x
′) denotes the elastic eigenstrain in

the q-phase (q = 1, 2 only), and x′ resides in either a perfectly bonded fiber or a partially debonded fiber.
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Further, C0 denotes the fourth-rank elasticity tensor of the matrix, and V is the statistically representative

volume element.

The unknown elastic eigenstrain ε∗q(x) within the q-phase can be solved by the integral equation obtained

from Eshelby’s equivalence principle (Eshelby, 1957). The outcome is

−Aq : ε∗q(x) = εo +
∫
V

G(x− x′) : ε∗q(x
′) dx′ (81)

where the fourth-rank tensor Aq is defined in Equation 58.

According to Eshelby (1957), the (elastic) eigenstrain for a single ellipsoidal inclusion is uniform for the

interior points of an isolated (i.e., noninteracting) inclusion. Consequently, the constant (elastic) eigenstrain

can be moved out of the integral in Equation 80 in accordance with the first-order approximation approach

proposed by Ju and Chen (1994a). It is noted that, for the first-order approximation method, the interactions

among fibers are neglected in the process of collecting the perturbations of stresses at a local matrix point

for the purpose of predicting the plastic behavior. Therefore, the perturbed stress for any matrix point x

due to a typical isolated q-phase inhomogeneity centered at x(1)
q takes the form

σ′(x|x(1)
q ) = [C0 · Ḡ(x− x(1)

q )] : ε∗oq (82)

where ε∗oq is the solution of the (elastic) eigenstrain ε∗q for the single inclusion problem of the q-phase, and

Ḡ(x− x(1)
q ) ≡

∫
Ω

(1)
q

G(x − x′) dx′ (83)

for x �∈ Ω(1)
q in which Ω(1)

q is the single inhomogeneity domain centered at x(1)
q in the q-phase.

Moreover, the elastic “noninteracting” eigenstrain ε∗oq in Equation 82 is given by

ε∗oq = −(Aq + S)−1 : εo, q = 1, 2 (84)

where S is Eshelby’s tensor for a spheroidal inclusion (see Ju and Chen 1994a and 1994b for example).

As indicated before, a matrix point receives the perturbations from perfectly bonded fibers and partially

debonded fibers. Therefore, the ensemble-average stress norm for any matrix point x can be evaluated by

collecting and summing up all the current stress norm perturbations produced by any typical perfectly

bonded fiber centered at x(1)
1 in the perfectly bonded fiber domain and any typical partially debonded fiber

centered at x(1)
2 in the partially debonded fiber domain, and averaging over all possible locations of x(1)

1 and

x(1)
2 . As a result, we arrive at

〈H〉m(x) ∼=Ho +
∫
x

(1)
1 �∈Ξ(x)

{
H(x|x(1)

1 )−Ho
}
P (x(1)

1 ) dx(1)
1
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+
∫
x

(1)
2 �∈Ξ(x)

{
H(x|x(1)

2 )−Ho
}
P (x(1)

2 ) dx(1)
2 + ..... (85)

where Ξx is the exculsion zone and P (x(1)
1 ) and P (x(1)

2 ) denote the probability density functions for finding

a perfectly bonded fiber centered at x(1)
1 and a partially debonded fiber centered at x(1)

2 , respectively. Here,

for simplicity, P (x(1)
1 ) and P (x(1)

2 ) are assumed to be statistically homogeneous, isotropic and uniform. That

is, we assume that the probability density functions take the form P (x(1)
1 ) = N1

V and P (x(1)
2 ) = N2

V , where

N1 and N2 are the total numbers of perfectly bonded fibers and partially debonded fibers, respectively,

dispersed in a representative volume V . We define a tiny equal-volume spherical probabilistic zone with the

radius a∗ = (a1a
2
2)

1/3, or a∗ = a1/α
2/3, where α = a1/a2 is the aspect ratio (the ratio of length to diameter)

of a spheroid. Further, owing to the assumption of statistical isotropy and uniformity Equation 85 can be

recast into a more convenient form:

〈H〉m(x) ∼=Ho +
N1

V

∫
r̂1>a∗

dr̂1

∫
A(r̂1)

{H(r̂1)−Ho} dA

+
N2

V

∫
r̂2>a∗

dr̂2

∫
A(r̂2)

{H(r̂2)−Ho} dA+ .... (86)

where A(r̂q) is a spherical surface of radius r̂q (q = 1, 2) in the probability space.

Upon integrating the surface integration for ensemble average, the following two identities are needed

∫
A(r̂q)

n̂in̂j dA =
4πr̂2q
3

∆Iδij (87)∫
A(r̂q)

n̂in̂j n̂kn̂l dA =
4πr̂2q
15

[∆IKδijδkl +∆IJ(δikδjl + δilδjk)] (88)

where the components of ∆I and ∆IJ read:

∆1 =
3[1− α4f(α2)]

1− α4
(89)

∆2 = ∆3 =
1
2
(3−∆1) (90)

∆IJ =



b c c

c d d

c d d


 (91)

with

f(α) =




cos−1α
α
√

1−α2 , α < 1

cosh−1α
α
√

α2−1
, α > 1

(92)

and

b =
5

2(1− α4)2
[2 + α4 − 3α4f(α2)] (93)
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c =
15α4

4(1− α4)2
[−3 + (1 + 2α4)f(α2)] (94)

d =
1
8
(15− 3b− 4c) (95)

With the help of two identities in Equations 87-88 and by dropping higher order terms, the integral on

the right-hand side of Equation 86 can be evaluated and we arrive at the ensemble-averaged current stress

norm at any matrix point

〈H〉m(x) = σo : T : σo (96)

The components of the positive definite fourth-rank tensor T read

Tijkl = T
(1)
IKδijδkl + T

(2)
IJ (δikδjl + δilδjk) (97)

where

T
(1)
IK =− 1

3
+

2∑
r=1

2φr

4725(1− ν0)2(Br)II(Br)KK

{
1575(1− 2ν0)2(Λr)II(Λr)KK

+ 21(25ν0 − 23)(1− 2ν0)[(Λr)II∆K + (Λr)KK∆I ]

+ 21(25ν0 − 2)(1− 2ν0)[(Λr)II + (Λr)KK ] + 3(35ν2
0 − 70ν0 + 36)∆IK

+7(50ν2
0 − 59ν0 + 8)(∆I +∆K)− 2(175ν2

0 − 343ν0 + 103)
}

(98)

T
(2)
IJ =

1
2
+

2∑
r=1

φr

1575(1− ν0)2(Br)IJ (Br)IJ

{
(72− 140ν0 + 70ν2

0)∆IJ

−(75− 266ν0 + 175ν2
0)
∆I +∆J

2
+ 164− 476ν0 + 350ν2

0

}
(99)

in which the (current) volume fraction for r-phase is defined as φr =
4π(a∗)3

3
Nr

V . Further, we have

(Br)IJ = 2[(Zr)2 + S(2)
IJ ] (100)

(Λr)I1 =
(Xr)I1
(X̃r)

(101)

(Λr)I2 = (Λr)I3 =
(Xr)I2
(X̃r)

(102)

where

(Xr)I1 = [2(Zr)1 + 2S(1)
22 + (Br)22][(Zr)1 + S(1)

I1 ]− 2[(Zr)1 + S(1)
21 ][(Zr)1 + S(1)

I2 ] (103)

(X̃r) = [2(Zr)1 + 2S(1)
22 + (Br)22][(Zr)1 + S(1)

11 + (Br)11]− 2[(Zr)1 + S(1)
12 ][(Zr)1 + S(1)

21 ] (104)

(Xr)I2 = [(Zr)1 + S(1)
11 + (Br)11][(Zr)1 + S(1)

I2 ]− [(Zr)1 + S(1)
12 ][(Zr)1 + S(1)

I1 ] (105)

The ensemble-averaged current stress norm at a matrix point can also be expressed in terms of the

macroscopic stress σ̄. Following Ju and Chen (1994a), the relation between the far-field stress σo and the

macroscopic stress σ̄ takes the form

σo = P : σ̄ (106)
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where the fourth-rank tensor P reads

P = I+ φ1(I− S) · (A1 + S)−1 + φ2(I− S) · (A2 + S)−1 (107)

and the components of P are

Pijkl = P
(1)
IK δijδkl + P

(2)
IJ (δikδjl + δilδjk) (108)

with

P
(1)
IK = − Γ(3)

IK

2Γ(2)
II

(109)

P
(2)
IJ =

1

4Γ(2)
IJ

(110)

and the coefficients Γ(3)
IK ,Γ

(2)
II and Γ(2)

IJ read:

Γ(3)
I1 =

Γ(1)
22 + Γ(2)

22 )Γ
(1)
I1 − Γ(1)

21 Γ
(1)
I2

(Γ(1)
11 + 2Γ(2)

11 )(Γ
(1)
22 + Γ(2)

22 )− Γ(1)
12 Γ

(1)
21

(111)

Γ(3)
I2 = Γ(3)

I3 =
(Γ(1)

11 + 2Γ(2)
11 )Γ

(1)
I2 − Γ(1)

12 Γ
(1)
I1

2(Γ(1)
11 + 2Γ(2)

11 )(Γ
(1)
22 + Γ(2)

22 )− 2Γ(1)
12 Γ

(1)
21

(112)

and

Γ(2)
IJ =

1
2
+

2∑
r=1

(1− 2S(2)
IJ )φr

2(Br)IJ
(113)

Γ(1)
IK =

2∑
r=1

φr

[
3∑

m=1

(Λr)mKS(1)
Im

(Br)mm
− S(1)

IK

(Br)KK
− (Λr)IK(1− 2S(2)

II )
(Br)II

]
(114)

By combining Equations 96 and 106, we arrive at the alternative expression for the ensemble-averaged

current stress norm (square) in a matrix point:

〈H〉m(x) = σ̄ : T̄ : σ̄ (115)

where the positive definite fourth-rank tensor T̄ is defined as

T̄ ≡ PT ·T ·P (116)

and can be shown to be

T̄ijkl = T̄
(1)
IKδijδkl + T̄

(2)
IJ (δikδjl + δilδjk) (117)

where

T̄
(1)
IK =4P (2)

II T
(2)
II P

(1)
IK + 4P (2)

KKT
(2)
KKP

(1)
KI + 4P (2)

II T
(1)
IKP

(2)
KK

18



+
3∑

m=1

2P (2)
II T

(1)
ImP

(1)
mK +

3∑
m=1

2P (2)
KKT

(1)
mKP

(1)
mI

+ 2
3∑

m=1

3∑
n=1

(P (1)
mKT

(2)
mmP

(1)
mI + P

(1)
mKT

(1)
nmP

(1)
nI ) (118)

T̄
(2)
IJ =4P (2)

IJ T
(2)
IJ P

(2)
IJ (119)

The ensemble-volume averaged “current stress norm” for any point x in a three-phase fiber-reinforced

composite can be defined as: √
〈H〉(x) = (1 − φ1)

√
σ̄ : T̄ : σ̄ (120)

where φ1 is the current perfectly bonded fiber volume fraction. Therefore, the effective yield function for

the three-phase fiber-reinforced composite can be proposed as

F̄ = (1 − φ1)2σ̄ : T̄ : σ̄ −K2(ēp) (121)

where the isotropic hardening function K(ēp) is defined as

K(ēp) =

√
2
3
{
σy + h(ēp)q̄

}
(122)

where σy is the initial yield stress, and h and q̄ signify the linear and exponential isotropic hardening

parameters, respectively, for the three-phase composite.

2.3 EFFECTIVE ELASTOPLASTIC BEHAVIOR OF COMPOSITES WITH RANDOMLY

ORIENTED FIBERS

Consider the composite model depicted in Figure 3, in which spheroidal fibers with an aspect ratio

of α (the ratio of length to diameter) are uniformly dispersed and randomly oriented in three-dimensional

space. The average process over all orientations upon governing constitutive field equations is performed to

obtain the constitutive relations and the overall yield function for the RFPCs. The overall plastic flow rule

and hardening law, with the proposed overall yield function, then characterize the macroscopic elastoplastic

behavior of the RFPCs under three-dimensional arbitrary loading/unloading histories.

The local axes of an inclusion are denoted by the primed coordinate system and the fixed or material

axes by the unprimed one. With no loss in generality, we let axis 1′ be the symmetric axis of the spheroid

and 3′ lie in the 2-3 plane. Denoting Qij as the directional cosine between the ith primed and jth unprimed

axes, we have

x′i = [Qij ]xj (123)
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where the transformation matrix has the form of

[Qij ] =




cosθ sinθcosφ sinθsinφ

−sinθ cosθcosφ cosθsinφ

0 −sinφ cosφ


 (124)

in which θ is the angle between x1 and x′1 and φ is the angle between x3 and x′3. Note that θ varies from 0

to π and φ ranges from 0 to 2π. Any second-rank tensor (e.g., stress tensor) can be transformed as

σ′
ij = QikQjlσkl (125)

For convenience, the governing equations for aligned fiber-reinforced composites given by Ju and Chen

(1994a) can be rewritten as (dropping the ensemble averaged brackets)

σ̄ = C0 : [ε̄ −
n∑

r=1

φrε
∗
r ] (126)

ε̄ = εo +
n∑

r=1

φrS : ε∗r (127)

ε∗r = −(S+Ar)−1 : εo (128)

where n denotes the number of inclusions of different material properties (excluding the matrix).

When all inclusions are randomly oriented in the three-dimensional space, the composite as a whole is

macroscopically isotropic. The symbol ⊂ · ⊃ is used to define the orientational averaging process as

⊂ · ⊃≡
∫ π

0

∫ π

0

(·)P (θ, φ)sinθdθdφ (129)

where P (θ, φ) is the probability density function. In the special case of uniformly random orientation, we

have P (θ, φ) = 1/2π. Accordingly, after the orientational averaging process, the governing field equations

for randomly oriented fiber-reinforced composites can be derived as

⊂ σ̄ ⊃= C0 : [⊂ ε̄ ⊃ −
2∑

r=1

φr ⊂ ε∗r ⊃] (130)

⊂ ε̄ ⊃= Υ : εo (131)

⊂ ε∗r ⊃= −Ωr : εo (132)

where the fourth-rank tensors Υ and Ωr read

Υijkl = Iijkl −
2∑

r=1

φr

2π

∫ π

0

∫ π

0

QmiQnjSmnpq[(Ar)pqst + Spqst]−1QskQtlsinθdθdφ (133)

(Ωr)ijkl =
1
2π

∫ π

0

∫ π

0

QmiQnj [(Ar)mnpq + Smnpq]−1QpkQqlsinθdθdφ (134)

20



Hence, the effective elastic stiffness tensor ⊂ C∗ ⊃ for randomly oriented fiber-reinforced composites

can be obtained as

⊂ C∗ ⊃= Co ·
[
I+

2∑
r=1

φrΩr · Υ−1

]
(135)

It is noted that the proposed randomly oriented effective stiffness of the composite should be identical to

the results based on Mori-Tanaka’s method (e.g., Tandon and Weng, 1986).

Before we derive the isotropic elastic constants for RFPCs, we need to consider the following formulas.

For any generalized isotropic fourth-rank tensor, which is expressed as

Lijkl = L
(1)
IKδijδkl + L

(2)
IJ (δikδjl + δilδjk) (136)

and satisfying L(1)
12 = L

(1)
13 , L

(1)
21 = L

(1)
31 , L

(1)
22 = L

(1)
23 = L

(1)
32 = L

(1)
33 , L

(2)
12 = L

(2)
21 = L

(2)
13 = L

(2)
31 , L

(2)
22 = L

(2)
33 =

L
(2)
23 = L

(2)
32 , the following formulation can be proved after lengthy but straightforward manipulations

⊂ Lijkl ⊃= 1
2π

∫ π

0

∫ π

0

QmiQnjLmnpqQpkQqlsinθdθdφ

= υ1δijδkl + υ2(δikδjl + δilδjk) (137)

where

υ1 =
1
15
[L(1)

11 + 4L(1)
12 + 4L(1)

21 + 6L(1)
22 + 2L(2)

11 − 4L(2)
12 + 2L(2)

22 ] (138)

υ2 =
1
15
[L(1)

11 − L
(1)
12 − L

(1)
21 + L

(1)
22 + 2L(2)

11 + 6L(2)
12 + 7L(2)

22 ] (139)

Similarly, for any transversely isotropic fourth-rank tensor F̃, which takes form of

Mijkl = F̃ijkl(M1,M2,M3,M4,M5,M6) (140)

where the transversely isotropic fourth-rank tensor F̃ijkl are given Equation 35, the following formulation is

obtained.

⊂ Mijkl ⊃= 1
2π

∫ π

0

∫ π

0

QmiQnjMmnpqQpkQqlsinθdθdφ

= ζ1δijδkl + ζ2(δikδjl + δilδjk) (141)

where

ζ1 =
1
15
[M1 + 5(M3 +M4 + 3M5)] (142)

ζ2 =
1
15
[M1 + 10M2 + 15M6] (143)
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The formulations in Equations 137 and 141 show that, after the three-dimensional orientational averaging

process, any generalized isotropic fourth-rank tensor as well as any transversely isotropic fourth-rank tensor

will become the isotropic fourth-rank tensor.

In particular, after the orientational average process, the stiffness tensor for randomly oriented, partially

debonded (damaged) fibers can be derived as

⊂ C2 ⊃= 1
2π

∫ π

0

∫ π

0

QmiQnj(C2)mnpqQpkQqlsinθdθdφ

= χ1δijδkl + χ2(δikδjl + δilδjk) (144)

with

χ1 =
1
15
[t1 + 5(t3 + t4 + 3t5)] (145)

χ2 =
1
15
[t1 + 10t2 + 15t6] (146)

in which the parameters t1, ...t6 in Equations 145 and 146 are given in Equations 49-54.

With the help of the formulations in Equations 137 and 141, the effective elasticity tensor ⊂ C∗ ⊃ of

RFPCs can be obtained as

⊂ C∗ ⊃= c̃1δijδkl + c̃2(δikδjl + δilδjk) (147)

where

c̃1 =
1
15
[C(1)

11 + 4C(1)
12 + 4C(1)

21 + 6C(1)
22 + 2C(2)

11 − 4C(2)
12 + 2C(2)

22 ] (148)

c̃2 =
1
15
[C(1)

11 − C
(1)
12 − C

(1)
21 + C

(1)
22 + 2C(2)

11 + 6C(2)
12 + 7C(2)

22 ] (149)

Here, the parameters C(1)
11 , ..., C

(2)
22 are given by Equations 60 and 61. Altenatively, the effective Young’s

modulus E∗ and Poisson’s ratio ν∗ of RFPCs are easily obtained through the following relations

E∗ =
c̃2(3c̃1 + 2c̃2)

c̃1 + c̃2
(150)

ν∗ =
c̃1

2(c̃1 + c̃2)
(151)

Similarly, the transforming fourth-rank tensor Υ between macroscopic strain ⊂ ε̄ ⊃ and far field strain

εo takes the form of

Υ = Υ1δijδkl +Υ2(δikδjl + δilδjk) (152)

where

Υ1 = −
2∑

r=1

φr

{
[S(1)

11 + 4S(1)
21 + 2S(2)

11 ][1− (Λr)11 − 4(Λr)12] + 10S(1)
21 (Λr)12

30[(Zr)2 + S(2)
11 ]

− 2S(2)
12

15[(Zr)2 + S(2)
12 ]
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+
[3S(1)

22 + 2S(1)
12 + 3S(2)

22 ][3− 4(Λr)21 − 6(Λr)22]− 6S(2)
22 + 5S(1)

12 (Λr)21
45[(Zr)2 + S(2)

22 ]

}
(153)

Υ2 =
1
2
−

2∑
r=1

φr

{
[S(1)

11 − S(1)
21 + 2S(2)

11 ][1− (Λr)11 + (Λr)12]

30[(Zr)2 + S(2)
11 ]

+
S(2)

12

5[(Zr)2 + S(2)
12 ]

+
[S(1)

22 − S(1)
12 + S(2)

22 ][1 + 2(Λr)21 − 2(Λr)22] + 6S(2)
22

30[(Zr)2 + S(2)
22 ]

}
(154)

Similarly, the transformation fourth-rank tensor Ωr between orientational eigenstrain ⊂ ε∗ ⊃ and far

field strain εo can be computed as

Ωr = (Ωr)1δijδkl + (Ωr)2(δikδjl + δilδjk) (155)

in which

(Ωr)1 =
1− (Λr)11 − 4(Λr)12
30[(Zr)2 + S

(2)
11 ]

− 1

15[(Zr)2 + S
(2)
12 ]

+
1− 4(Λr)21 − 6(Λr)22

30[(Zr)2 + S
(2)
22 ]

(156)

(Ωr)2 =
1− (Λr)11 − (Λr)12
30[(Zr)2 + S

(2)
11 ]

− 1

10[(Zr)2 + S
(2)
12 ]

+
7 + (Λr)21 − (Λr)22
60[(Zr)2 + S

(2)
22 ]

(157)

Assuming all reinforcements of the composites changed from aligned array to randomly oriented array

in the three-dimensional space, by using the orientational averaging process, the orientation-averaged square

of stress norm ⊂ Hm ⊃ can be obtained as

⊂ Hm ⊃= σo :⊂ T ⊃: σo (158)

where the isotropic fourth-rank tensor ⊂ T ⊃ is

⊂ Tijkl ⊃= 1
2π

∫ π

0

∫ π

0

QmiQnjTmnpqQpkQqlsinθdθdφ (159)

The components of the positive definite fourth-rank tensor ⊂ T ⊃ read

⊂ Tijkl ⊃= T1δijδkl + T2(δikδjl + δilδjk) (160)

with

T1 =
1
15
[T (1)

11 + 4T (1)
12 + 4T (1)

21 + 6T (1)
22 + 2T (2)

11 − 4T (2)
12 + 2T (2)

22 ] (161)

T2 =
1
15
[T (1)

11 − T
(1)
12 − T

(1)
21 + 2T (2)

11 + 6T (2)
12 + 7T (2)

22 ] (162)

In Equation 158, ⊂ Hm ⊃ is described in terms of the far-field satress σo. Alternatively, the orientation-

averaged square of the stress norm can also be expressed in terms of the macroscopic (orientation- averaged)

23



stress σ̄. Following Ju and Chen (1994a), the relationship between the far-field stress σo and the macroscopic

stress σ̄ takes the form

σo =⊂ P ⊃: σ̄ (163)

where the components of ⊂ P ⊃ are

⊂ P ⊃=⊂ P1 ⊃ δijδkl+ ⊂ P2 ⊃ (δikδjl + δilδjk) (164)

with

⊂ P1 ⊃=
2∑

r=1

{
φr [Υ1 − (Ωr)1]

{1 + 2φr[(Ωr)2 −Υ2]}{1 + φr[3(Ωr)1 + 2(Ωr)2 − 3Υ1 − 2Υ2]}
}

(165)

⊂ P2 ⊃=
2∑

r=1

{
1

2 + 4φr[(Ωr)2 −Υ2]

}
(166)

By combining Equations 158 and 163, we arrive at the alternative expression for the orientation-averaged

current stress norm (square) in a matrix point

⊂ Hm ⊃= σ̄ :⊂ T̄ ⊃: σ̄ (167)

where

⊂ T̄ ⊃= ⊂ P̄ ⊃ · ⊂ T ⊃ · ⊂ P̄ ⊃
=T̄1δijδkl + T̄2(δikδjl + δilδjk) (168)

with

T̄1 = [3 ⊂ P1 ⊃ +2 ⊂ P2 ⊃]2T1 + 2 ⊂ P1 ⊃ T2[3 ⊂ P1 ⊃ +4 ⊂ P2 ⊃] (169)

T̄2 = 4 ⊂ P2 ⊃2 T2 (170)

Similar to Section 3.2, the effective yield function for the three-phase RFPCs can be proposed as

⊂ F̄ ⊃= (1− φ1)2σ̄ :⊂ T̄ ⊃: σ̄ −K2(ēp) (171)

with the isotropic hardening function K(ēp) for the three-phase composite. It should be noted that the

effective yield function is pressure dependent and not of the von Mises type. Moreover, for simplicity, we

assume that the overall flow rule for the matrix is associative. Therefore, the effective ensemble-volume,

averaged plastic strain rate for the composite can be expressed as

˙̄εp = λ̇
∂ ⊂ F̄ ⊃

∂σ̄
= 2(1− φ1)2λ̇ ⊂ T̄ ⊃: σ̄ (172)
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where λ̇ denotes the plastic consistency parameter.

Inspired by the structure of the micromechanically derived stress norm, the effective equivalent plastic

strain rate for the composite is defined as

˙̄ep ≡
√
2
3
˙̄εp :⊂ T̄ ⊃−1: ˙̄εp = 2(1− φ1)2λ̇

√
2
3
σ̄ :⊂ T̄ ⊃: σ̄ (173)

The λ̇ together with the yield function F̄ must obey the Kuhn-Tucker loading/unloading conditions and

consistency requrements

λ̇ ≥ 0, ⊂ F̄ ⊃≤ 0, λ̇ ⊂ F̄ ⊃= 0 (174)

λ̇ ⊂ ˙̄F ⊃= 0 (175)

It is emphasized that the ensemble-volume averaged yield function in Equation 171, the averaged plastic flow

rule in Equation 172, the equivalent plastic strain rate in Equation 173, and the Kuhn-Tucker conditions

completely characterize the effective plasticity formulation for a composite material with any isotropic hard-

ening function K(ēp). It is acceptible to extend the proposed model to accommodate kinematic hardening.

In what follows, the simple power-law type isotropic hardening function is employed as an example

K(ēp) =

√
2
3
{
σy + h(ēp)q̄

}
(176)

where σy is the initial yield stress, and h and q̄ signify the linear and exponential isotropic hardening

parameters, respectively, for the three-phase composite.

2.4 ELASTOPLASTIC STRESS-STRAIN RELATIONS FOR RFPCs

In order to illustrate the proposed micromechanics-based elastoplastic damage model for RFPCs, we

consider the examples of the uniaxial, biaxial, and triaxial tensile loadings in the following.

2.4.1 Uniaxial Elastoplastic Stress-strain Relation

The applied macroscopic stress σ̄ can be written as

σ̄11 �= 0, all other σ̄ij = 0. (177)

With the isotropic hardening law described by Equation 176, the overall yield function becomes

⊂ F̄ (σ̄, ēp) ⊃= (1 − φ1)2σ̄ : ⊂ T̄ ⊃ : σ̄ − 2
3
{
σy + h(ēp)q̄

}2 (178)
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Therefore, the effective yield function for the uniaxial tensile loading reads

⊂ F̄ ⊃= (1− φ1)2(⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃)σ̄2
11 −

2
3
{
σy + h(ēp)q̄

}2 (179)

The macroscopic incremental plastic strain rate defined by Equation 172 becomes

�ε̄p = 2(1− φ1)2�λ σ̄11




⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃ 0 0

0 ⊂ T̄1 ⊃ 0

0 0 ⊂ T̄1 ⊃


 (180)

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be expressed

as

�ēp = 2(1− φ1)2�λ |σ̄11|
√
2
3
(⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃) (181)

From the linear elasticity, the macroscopic incremental elastic strain reads

�ε̄e =



1 0 0

0 −ν∗ 0

0 0 −ν∗


 �σ̄11

E∗
(182)

In addition, as given in Equation 73, the total incremental strain is the sum of the elastic incremental strain

and plastic incremental strain.

The positive parameter λ =
∑

i (�λ)i is solved from the nonlinear equation obtained by enforcing the

plastic consistency condition ⊂ F̄ ⊃= 0. Since only the uniaxial loading is under consideration, the nonlinear

equation takes the form (cf. Equation 9)

(1− φ1)2(⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃)σ̄2
11 =

2
3

{
σy + h

[
2(1− φ1)2λ

√
2
3
(⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃)|σ̄11|

]q̄}2

(183)

Specifically, for a monotonic uniaxial loading, the overall uniaxial stress-strain relation can be derived

by integrating Equations 180 and 182:

ε̄ =



1 0 0

0 −ν∗ 0

0 0 −ν∗


 σ̄11

E∗
+2(1− φ1)2

∑
i

[(�λ)i(σ̄11)
i]




⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃ 0 0

0 ⊂ T̄1 ⊃ 0

0 0 ⊂ T̄1 ⊃


 (184)

where E∗ and ν∗ are given Equations 150and 151. In addition, (�λ)i is the i-th iteration value of �λ, and

(σ̄11)i is the i-th iteration value of macroscopic uniaxial stress.
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2.4.2 Biaxial Elastoplastic Stress-strain Relation

The applied macroscopic stress σ̄ can be rephrased as

σ̄22 = σ̄33 �= 0, all other σ̄ij = 0. (185)

Substituting Equation 185 into Equation 178, the effective yield function for the case of biaxial loading

becomes

⊂ F̄ ⊃= 4(1− φ1)2(⊂ T̄1 ⊃ + ⊂ T̄2 ⊃)σ̄2
22 −

2
3
{
σy + h(ēp)q̄

}2 (186)

The macroscopic incremental plastic strain rate defined by Equation 172 takes the form

�ε̄p = 4(1− φ1)2�λ σ̄22




⊂ T̄1 ⊃ 0 0

0 ⊂ T̄1 ⊃ + ⊂ T̄2 ⊃ 0

0 0 ⊂ T̄1 ⊃ + ⊂ T̄2 ⊃


 (187)

for any stress beyond the initial yielding. Further, the incremental equivalent plastic strain can be recast as

�ēp = 4(1− φ1)2�λ |σ̄22|
√
2
3
(⊂ T̄1 ⊃ + ⊂ T̄2 ⊃) (188)

The macroscopic incremental elastic strain is

�ε̄e =




−2ν∗ 0 0

0 1− ν∗ 0

0 0 1− ν∗


 �σ̄22

E∗
(189)

The positive parameter λ =
∑

i (�λ)i is solved from the plastic consistency condition ⊂ F̄ ⊃= 0. For

the case of biaxial loading, the nonlinear equation arrives at (cf. Equation 34)

4(1− φ1)2(⊂ T̄1 ⊃ + ⊂ T̄2 ⊃)σ̄2
22 =

2
3

{
σy + h

[
4(1− φ1)2λ

√
2
3
(⊂ T̄1 ⊃ + ⊂ T̄2 ⊃)|σ̄22|

]q̄}2

(190)

In the special case of a monotonic biaxial loading, the overall biaxial stress-strain relation can be obtained

by integrating Equations 187 and 189:

ε̄ =




−2ν∗ 0 0

0 1− ν∗ 0

0 0 1− ν∗


 σ̄22

E∗
+
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4(1− φ1)2
∑
i

[(�λ)i(σ̄22)
i]




⊂ T̄1 ⊃ 0 0

0 ⊂ T̄1 ⊃ + ⊂ T̄2 ⊃ 0

0 0 ⊂ T̄1 ⊃ + ⊂ T̄2 ⊃


 (191)

where (�λ)i is the i-th iteration value of �λ, and (σ̄22)i is the i-th iteration value of macroscopic biaxial

stress.

2.4.3 Triaxial Elastoplastic Stress-strain Relation

The applied macroscopic stress σ̄ can be written as

σ̄22 = σ̄33 = ισ̄11 �= 0, all other σ̄ij = 0. (192)

where ι is the proportional loading ratio. In particular, ι = 1 indicates a pure hydrostatic loading. Substi-

tuting Equation 192into Equation 178, the effective yield function for the case of triaxial loading is written

as

⊂ F̄ ⊃= (1− φ1)2[(2ι+ 1)2 ⊂ T̄1 ⊃ +2(2ι2 + 1) ⊂ T̄2 ⊃)]σ̄2
11 −

2
3
{
σy + h(ēp)q̄

}2 (193)

The macroscopic incremental plastic strain rate defined by Equation 172 becomes

�ε̄p = 2(1− φ1)2�λ σ̄11∗


(2ι+ 1) ⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃ 0 0

0 (2ι+ 1) ⊂ T̄1 ⊃ +2ι ⊂ T̄2 ⊃ 0

0 0 (2ι+ 1) ⊂ T̄1 ⊃ +2ι ⊂ T̄2 ⊃


 (194)

for any stress beyond the initial yielding. Moreover, the incremental equivalent plastic strain can be expressed

as

�ēp = 2(1− φ1)2�λ |σ̄11|
√
2
3
[(2ι+ 1)2 ⊂ T̄1 ⊃ +2(2ι2 + 1) ⊂ T̄2 ⊃] (195)

The macroscopic incremental elastic strain reads

�ε̄e =



1− 2ιν∗ 0 0

0 ι− (1 + ι)ν∗ 0

0 0 ι− (1 + ι)ν∗


 �σ̄11

E∗
(196)

Similarly, the positive parameter λ =
∑

i (�λ)i is solved by enforcing the plastic consistency condition

⊂ F̄ ⊃= 0 as follows (cf. Equation 195):

(1− φ1)2[(2ι+ 1)2 ⊂ T̄1 ⊃ +2(2ι2 + 1) ⊂ T̄2 ⊃]σ2
11
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=
2
3

{
σy + h

[
2(1− φ1)2λ

√
2
3
[(2ι+ 1)2 ⊂ T̄1 ⊃ +2(2ι2 + 1) ⊂ T̄2 ⊃]|σ̄11|

]q̄}2

(197)

In the special case of a monotonic triaxial loading, the overall triaxial stress-strain relation can be

derived by integrating Equations 194 and 196:

ε̄ =



1− 2ιν∗ 0 0

0 ι− (1 + ι)ν∗ 0

0 0 ι− (1 + ι)ν∗


 σ̄11

E∗
+ 2(1− φ1)2

∑
i

[(�λ)i(σ̄11)
i]∗



(2ι+ 1) ⊂ T̄1 ⊃ +2 ⊂ T̄2 ⊃ 0 0

0 (2ι+ 1) ⊂ T̄1 ⊃ +2ι ⊂ T̄2 ⊃ 0

0 0 (2ι+ 1) ⊂ T̄1 ⊃ +2ι ⊂ T̄2 ⊃


 (198)

where (�λ)i is the i-th iteration value of �λ, and (σ̄11)i is the i-th iteration value of macroscopic triaxial

stress.
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3. FAILURE AND DAMAGE EVOLUTION

3.1 FAILURE IN DISCONTONUOUS FIBER COMPOSITES

Failure modes in discontinuous fiber composites (which have a complex structure) are best understood

in terms of the arrangement of reinforcing fibers and matrix resin. The dominating failure mechanisms in

the composite structures take place under tensile and compressive states; therefore, failure modes are mainly

classified into tensile failure mode and compressive failure mode.

Tensile failure usually occurs with some separation of fibers along the parallel planes, but the sep-

aration is not very clear. Therefore, it is difficult to obtain simple photomicrographs of typical failures.

Failure in these chopped-fiber composite materials has resulted in complete debonding between fibers and

matrix, although matrix residue is visible on many of the fibers. Compressive failures of discontinuous fiber

composites are often similar to tensile failures in that separation between the fiber planes occurs. For a

compressive stress in the plane of the sheet, failure begins with delamination, followed quickly by buckling

of the resulting thin layers. Thus, this type of failure is characterized by the sharp kinking of the fibers, with

occasional nonkinked protruding filament. Accordingly, each failure mode indicating the loss of the tensile

and/or compressive strength of the composite is quite different. They are most critical for the dissipation of

kinetic energy in the mechanical model. We refer to Robertson and Mindroiu (1987) and Matzenmiller and

Schweizerhof (1991) for literature review.

The different failure mechanisms of laminate composites due to tension and compression, caused by

stresses in fiber direction or perpendicular to the reinforcement, have been cast into failure criteria with

experimental evidence by a number of researchers (Hashin, 1980; Hahn et al., 1982; Christensen and Swanson,

1988). However, new failure criteria based on experimental verifications are needed for performing failure

analysis of RFPCs, since the failure mechanisms of discontinuous fiber composites are different from those

for laminates.

Meanwhile, micromechanical approaches enable us to evaluate and predict local stress and strain fields

in each constituent. In addition, these approaches allow us to address the local fluctuations due to the

onset and the evolution of damage mechanisms. Therefore, the direct calculation of failure loads and failure

behavior on the basis of micromechanical models is essential, even though it is complex.

We consider the interfacial debonding that was proposed as the important failure mechanism in discon-

tinuous fiber composites based on experimental results.
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3.2 EVOLUTIONARY INTERFACIAL DEBONDING: PROBABILISTIC MICROMECHAN-

ICS

Progressive interfacial debonding may occur under increasing deformations and influence the overall

stress-strain behavior of randomly oriented, discontinuous fiber reinforced composites. After the interfacial

debonding between fibers and the matrix, the debonded fibers lose the load-carrying capacity in the debonded

direction and are regarded as partially debonded fibers. Within the context of the first-order (noninteracting)

approximation, the stresses inside fibers should be uniform. For convenience, following Tohgo and Weng

(1994) and Zhao and Weng (1995, 1996, 1997), we employ the average internal stresses of fibers as the

controlling factor. The probability of partial debonding is modeled as a two-parameter Weibull process

(see Tohgo and Weng [1994], Zhao and Weng [1995], and Ju and Lee [1999]). Assuming that the Weibull

(1951) statistics governs, we can express the cumulative probability distribution function of fiber debonding

(damage), Pd, at the level of hydrostatic tensile stress (σ̄m)1 as

Pd[(σ̄m)1] = 1− exp

[
−
(
(σ̄m)1
So

)M
]

(199)

where (σ̄m)1 = [(σ11)1 + (σ22)1 + (σ33)1]/3 is the hydrostatic tensile stress of the fibers, the subscript (·)1
denotes the fiber phase, and So and M are the Weibull parameters.

With this function, the average interfacial strength of the interface is related to the Weibull parameters

through the Gamma function Γ(·) as
σ̄p

s = SoΓ
(
1 +

1
M

)
(200)

where

Γ(b) =
∫ ∞

0

yb−1exp(−y)dy (201)

Therefore, the current partially debonded fiber volume fraction φ2 at a given level of (σ̄m)1 is given by

φ2 = φPd[(σ̄m)1] = φ

{
1− exp

[
−
(
(σ̄m)1
So

)M
]}

(202)

where φ is the original fiber volume fraction.

Next we derive the internal stresses of fibers required for the initiation of interfacial debonding. Accord-

ing to the Eshelby’s equivalence principle, the perturbed strain field ε′(x) induced by inhomogeneities can

be related to specified eigenstrains ε∗(x) by replacing the inhomogeneities with the matrix material. That

is, for the domain of the q-phase with elastic stiffness tensor Cq, we have

σq = Cq : [εo + ε′(x)] = C0 : [εo + ε′(x) − ε∗(x)] (203)
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where σq is the total local stress for the q-phase.

The ensemble-volume averaged strain for three-phase composites takes the form (e.g., Ju and Chen,

1994b):

ε̄ = εo +
2∑

r=1

φrS : ε̄∗r (204)

where the “noninteracting” solution ε∗oq of the eigenstrain ε∗q has previously been given in Equation 84.

Substituting Equation 84 into 204, we arrive at

ε̄ =

[
I−

2∑
m=1

φmS · (Am + S)−1

]
: εo (205)

The volume-averaged stress tensor for q-phase is defined as

σ̄q ≡ 1
Vq

∫
Vq

σq(x)dx =
1
Vq

{∫
Vq

Cq : [εo + ε′(x)]dx

}
≡ Cq :

[
εo + ε̄′q

]
(206)

where ε̄′q can be recast as

ε̄′q = S :

[
1
Vq

∫
Vq

ε̄∗(x′)dx′
]
= S : ε̄∗q (207)

By combining Equations 84 and 205-207, we arrive at

σ̄q = Cq ·
[
I− S · (Aq + S)−1

] ·
[
I−

2∑
m=1

φmS · (Am + S)−1

]−1

: ε̄ (208)

The above equation is equally applicable to ensemble-volume averaged quantities by applying the ensemble

averaging operator 〈·〉 to σ̄q and ε̄. Therefore, the averaged internal stresses of fibers can be expressed as

(q = 1)

σ̄1 = C1 ·
[
I− S · (A1 + S)−1

] ·
[
I−

2∑
m=1

φmS · (Am + S)−1

]−1

: ε̄ ≡ U : ε̄ (209)

By carrying out lengthy algebra, the components of the positive definite fourth-rank tensor U are

explicitly given by

Uijkl = F̃ijkl(U1, U2, U3, U4, U5, U6) (210)

where the definition of fourth-rank tensor F̃ is given Equation 35 and the inverse and product of fourth-rank

tensor F̃ are given in the Appendix of Ju and Chen (1994b). The components of the fourth-rank tensor U

are given by

U1 = 2µ1A1 (211)

U2 = 2µ1A2 (212)

U3 = λ1(A1 + 4A2 + 3A3) + 2µ1A3 (213)
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U4 = 2µ1A4 (214)

U5 = λ1(A4 + 3A5 + 2A6) + 2µ1A5 (215)

U6 = 2µ1A6 (216)

where A1, ...,A6 are the parameters of the fourth-rank tensor F̃ijkl(A1, ...,A6), which is the product between

two fourth-rank tensors F̃ijkl(j1, ..., j6) and F̃ijkl(i1, ..., i6). Parameters j1, ..., j6 are defined as

j1 = −S1(b1 + 4b2 + b3 + 2b6)− 4S2(b1 + 2b2 + b3)− S4(b1 + 4b2 + 3b3)− 2S6b1

j2 = −2S2(b2 + b6)− 2S6b2

j3 = −S3(b1 + 4b2 + b3 + 2b6)− S5(b1 + 4b2 + 3b3)− 2S6b3

j4 = −S1(b4 + b5)− 4S2(b4 + b5)− S4(b4 + 3b5 + 2b6)− 2S6b4 (217)

j5 = −S3(b4 + b5)− S5(b4 + 3b5 + 2b6)− 2S6b5

j6 =
1
2
− 2S6b6

in which the components of Eshelby’s tensor for a spheroidal inclusion, S1, ..., S6, are given in Equa-

tions 36-41 and b1, ..., b6 are the parameters of the fourth-rank tensor F̃ijkl(b1, ..., b6), which is the inverse of

F̃ijkl(d1, ..., d6) with the following parameters

d1 = S1, d2 = S2, d3 = S3,

d4 = S4, d5 =
1
3

(
κ0

κ1 − κ0
− µ0

µ1 − µ0

)
+ S5, d6 =

1
2

µ0

µ1 − µ0
+ S6 (218)

In addition, i1, ..., i6 are the parameters of the fourth-rank tensor F̃ijkl(i1, ..., i6), which is the inverse of

F̃ijkl(h1, ..., h6) with the following parameters

h1 = φ1c1 − φ2g1, h2 = −φ1c2 − φ2g2, h3 = −φ1c3 − φ2g3

h4 = −φ1c4 − φ2g4, h5 = −φ1c5 − φ2g5, h6 =
1
2
− φ1c6 − φ2g6 (219)

where c1, ..., c6 are the parameters of the fourth-rank tensor F̃ijkl(c1, ..., c6), which is the product between

two fourth-rank tensors F̃ijkl(S1, ..., S6) and F̃ijkl(b1, ..., b6). Furthermore, g1, ..., g6 are the parameters of

the fourth-rank tensor F̃ijkl(g1, ..., g6), which is the product between two fourth-rank tensors F̃ijkl(S1, ..., S6)

and F̃ijkl(e1, ..., e6). Here, e1, ..., e6 are the parameters of the fourth-rank tensor F̃ijkl(e1, ..., e6), which is the

inverse of F̃ijkl(f1, ..., f6) with the following parameters

f1 = S1, f2 = S2, f3 = S3,

f4 = S4, f5 =
1
3

(
κ0

κ2 − κ0
− µ0

µ2 − µ0

)
+ S5, f6 =

1
2

µ0

µ2 − µ0
+ S6 (220)
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After orientational averaging process, the averaged internal stresses of fibers ⊂ σ̄1 ⊃ for randomly

oriented fiber-reinforced composites can be obtained as

⊂ σ̄1 ⊃= ⊂ U ⊃: ε̄
= ⊂ U1 ⊃ δijδkl+ ⊂ U2 ⊃ (δikδjl + δilδjk) (221)

where

⊂ U1 ⊃= 1
15
(U1 + 5U3 + 5U4 + 15U5) (222)

⊂ U2 ⊃= 1
15
(U1 + 10U2 + 15U6) (223)

In the case of tensile loading, the averaged internal stresses of fibers can be obtained as follows:

(σ̄11)1 = [⊂ U1 ⊃ +2 ⊂ U2 ⊃]ε̄11+ ⊂ U1 ⊃ ε̄22+ ⊂ U1 ⊃ ε̄33 (224)

(σ̄22)1 =⊂ U1 ⊃ ε̄11 + [⊂ U1 ⊃ +2 ⊂ U2 ⊃]ε̄22+ ⊂ U1 ⊃ ε̄33 (225)

(σ̄33)1 =⊂ U1 ⊃ ε̄11+ ⊂ U2 ⊃ ε̄22 + [⊂ U1 ⊃ +2 ⊂ U2 ⊃]ε̄33 (226)

where ε̄11, ε̄22 and ε̄33 are the total (ensemble-volume averaged) strains in the 1, 2 and 3 directions, respec-

tively.
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4. FINITE ELEMENT IMPLEMENTATION

4.1 COMPUTATIONAL INTEGRATION ALGORITHMS

Most existing literature pertaining to computational plasticity addresses one-phase ductile materials

without inhomogeneities. On the other hand, most existing works in the micromechanics of composites are

limited to monotonic and proportional loadings with simple power-law type, plastic strain-stress relation-

ships. In this section, we employ the well-known strain-driven algorithm in which the stress history σ̄ is to

be uniquely determined by the given strain history ε̄. Similar to Ju and Tseng (1997), we will determine

the unknown state of a local point (σ̄n+1, ε̄
p
n+1, ē

p
n+1) at the end of the time step t = tn+1 given the known

state from the previous time step

{ε̄n, ε̄
p
n, ē

p
n} at t = tn (227)

where ε̄n = the total (ensemble-volume averaged) strain; ε̄p
n = the overall plastic strain; and ēpn = the

equivalent plastic strain, respectively, at time t = tn. Based on the notion that the plastic strains are

stress-free, the total stress σ̄n at time tn can be evaluated as

σ̄n = C∗ : ε̄e
n = C∗ : [ε̄n − ε̄p

n] (228)

Moreover, the current increment of the total strain ∆ε̄n+1 is either given or can be obtained from the given

strain-displacement history. Therefore, we have

ε̄n+1 = ε̄n +∆ε̄n+1; tn+1 = tn +∆tn+1 (229)

where ∆tn+1 is the current time increment.

The two-step operator splitting methodology is adopted here to split the elastoplastic loading process

into the elastic predictor and the plastic corrector. Given the solutions for the previous time step, an elastic

predictor σ̄tr
n+1 is calculated as

σ̄tr
n+1 = σ̄n +C∗ : ∆ε̄n+1 (230)

The evaluation of the yield function with the trial elastic stress and the previous hardening parameter (ε̄p
n)

shows the status of the elastic predictor. Therefore, we write

⊂ F̄ tr
n+1(σ̄

tr
n+1, ē

p
n) ⊃= (1− φ1)2σ̄tr

n+1 :⊂ T̄ ⊃: σ̄tr
n+1 −K2(ēpn) (231)

If ⊂ F̄ tr
n+1 ⊃≤ 0, then the trial elastic stress remains either inside or on the yield surface. The incremental

response is thus elastic, and no further plastic flow occurs for this strain increment. Consequently, we set

σ̄n+1 = σ̄tr
n+1 and ēpn+1 = ēpn.
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In the case that ⊂ F̄ tr
n+1 ⊃> 0, the elastic predictor falls outside the yield surface, which is not allowed.

Accordingly, the Kuhn-Tucker loading/unloading conditions must be enforced to bring the elastic predictor

back to the yield surface. Here, we employ the implicit backward Euler method which is unconditionally sta-

ble. According to this method, the following approximations are made for the increments of the macroscopic

plastic strain tensor ε̄p
n+1 and the equivalent plastic strain ēpn+1:

˙̄εp
n+1 =

ε̄p
n+1 − ε̄p

n

∆tn+1
(232)

˙̄epn+1 =
ēpn+1 − ēpn
∆tn+1

(233)

By using Equations 172-173 and rearranging the terms in Equations 232-233, the updated values become:

ε̄p
n+1 = ε̄p

n + ξ̂n+1 ⊂ T̄ ⊃: σ̄n+1 (234)

ēpn+1 = ēpn + ξ̂n+1

√
2
3
σ̄n+1 :⊂ T̄ ⊃: σ̄n+1 (235)

with the following definition

ξ̂n+1 ≡ 2(1− φ1)2λ̂n+1 ≡ 2(1− φ1)2λ̇∆tn+1 (236)

As a result, the overall stress σ̄n+1 can be calculated by using the elastic strain ε̄e
n+1:

σ̄n+1 = C∗ : ε̄e
n+1 = C∗ : [ε̄n+1 − ε̄p

n+1] (237)

By substituting Equation 235 into 237, we arrive at

σ̄n+1 = C∗ : [ε̄n+1 − ε̄p
n − ξ̂n+1 ⊂ T̄ ⊃: σ̄n+1] (238)

From the Kuhn-Tucker conditions, the yield function given in Equation 121 must be always zero dur-

ing the plastic loading process. Therefore, the parameter ξ̂n+1 can be evaluated by enforcing the plastic

consistency condition at t = tn+1:

⊂ F̄n+1(ξ̂n+1) ⊃= (1− φ1)2σ̄n+1 :⊂ T̄ ⊃: σ̄n+1 −K2(ēpn+1) = 0 (239)

Substitution of Equations 237 and 238 into Equation 239 renders a nonlinear scalar equation in terms of

ξ̂n+1. Once the parameter ξ̂n+1 is numerically solved from Equation 239, the total current stress, the plastic

strain, and the hardening parameter are updated according to Equation 238, 234, and 235.
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For convenience, Exhibits 1 and 2 summarize the above micromechanical iterative computational al-

gorithm for the elastoplastic behavior of three-phase RFPCs accounting for interfacial damage evolution.

In particular, Exhibit 1 renders a step-by-step flow chart for the computational procedure to determine

the current perfectly bonded fibers volume fraction (φ1)n+1 in accordance with the evolutionary interfacial

debonding model presented in Section 3.3. Furthermore, Exhibit 2 provides a detail iterative return mapping

algorithm consistent with this section.

4.2 CONTINUUM TANGENT MODULI

In solving the nonlinear programs by the finite element method, the matrix of global tangent moduli

needs to be constructed for the global Newton’s iteration. The Newton’s iteration should have a quadratic

rate of convergence if proper tangent is used during the iteration. The continuum tangent moduli is derived

from the rate equations without considering the numerical discretization traditionally used in finite element

analysis programs. In this section, the continuum tangent moduli for the rate-independent plasticity for the

RFPCsCFPMCs is derived based on the rate equations for the proposed micromechanics based formulation.

For convenience, let us rephrase Equations 172 and 173 as follows:

˙̄εp = λ̇r̄ (240)

˙̄ep = λ̇h̄ (241)

where the following definitions have been made

r̄ ≡ ∂ ⊂ F̄ ⊃
∂σ̄

= 2(1− φ1)2 ⊂ T̄ ⊃: σ̄ (242)

h̄ ≡
√
2
3
∂ ⊂ F̄ ⊃

∂σ̄
:⊂ T̄ ⊃−1:

∂ ⊂ F̄ ⊃
∂σ̄

= 2(1− φ1)2
√
2
3
σ̄ :⊂ T̄ ⊃: σ̄ (243)

By taking the time derivative on Equation 74 and combining Equations 73 and 240, we have

˙̄σ = C∗ : [ ˙̄ε − ˙̄εp] = C∗ : [ ˙̄ε − λ̇r̄] (244)

where the parameter λ̇ is solved from the consistency condition ⊂ ˙̄F ⊃= 0. According to the chain rule, the

plasticity condition leads to

⊂ ˙̄F (σ̄, ēp) ⊃= ∂ ⊂ F̄ ⊃
∂σ̄

: ˙̄σ +
∂ ⊂ F̄ ⊃
∂ēp

˙̄ep = 0 (245)

which yields the following equation upon the substitution of Equations 241 and 244 into 245

∂ ⊂ F̄ ⊃
∂σ̄

: C∗ : [ ˙̄ε − λ̇r̄] + λ̇
∂ ⊂ F̄ ⊃
∂ēp

h̄ = 0 (246)
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Exhibit 1. Micromechanical iterative algorithm for the evolutionary damage model.

(i) Estimate model parameters :

Plastic material parameters : σy, h, q̄; Weibull parameters : So, M

(ii) Initialize : set z = 0; (φ1)
(0)
n+1 = (φ1)n, (φ2)

(0)
n+1 = (φ2)n

(iii) Compute :

Coefficients : ⊂ T̄(z)
n+1 ⊃, U(z)

n+1; Effective moduli : (κ∗)
(z)
n+1, (µ∗)

(z)
n+1, (E∗)

(z)
n+1, (ν∗)

(z)
n+1

(iv) Compute internal stresses of fibers :

[(σ̄11)1]
(z)
n+1 = [(U1)

(z)
n+1 + 2(U2)

(z)
n+1](ε̄11)n+1 + (U1)

(z)
n+1(ε̄22)n+1 + (U1)

(z)
n+1(ε̄33)n+1

[(σ̄22)1]
(z)
n+1 = (U1)

(z)
n+1(ε̄11)n+1 + [(U1)

(z)
n+1 + 2(U2)

(z)
n+1](ε̄22)n+1 + (U1)

(z)
n+1(ε̄33)n+1

[(σ̄33)1]
(z)
n+1 = (U1)

(z)
n+1(ε̄11)n+1 + (U1)

(z)
n+1(ε̄22)n+1 + [(U1)

(z)
n+1 + 2(U2)

(z)
n+1](ε̄33)n+1

(v) Compute the Weibull probability distribution function :

Pd

{
[(σ̄11)1]

(z)
n+1

}
= 1− exp


−

(
[(σ̄11)1]

(z)
n+1

So

)M



(vi) Compute volume fractions :

(φ2)
(z)
n+1 = φPd{[(σ̄11)1]

(z)
n+1} = φ


1− exp


−

(
[(σ̄11)1]

(z)
n+1

So

)M



 ,

(φ1)
(z)
n+1 = φ− (φ2)

(z)
n+1

(vii) Perform convergence check :

If

∣∣∣∣∣ (φ1)
(z)
n+1 − (φ1)

(z−1)
n+1

(φ1)
(z−1)
n+1

∣∣∣∣∣ ≤ TOL (e.g., 10−8) : then update quantities in (iii), (iv), (vi)

⊂ T̄n+1 ⊃=⊂ T̄(z)
n+1 ⊃, ... , (ν∗)n+1 = (ν∗)

(z)
n+1; [(σ̄ii)1]n+1 = [(σ̄ii)1]

(z)
n+1, (i = 1, 2, 3);

(φ1)n+1 = (φ1)
(z)
n+1, (φ2)n+1 = (φ2)

(z)
n+1; GO TO (viii) in Exhibit 2.

Otherwise : SET z = z + 1; GO TO (iii).
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Exhibit 2. 3-D return mapping algorithm.

(viii) 3D return mapping algorithm :

(a) Initialize : set l = 0; (ε̄p
n+1)

(0) = ε̄p
n, (ē

p
n+1)

(0) = ēpn (for local Newton iteration)

(b) Compute : σ̄n = Cn : [ε̄n − ε̄p
n]

(c) Compute the elastic predictor :

Trial elastic state : σ̄tr
n+1 = σ̄n +Cn : ∆εn+1

Compute : ε̄n+1 = ε̄n +∆εn+1;

⊂ F̄ tr
n+1(σ̄

tr
n+1, ē

p
n) ⊃= (1 − (φ1)n+1)2σ̄tr

n+1 :⊂ T̄n+1 ⊃: σ̄tr
n+1 −K2(ēpn)

(d) Check whether plastic loading is active :

If ⊂ F̄ tr
n+1 ⊃≤ TOL (elastic step; e.g., TOL = 10−8) :

ξ̂n+1 = 0; SET σ̄n+1 = σ̄tr
n+1, ē

p
n+1 = ēpn; GO TO (iii) in Exhibit 1.

Otherwise (plastic step) : GO TO (e).

(e) Perform plastic correction; return mapping algorithm :

Solve nonlinear scalar equation for ξ̂n+1: use local Newton iteration

⊂ F̄n+1(ξ̂
(l)
n+1) ⊃= [1− (φ1)n+1]2σ̄

(l)
n+1 :⊂ T̄n+1 ⊃: σ̄(l)

n+1 −K2[(ēpn+1)
(l)] = 0

(f) Perform convergence check :

If | ⊂ F̄n+1[(ξ̂n+1)(l)] ⊃ | ≤ TOL (e.g., 10−8) : then update

ξ̂n+1 = ξ̂
(l)
n+1, σ̄n+1 = σ̄

(l)
n+1, ε̄p

n+1 = (ε̄p
n+1)

(l), ēpn+1 = (ēpn+1)
(l); EXIT.

Otherwise : SET l = l+ 1

Compute derivative of ⊂ F̄ [(ξ̂n+1)(l)] ⊃: D ⊂ F̄ [(ξ̂n+1)(l)] ⊃

(ξ̂n+1)(l+1) = (ξ̂n+1)(l) − ⊂ F̄ [(ξ̂n+1)(l)] ⊃
D ⊂ F̄ [(ξ̂n+1)(l)] ⊃

; GO TO (e).
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Therefore, the parameter λ̇ is obtained from the above equation and is written as

λ̇ =
[
∂ ⊂ F̄ ⊃

∂σ̄
: C∗ : r̄ − ∂ ⊂ F̄ ⊃

∂ēp
h̄

]−1
∂ ⊂ F̄ ⊃

∂σ̄
: C∗ : ˙̄ε (247)

Furthermore, by substituting Equation 247 into Equation 244, the following equation which defines the

continuum tangent moduli is obtained:

˙̄σ = Cep
const : ˙̄ε =

{
C∗ −

[
∂ ⊂ F̄ ⊃

∂σ̄
: C∗ : r̄− ∂ ⊂ F̄ ⊃

∂ēp
h̄

]−1

(C∗ : r̄)⊗ (C∗ :
∂ ⊂ F̄ ⊃

∂σ̄
)

}
: ˙̄ε (248)

Moreover, the explicit form of the symmetrical fourth-rank tensorCep
const can be obtained by substituting

the definitions of r̄ and h̄ in Equations 242 and 243 into Equation 248:

Cep
const ≡

(C∗ :⊂ T̄ ⊃: σ̄)⊗ (C∗ :⊂ T̄ ⊃: σ̄)
(σ̄ :⊂ T̄ ⊃) : C∗ : (⊂ T̄ ⊃: σ̄)− (1− φ1)−1

√
2
3K

′σ̄ :⊂ T̄ ⊃: σ̄
(249)

in which K ′ ≡ ∂K(ēp)
∂ēp . It is noted that the requirement of ⊂ F̄ ⊃= 0 has been used in deriving Equation 249.
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5. NUMERICAL SIMULATIONS AND EXPERIMENTAL COMPARISON

The numerical and experimental studies to characterize damage evolution in discontinuous, random

fiber-reinforced composites have been limited in the literature until now. One such experimental and nu-

merical study on discontinuous, random fiber-reinforced composites was made by Meraghni and Benzeggagh

(1995) and Meraghni et al. (1996). Their modeling relied on an experimental approach, developed through a

methodology of experimental identification of basic damage mechanisms, which involves amplitude analysis

of acoustic emission and microscopic observations. They introduced an experimental damage parameter

β to allow the modeling of damage mechanisms. A micromechanics-based analytical simulation was also

presented and compared with the experimental data.

To illustrate the elastoplastic behavior of the present damage constitutive framework, our present dam-

age model considering interfacial debonding is exercised in Figures 3 - 5. The material properties of RFPCs

involving these simulations are E0 = 3.0GPa, ν0 = 0.35, E1 = 380GPa, ν1 = 0.25, σy = 125MPa, h =

400MPa and q̄ = 0.5. In addition, to implement the proposed probabilistic micromechanics based on Weibull

function into the present constitutive models, we need to estimate the values of Weibull partameters So and

M . For simplicity, we assume the Weibull parameters to be So = 75 ∗ σp
s and M = 40. Figure 3 shows the

effect of the shape of fibers on the mechanical behavior of RFPCs with the same volume fraction of fibers.

It is clear that the elastoplastic behavior of the composites is strongly dependent upon the shape of fibers,

especially for the plastic stage. Figures 4 and 5 exhibit the effect of the initial volume fraction of fibers on

the behavior and progressive debonding of the composites. It is seen that the composite with high initial

volume fraction of fibers is stiffer, but the influence of damage on the stress-strain response of the composite

is more drastic because of quick damage evolution.

To further assess the present damage constitutive models, we now compare the present predictions

with experimental data reported by Mergahni and Benzeggagh (1995) for uniaxial stress-strain behavior of

randomly oriented, discontinuous glass fiber epoxy composites. Here, we adopt the elastic properties, aspect

ratio and fiber volume fraction according to Mergahni and Benzeggagh (1995) as follows: E0 = 3.0GPa, ν0 =

0.35, E1 = 72GPa, ν1 = 0.17, α = 19.25 and φ1 = 0.5. Followed by the parameter estimation algorithm

developed by Ju et al. (1987) and Simo et al. (1988), we estimate the plastic parameters σy, h and q̄ in

accordance with the isotropic hardening law given in Equation 176 and Weibull parameters So and M for

evolutionary debonding to be σy = 150MPa, h = 400MPa, q̄ = 0.5; So = 27.14 ∗ σy and M = 4.0. We

depict our prediction against the experimental data provided by Mergahni and Benzeggagh (1995) in Figures

6 and 7. Since our formulation does not consider inter-fiber interaction, the stress-strain curve for the present
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prediction is lower than that based on the experiment in the early stage. Naturally, the overall stiffness of

interacting damage model is higher than that of noninteracting damage model (Lee, 1998). As the strain

increases, the effect of damage becomes dominant one, and the curves corresponding the present prediction

and the experiment will intersect each other, because the proposed damage constitutive model includes the

interfacial debonding only. Therefore, it is concluded that the interaction effect among constituents must be

considered in modeling damage behavior of composites for both moderately and extremely high fiber volume

fraction. Furthermore, other damage mechanisms (e.g. matrix cracking, void nucleation, etc.) must be

included in our damage constitutive models to offer more realistic damage predictions. Finally, the present

model does not account for other damage mechanisms nor impact, since these effects are beyond the scope of

the present stage of this research. In spite of these limitations, the agreement between the present predictions

and experiments is encouraging for possible use of the proposed damage constitutive models for predicting

the progressive damage in composite structures.
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6. FUTURE RESEARCH

Future research will be needed to extend the proposed damage constitutive model to practical crushing

problems. In addition, further assessment and experimental validation of the proposed framework are also

needed in the future.

When the spheroidal (prolate) fibers are randomly oriented in the 1-2 plane, the composite as a whole is

transversely isotropic. Such a system exists in sheet molding compounds (SMC), which is close to the man-

ufacturing process of RFPCs, among others. The implementation of two-dimensional orientation averaging

process into the present model is straightforward and will be included based on the orientation averaging

process proposed in this study.

Composite structures may undergo compression, tension and/or combined failures, depending on the

specimen configuration, under impact loading. Accordingly, a new failure criterion based on experimental

verifications for randomly oriented, discontinuous fiber-reinforced composites will be developed to perform

failure analysis of RFPCs. The effective moduli of microcrack-weakened polymeric composites will be also

proposed based on Lee’s (1998) approximate scheme to address the effect of microcracks on the overall

stiffness and strength of the composites.

Moreover, when fiber volume fraction is higher, strong fiber (mechanical) interactions become signifi-

cant. Excellent strong fiber interaction models were proposed by Ju and Tseng (1996) and Lee (1998) for

pairwise inclusion interactions at the constitutive level. In accordance with their approximate solution of a

micromechanical damage constitutive model considering the pairwise fiber interaction, the present damage

constitutive model will be extended and will be able to account for the effect of interactions for the composite

with high fiber volume fraction. It is emphasized that the approximate, close-form analytical damage con-

stitutive model will provide a method for obtaining second-order, ensemble-volume averaged perturbations

due to the existence and the interaction of fibers.

Finally, the complete progressive damage constitutive models, in conjunction with structural testing

and microscope observations to identify and classify the complex damage mechanism, will be implemented

into finite element code, DYNA3D, to solve the large scale problems, such as automobile components and

systems. Furthermore, crush tests for the composite tube will be performed to determine the validity of the

current damage constitutive models.
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Figure 1. An RVE for a composite and superposition involving homogeneous stran and perturbed

strain.
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Figure 1. An RVE for a composite and superposition involving

                 homogeneous strain and perturbed strain.



Figure 2. Schematic description of the imaginary ellipsoid and its outward unit normal vector for an

ellipsoidal inclusion.
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Figure 3. Effect of the shape of fibers on the overall uniaxial elastoplastic behavior of random carbon

fiber polymer matrix composites.
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Figure 3. Effect of the shape of fibers on the overall uniaxial elastoplastic

behavior of random carbon fiber polymer matrix composites



Figure 4. Effect of the initial volume fraction of fibers on the overall uniaxial elastoplastic behavior

of random carbon fiber polymer matrix composites.
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Figure 4. Effect of the initial volume fraction of fibers on the overall uniaxial 

elastoplastic behavior of random carbon fiber polymer matrix composites



Figure 5. The predicted evolution of debonded fiber volume fraction corresponding to Figure 4.
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Figure 6. The prediction between the present prediction and experimental data (Meraghni and Ben-

zeggagh, 1995) for overall uniaxial tensile responses of randomly oriented discontinuous fiber

composites with initial fiber volume fraction of 0.5.
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Figure 6. The comparison between the present prediction and 
experimental data (Meraghni and Benzeggagh, 1995) for overall
uniaxial tensile responses of randomly oriented discontinuous 
fiber composites at initial fiber volume fraction of 0.5.



Figure 7. The predicted evolution of debonded fiber volume fraction versus strain corresponding to

Figure 6.
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