
Modeling of progressive damage in aligned and randomly

oriented discontinuous fiber polymer matrix composites

H. K. Lee * AND S. Simunovic

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6359

Abstract

Damage constitutive models based on micromechanical formulation and a combination of microme-

chanical and macromechanical damage criterion are presented to predict progressive damage in aligned and

random fiber-reinforced composites. Progressive interfacial fiber debonding models are considered in ac-

cordance with a statistical function to describe the varying probability of fiber debonding. Based on an

effective elastoplastic constitutive damage model for aligned fiber-reinforced composites, micromechanical

damage constitutive models for two- and three-dimensional random fiber-reinforced composites are devel-

oped. The constitutive relations and overall yield function for aligned fiber orientations are averaged over

all orientations to obtain the constitutive relations and overall yield function of two- and three-dimensional,

random fiber-reinforced composites. Finally, the present damage models are implemented numerically and

compared with experimental data to show the progressive damage behavior of random fiber-reinforced com-

posites. Furthermore, the damage models will be implemented into a finite element program to illustrate

the dynamic inelastic behavior and progressive crushing in composite structures under impact loading.
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1. Introduction

Damage and failure modes in discontinuous fiber composites having a complex structure are best un-

derstood in terms of the arrangement of reinforcing fibers and matrix resin. Analyses and tests to assess the

damage in these composites have been carried out [1-4]. The different failure mechanisms of laminate com-

posites caused by stresses in fiber direction or perpendicular to the reinforcement have been cast into failure

criteria based on experimental evidence by a number of researchers [5-7]. However, new failure criteria based

on experimental verifications are needed for performing failure analysis of discontinuous, aligned and random

fiber composites, because the failure mechanisms of discontinuous fiber composites are different from those

for laminates. A more detailed failure review of fiber-reinforced composites can be found in Matzenmiller

and Schweizerhof [8], Kutlu and Chang [9], Meraghni and Benzeggagh [10], and Meraghni et al. [11].

Micromechanical approaches enable us to evaluate and predict local stress and strain fields in each

constituent. In addition, these approaches allow us to address local fluctuations due to the onset and the

evolution of damage mechanisms. Therefore, the derivation of the constitutive Equations in the form of a

phenomenological parameter model from entirely micromechanical considerations is required to perform the

rigorous analysis of composite structures. Such an approach is more justified in the case of composite materi-

als reinforced with randomly oriented discontinuous fibers. Indeed, the microstructure of these materials, the

complexity of damage mechanisms, and the diversity of their damage scenarios significantly influence their

overall properties. Furthermore, because of the natural tendency of the structure to acquire lower energy

modes, both material and structural damage processes need to be thoroughly understood and modeled to

simulate and eventually design the desirable sustained crush of the component. Therefore, accurate analysis

and the ability to simulate the complete response of components and systems of random fiber polymer matrix

composites are essential and require accurate micromechanical damage constitutive models.

A micromechanical analysis based on the modified Mori-Tanaka method was performed by Meraghni and

Benzeggagh [10] and Meraghni et al. [11] to address the effect of matrix degradation and interfacial debonding

on stiffness reduction in a random discontinuous fiber composite. Their modeling relied on an experimental

approach, developed through a methodology of experimental identification of basic damage mechanisms,

which involved amplitude analysis of acoustic emission and microscopic observations. Tohgo and Weng [12]

and Zhao and Weng [13-15] proposed progressive interfacial damage models for ductile matrix composites.

They used Weibull’s [16] probability distribution function to describe the probability of particle debonding.

Ju and Lee [17] developed a micromechanical damage model to predict the overall elastoplastic behavior

and damage evolution in ductile matrix composites. In their derivation, to estimate the overall elastoplastic-

damage behavior, an effective yield criterion was derived based on the ensemble-volume averaging procedure

and the first-order effects of eigenstrains stemming from the existence of inclusions.
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In a recent paper [18], we proposed a damage constitutive model of progressive debonding in aligned

fiber-reinforced composites. We derived elastic moduli and predicted the overall elastoplastic behavior and

damage evolution in aligned fiber-reinforced composites. Using our previous research [18], micromechanical

damage constitutive models for two- and three-dimensional random fiber reinforced composites are developed

in this paper to predict progressive damage in random fiber-reinforced composites. The present microme-

chanical constitutive model will establish the theoretical foundation needed for simulation of progressive

crushing of composite structures. The governing field Equations and overall yield function for aligned-fiber

orientations are averaged over all orientations to obtain the constitutive relations and overall yield function

of two- and three-dimensional random fiber-reinforced composites.

In our derivation, fibers are assumed to be elastic spheroids that are embedded in a ductile polymer

matrix. Furthermore, the ductile matrix behaves elastoplastically under arbitrary three-dimensional load-

ing/unloading histories. All fibers are assumed to be non-interacting for dilute composite medium and

initially embedded firmly in the matrix with perfect interfaces. After the interfacial debonding between

fibers and the matrix, these partially debonded fibers are regarded as equivalent, transversely isotropic in-

clusions. The probability of partial debonding is modeled as a two-parameter, Weibull process. We employ

the average internal stresses of fibers as the controlling factor. Small strains are assumed; therefore, the

statistical microstructure of fibers embedded in a ductile matrix remains the same. Finally, the present

damage models are implemented numerically and compared with experimental data to show the progressive

damage behavior of random fiber-reinforced composites.
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2. Overall elastoplastic behavior of composites

2.1. Recapitulation of the overall elastoplastic behavior of aligned fiber-reinforced composites

First, an initially perfectly bonded, two-phase composite consisting of a matrix (phase 0) with bulk

modulus κ0 and shear modulus µ0, and aligned discontinuous, randomly dispersed, spheroidal (prolate)

fibers (phase 1) with bulk modulus κ1 and shear modulus µ1 is considered. When spheroidal inclusions

(discontinuous fibers) are aligned, the composite as a whole is transversely isotropic. Subsequently, as

loadings or deformations are applied, some fibers are partially debonded (phase 2). These partially debonded

fibers are regarded as equivalent, transversely isotropic inclusions. Following Zhao and Weng [13] and Ju and

Lee [17], a partially debonded fiber can be replaced by an equivalent, perfectly bonded fiber that possesses

yet unknown transversely isotropic moduli. The transverse isotropy of the equivalent fiber can be determined

in such a way that (a) its tensile and shear stresses will always vanish in the debonded direction, and (b)

its stresses in the bonded directions exist because the fiber is still able to transmit stresses to the matrix on

the bonded surfaces (see Fig. 3.1 in Lee [19]).

With the help of Eshelby’s tensor for an ellipsoidal inclusion, the effective elastic stiffness tensor C∗ of

aligned (in the x1-direction) fiber-reinforced composites was explicitly derived in our previous research [18]

as

C∗ = F̃ijkl(ι1, ι2, ι3, ι4, ι5, ι6) (1)

where a transversely isotropic fourth-rank tensor F̃ is defined by six parameters bm (m = 1 to 6):

F̃ijkl(bm) =b1ñiñj ñkñl + b2(δikñj ñl + δilñj ñk + δjkñiñl + δjlñiñk)

+ b3δij ñkñl + b4δklñiñj + b5δijδkl + b6(δikδjl + δilδjk)
(2)

Here, ñ denotes the unit vector and δij signifies the Kronecker delta. For a spheroid of a1 �= a2 = a3, in

which ai (i = 1, 2, 3) is one of the three semi-axes of the ellipsoid, the 1-direction is chosen as symmetric;

therefore, we have ñ1 = 1, ñ2 = ñ3 = 0. In addition, the parameters of ι1, ..., ι6 in Eq. (1) are

ι1 = ψ11 − ψ12 − ψ21 + ψ22 + 2ϕ1 + 2ϕ2 − 4ϕ3

ι2 = −ϕ2 + ϕ3

ι3 = ψ21 − ψ22

ι4 = ψ12 − ψ22 (3)

ι5 = ψ22

ι6 = ϕ2

in which the parameters ψ11, ..., ψ22 and ϕ1, ..., ϕ3 are given in the Appendix of our previous research [18].
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Next, we consider the overall elastoplastic responses of progressively debonded, aligned fiber composites,

which initially feature perfect interfacial bonding between fibers and the matrix in two-phase composites.

It is known that partial interfacial debonding may occur in some fibers under applied loading. Therefore,

an original two-phase composite may gradually become a three-phase composite consisting of the matrix,

perfectly bonded fibers, and partially debonded fibers. We will regard partially debonded fibers as equivalent,

perfectly bonded transversely isotropic fibers. For simplicity, the von Mises yield criterion with isotropic

hardening law is assumed here. Extension of the present framework to general yield criterion and general

hardening law is possible.

An effective yield criterion is derived based on the ensemble-volume averaging process and first-order

effects of eigenstrains due to the existence of spheroidal (prolate) fibers. The effective yield criterion, together

with the overall associative plastic flow rule and hardening law, establishes the analytical foundation for the

estimation of effective elastoplastic behavior of ductile matrix composites. By collecting and summing up

all the current stress norm perturbations produced by any typical perfectly bonded fiber and any typical

partially debonded fiber and averaging over all possible locations, the ensemble-averaged square of the current

stress norm at any matrix point can be derived as

〈H〉m(x) = σo : T : σo (4)

where σo is the far-field stress and the components of the positive definite fourth-rank tensor T read

Tijkl = F̃ijkl(t̄1, t̄2, t̄3, t̄4, t̄5, t̄6) (5)

in which

t̄1 = M11 −M12 −M21 +M22 + 2N1 + 2N2 − 4N3

t̄2 = −N2 +N3

t̄3 = M21 −M23

t̄4 = M12 −M23 (6)

t̄5 = M23

t̄6 = N2

here the parameters M11, ...,M23 and N1, ...,N3 are given in our previous research [18].

The ensemble-averaged current stress norm at a matrix point can also be expressed in terms of the

macroscopic stress σ̄. Following Ju and Chen [20], the relation between the far-field stress σo and the

macroscopic stress σ̄ takes the form

σo = P : σ̄ (7)
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where the fourth-rank tensor P reads

P =
[
I+Σ2

r=1φr(I− S) · (Ar + S)−1
]−1

= F̃ijkl(p1, p2, p3, p4, p5, p6) (8)

in which I is the fourth-rank identity tensor, φr denotes the volume fraction of the r-phase, “·” signifies the
tensor multiplication, and the fourth-rank tensor Ar is defined as

Ar ≡ [
Cr − C0

]−1 · C0 (9)

Here Cr is the elasticity tensor of the r-phase. The components of Eshelby’s tensor S for a spheroidal

inclusion embedded in an isotropic linear elastic and infinite matrix are

S1 =
1
16

16 + 45� + 54α2 + 60�α2

(ν0 − 1)(1− α2)

S2 =
1
16

8 + 15�− 8ν0 − 12�ν0 + 2α2 + 8ν0α
2 + 12�ν0α

2

1− ν0 − α2 + ν0α2

S3 =
1
16

3� + 10α2 + 12�α2

(ν0 − 1)(α2 − 1)

S4 =
1
16

3� + 16ν0 + 24�ν0 + 10α2 + 12�α2 − 16ν0α
2 − 24ν0�α2

(ν0 − 1)(α2 − 1)
(10)

S5 =
1
16

� − 8�ν0 − 2α2 − 4�α2 + 8ν0�α2

(ν1 − 1)(α2 − 1)

S6 =
1
16

−7� + 8ν0� − 2α2 + 4�α2 − 8ν0�α2

1− ν0 − α2 + ν0α2

with

� =




α
(α2−1)3/2 [cosh−1α− α(α2 − 1)1/2], for α > 1

α
(1−α2)3/2 [α(1− α2)1/2 − cos−1α], for α < 1

(11)

Here, the spheroid aspect ratio α is defined as α ≡ a1/a2. In addition, the components p1, ..., p6 in Eq. (8)

are

p1 = H11 −H12 −H21 +H22 + 2I1 + 2I2 − 4I3

p2 = −I2 + I3

p3 = H21 −H23

p4 = H12 −H23 (12)

p5 = H23

p6 = I2

where the parameters H11, ...,H23 and I1, ..., I3 are given in our previous research [18].
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By combining Eqs. (4) and (7), we arrive at the alternative expression for the ensemble-averaged current

stress norm (square) at a matrix point

〈H〉m(x) = σ̄ : T̄ : σ̄ (13)

where the positive definite fourth-rank tensor T̄ is defined as

T̄ = F̃ijkl(T̄1, T̄2, T̄3, T̄4, T̄5, T̄6) (14)

and the parameters T̄1, ..., T̄6 are given in our previous research [18]. More details of elastoplasic stress-

strain relationship for partially debonded, three-phase aligned fiber-reinforced composites can be found in

our previous research [18].

2.2. Effective elastic moduli and elastoplastic behavior of randomly oriented fiber-reinforced composites

Consider composite models in which spheroidal fibers with an aspect ratio of α (the ratio of length to

diameter) are uniformly dispersed and randomly oriented in two- or three-dimensional space. The constitu-

tive relations and the overall yield function for randomly oriented composites can be obtained by performing

the averaging process over all orientations of governing constitutive field Equations. Accordingly, the consti-

tutive relations and overall yield function for aligned fiber orientations given in Section 2.1 are averaged over

all orientations to obtain the constitutive relations and overall yield function of two- and three-dimensional,

randomly oriented fiber-reinforced composites. The overall plastic flow rule and hardening law, with the

proposed overall yield function, then characterize the macroscopic elastoplastic behavior of the randomly

oriented fiber-reinforced composites under three-dimensional arbitrary loading/unloading histories.

2.2.1. Three-dimensional random fiber orientation

To predict the behavior of a system with a three-dimensional random fiber orientation, it is convenient

to introduce a spherical coordinate designation for the direction cosines. Fig. 1 shows the coordinate

convention. The local axes of an inclusion are denoted by the unprimed coordinate system and the fixed or

material axes by the primed one. Axis 1 is fiber direction and Axis 3 can be taken to lie in the 1’2’ plane

with no loss in generality. Denoting lij as the direction cosine between the ith primed and jth unprimed

axes, we have

x′
i = [lij ]xj (15)

where the transformation matrix [lij ] has the form of

[lij ] =




sinθcosφ sinθsinφ cosθ

−cosθcosφ −cosθsinφ sinθ

sinφ −cosφ 0


 (16)
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Any second-rank tensor (e.g., stress tensor) can be transformed as

σ′
ij = likljlσkl (17)

When all inclusions are randomly oriented in the three-dimensional space, the composite as a whole is

macroscopically isotropic. The symbol ⊂ · ⊃ is used to define the orientational averaging process for all

possible orientations as

⊂ · ⊃≡
∫ π

0

∫ π

0

(·)P (θ, φ)sinθdθdφ (18)

where P (θ, φ) is the probability density function. In the special case of uniformly random orientation, we

have P (θ, φ) = 1/2π.

For any transversely isotropic fourth-rank tensor M, which takes form of

Mijkl = F̃ijkl(M1,M2,M3,M4,M5,M6) (19)

where the transversely isotropic fourth-rank tensor F̃ is defined in Eq. (2), the following formulation is

obtained:

⊂ Mijkl ⊃= 1
2π

∫ π

0

∫ π

0

lmilnjMmnpqlpklqlsinθdθdφ

= ζ1δijδkl + ζ2(δikδjl + δilδjk) (20)

in which

ζ1 =
1
15

[M1 + 5(M3 +M4 + 3M5)] (21)

ζ2 =
1
15

[M1 + 10M2 + 15M6] (22)

The formulation in Eq. (20) shows that, after the three-dimensional orientational averaging process, any

transversely isotropic fourth-rank tensor will become an isotropic fourth-rank tensor.

Assuming the uniform distribution of overall strains [21], with the help of the formulation in Eq. (20),

the effective elasticity tensor ⊂ C∗ ⊃ of three-dimensional random fiber composites can be obtained as

⊂ C∗ ⊃= c̃1δijδkl + c̃2(δikδjl + δilδjk) (23)

where

c̃1 =
1
15

[ι1 + 5(ι3 + ι4 + 3ι5)] (24)

c̃2 =
1
15

[ι1 + 10ι2 + 15ι6] (25)
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Here the parameters of ι1, ..., ι6 are given in Eq. (3). Moreover, the effective Young’s modulus E∗ and

Poisson’s ratio ν∗ of three-dimensional random fiber composites are easily obtained through the following

relations

E∗ =
c̃2(3c̃1 + 2c̃2)

c̃1 + c̃2
(26)

ν∗ =
c̃1

2(c̃1 + c̃2)
(27)

We now consider the overall elastoplastic responses of progressively debonded composites with randomly

oriented fibers in three-dimensional space. By using the orientational averaging process in Eq. (20), the

orientation-averaged square of stress norm ⊂ Hm ⊃ at any matrix point can be obtained as

⊂ Hm ⊃= σo :⊂ T ⊃: σo (28)

where the isotropic fourth-rank tensor ⊂ T ⊃ is

⊂ Tijkl ⊃= 1
2π

∫ π

0

∫ π

0

lmilnjTmnpqlpklqlsinθdθdφ (29)

The components of the positive definite fourth-rank tensor ⊂ T ⊃ read

⊂ Tijkl ⊃= t̃1δijδkl + t̃2(δikδjl + δilδjk) (30)

with

t̃1 =
1
15

[t̄1 + 5(t̄3 + t̄4 + 3t̄5)] (31)

t̃2 =
1
15

[t̄1 + 10t̄2 + 15t̄6] (32)

where the parameters t̄1, ..., t̄6 are given in Eq. (6).

In Eq. (28), ⊂ Hm ⊃ is described in terms of the far-field stress σo. Alternatively, the orientation-

averaged square of the stress norm can also be expressed in terms of the macroscopic (orientation-averaged)

stress ⊂ σ̄ ⊃. Following our previous research [18], the relationship between the far-field stress σo and the

macroscopic stress ⊂ σ̄ ⊃ takes the form

σo =⊂ P ⊃:⊂ σ̄ ⊃ (33)

where the fourth-rank tensor ⊂ P ⊃ reads

⊂ Pijkl ⊃ =

[
Iijkl +

2∑
r=1

φr

2π

∫ π

0

∫ π

0

QmiQnj [Imnpq − Smnpq] · [(Ar)pqst + Spqst]−1QskQtlsinθdθdφ

]−1
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= p̃1δijδkl + p̃2(δikδjl + δilδjk) (34)

with

p̃1 =
1
15

[p1 + 5(p3 + p4 + 3p5)] (35)

p̃2 =
1
15

[p1 + 10p2 + 15p6] (36)

where the parameters p1, ..., p6 are given in Eq. (12).

By combining Eqs. (28) and (33), we arrive at the alternative expression for the orientation-averaged

current stress norm (square) at a matrix point:

⊂ Hm ⊃=⊂ σ̄ ⊃:⊂ T̄ ⊃:⊂ σ̄ ⊃ (37)

where

⊂ T̄ ⊃= ⊂ P ⊃T · ⊂ T ⊃ · ⊂ P ⊃
=T̄1δijδkl + T̄2(δikδjl + δilδjk) (38)

with

T̄1 = [3p̃1 + 2p̃2]2t̃1 + 2p̃1t̃2[3p̃1 + 4p̃2] (39)

T̃2 = 4[p̃2]2t̃2 (40)

2.2.2. Two-dimensional, planar random fiber orientation

When the spheroidal inclusions are randomly oriented in the 1-2 plane, the composite is transversely

isotropic. Such a system exists in sheet molding compounds (SMC). The derivation of effective properties

for two-dimensional, plane stress, random fiber orientation proceeds in the same manner as in the three-

dimensional case. Fig. 2 shows planar coordinates. The local axes of an inclusion are denoted by the

unprimed coordinate system and the fixed or material axes by the primed one. Axis 1 is fiber direction.

When the randomness exists only in the 1-2 plane, resulting in a planar (transversely isotropic) composite,

the transformation matrix [lij ] becomes

[lij ] =




cosθ sinθ 0

−sinθ cosθ 0

0 0 1


 (41)
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Similarly, the orientational averaging process, denoted by 
 · �, for the planar random orientation can

be defined as


 · �≡
∫ π

0

(·)P (θ)dθ (42)

where P (θ) is the probability density function. In the special case of uniformly random orientation, we have

P (θ) = 1/π.

For any transversely isotropic fourth-rank tensor M defined in Eq. (19), the following formulation is

obtained


 Mijkl �=
1
π

∫ π

0

QmiQnjMmnpqQpkQqlsinθdθ

= F̃ijkl(�1, �2, �3, �4, �5, �6) (43)

where

�1 =
3
8
M1

�2 =− 1
8
[M1 + 4M2]

�3 =− 1
8
[M1 + 4M3]

�4 =− 1
8
[M1 + 4M4] (44)

�5 =
1
8
[M1 + 4(M3 +M4 + 2M5)]

�6 =
1
8
M1 +M2 +M6

The formulation in Eq. (43) shows that, after the two-dimensional orientational averaging process, any

transversely isotropic fourth-rank tensor will remain so.

Assuming the uniform distribution of overall strains, with the help of the formulation in Eq. (43), the

effective elasticity tensor ⊂ C∗ ⊃ of two-dimensional random fiber composites can be obtained as


 C∗ �= F̃ijkl(ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, ĉ6) (45)

where

ĉ1 =
3
8
ι1

ĉ2 =− 1
8
[ι1 + 4ι2]

ĉ3 =− 1
8
[ι1 + 4ι3]

ĉ4 =− 1
8
[ι1 + 4ι4] (46)

ĉ5 =
1
8
[ι1 + 4(ι3 + ι4 + 2ι5)]
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ĉ6 =
1
8
ι1 + ι2 + ι6

The parameters of ι1, ..., ι6 are given in Eq. (3). In adddition, Young’s moduli EL, ET ; shear moduli µL, µT ;

and Poisson’s ratios νLT , νTT , νTT of the transversely isotropic composites can be obtained as

EL = ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6 − (ĉ3 + ĉ5)2

ĉ5 + ĉ6
(47)

ET =
4ĉ6[(ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6)(ĉ5 + ĉ6)− (ĉ3 + ĉ5)2]
(ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6)(ĉ5 + 2ĉ6)− (ĉ3 + ĉ5)2

(48)

µL = ĉ2 + ĉ6 (49)

µT = ĉ6 (50)

νLT =
ĉ3 + ĉ5

2(ĉ2 + ĉ5 + ĉ6)
(51)

νTL =
2ĉ6(ĉ3 + ĉ5)

(ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6)(ĉ5 + 2ĉ6)− (ĉ3 + ĉ5)2
(52)

νTT =
ĉ5(ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6)− (ĉ3 + ĉ5)2

(ĉ1 + 4ĉ2 + ĉ3 + ĉ4 + ĉ5 + 2ĉ6)(ĉ5 + 2ĉ6)− (ĉ3 + ĉ5)2
(53)

where the subscripts L and T represent properties along and at right angles to the fibers.

We now consider the overall elastoplastic responses of progressively debonded composites with randomly

oriented fibers in the two-dimensional space. By using the orientational averaging process in Eq. (43), the

orientation-averaged square of stress norm 
 Hm � at any matrix point can be obtained as


 Hm �= σo :
 T �: σo (54)

where the transversely isotropic fourth-rank tensor 
 T � is


 Tijkl �=
1
π

∫ π

0

lmilnjTmnpqlpklqldθ (55)

The components of the positive definite fourth-rank tensor 
 T � read


 Tijkl �= F̃ijkl(t̂1, t̂2, t̂3, t̂4, t̂5, t̂6) (56)

with

t̂1 =
3
8
t̄1

t̂2 =− 1
8
[t̄1 + 4t̄2]

t̂3 =− 1
8
[t̄1 + 4t̄3]

t̂4 =− 1
8
[t̄1 + 4t̄4] (57)

t̂5 =
1
8
[t̄1 + 4(t̄3 + t̄4 + 2t̄5)]
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t̂6 =
1
8
t̄1 + t̄2 + t̄6

where the parameters t̄1, ..., t̄6 are given in Eq. (6).

Similarly, the relationship between the far-field stress σo and the macroscopic (orientation-averaged)

stress 
 σ̄ � takes the form

σo =
 P �:
 σ̄ � (58)

where the fourth-rank tensor 
 P � reads


 P �ijkl =

[
Iijkl +

2∑
r=1

φr

π

∫ π

0

QmiQnj[Imnpq − Smnpq] · [(Ar)pqst + Spqst]−1QskQtldθ

]−1

= F̃ijkl(p̂1, p̂2, p̂3, p̂4, p̂5, p̂6) (59)

with

p̂1 =
3
8
p1 (60)

p̂2 =− 1
8
[p1 + 4p2] (61)

p̂3 =− 1
8
[p1 + 4p3] (62)

p̂4 =− 1
8
[p1 + 4p4] (63)

p̂5 =
1
8
[p1 + 4(p3 + p4 + 2p5)] (64)

p̂6 =
1
8
p1 + p2 + p6 (65)

where the parameters p1, ..., p6 are given in Eq. (12).

By combining Eqs. (54) and (58), we arrive at the alternative expression for the orientation-averaged

current stress norm (square) at a matrix point


 Hm �=
 σ̄ �:
 T̄ �:
 σ̄ � (66)

where


 T̄ �= 
 P �T · 
 T � · 
 P �
=F̃ijkl(T̂1, T̂2, T̂3, T̂4, T̂5, T̂6) (67)

with

T̂1 =4p̂1p̂6t̂6 + 8(p̂1 + 2p̂2 + p̂3)(p̂2 t̂2 + p̂6t̂2 + p̂2t̂6) + (p̂1 + 4p̂2 + 3p̂3)

(p̂1t̂4 + 4p̂2t̂4 + p̂4t̂4 + 2p̂6t̂4 + p̂1t̂5 + 4p̂2t̂5 + 3p̂4t̂5 + 2p̂4t̂6)
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+ (p̂1 + 4p̂2 + p̂3 + 2p̂6)[2p̂6t̂1 + 4p̂2(t̂1 + 2t̂2 + t̂3) + p̂4(t̂1 + 4t̂2 + 3t̂3) (68)

+ p̂1(t̂1 + 4t̂2 + t̂3 + 2t̂6)]

T̂2 =4(p̂2p̂2t̂2 + 2p̂2p̂6t̂2 + p̂6p̂6t̂2 + p̂2p̂2t̂6 + 2p̂2p̂6t̂6) (69)

T̂3 =4p̂3p̂6t̂6 + (p̂1 + 4p̂2 + 3p̂3)(p̂3 t̂4 + p̂5t̂4 + p̂3t̂5 + 3p̂5t̂5 + 2p̂6t̂5 + 2p̂5t̂6)

+ (p̂1 + 4p̂2 + p̂3 + 2p̂6)[2p̂6t̂3 + p̂5(t̂1 + 4t̂2 + 3t̂3) + p̂3(t̂1 + 4t̂2 + t̂3 (70)

+ 2t̂6)]

T̂4 =4p̂4p̂6t̂6 + 8(p̂4 + p̂5)(p̂2 t̂2 + p̂6t̂2 + p̂2t̂6) + (p̂4 + 3p̂5 + 2p̂6)(p̂1 t̂4

+ 4p̂2t̂4 + p̂4t̂4 + 2p̂6t̂4 + p̂1t̂5 + 4p̂2t̂5 + 3p̂4t̂5 + 2p̂4t̂6) + (p̂4 + p̂5) (71)

[2p̂6t̂1 + 4p̂2(t̂1 + 2t̂2 + t̂3) + p̂4(t̂1 + 4t̂2 + 3t̂3) + p̂1(t̂1 + 4t̂2 + t̂3 + 2t̂6)]

T̂5 =4p̂5p̂6t̂6 + (p̂4 + 3p̂5 + 2p̂6)(p̂3 t̂4 + p̂5t̂4 + p̂3t̂5 + 3p̂5t̂5 + 2p̂6t̂5 + 2p̂5t̂6)

+ (p̂4 + p̂5)[2p̂6t̂3 + p̂5(t̂1 + 4t̂2 + 3t̂3) + p̂3(t̂1 + 4t̂2 + t̂3 + 2t̂6)] (72)

T̂6 =4p̂6p̂6t̂6 (73)

2.2.3. Averaged yield function for randomly oriented fiber-reinforced composites

The ensemble-volume averaged “current stress norm” for any point x in three-dimensional random fiber

composites can be defined as

√
〈H〉(x) = (1− φ1)

√
⊂ σ̄ ⊃:⊂ T̄ ⊃:⊂ σ̄ ⊃ (74)

where φ1 is the current volume fraction of perfectly bonded fibers. Therefore, the effective yield function for

the three-phase, three-dimensional random fiber composites can be proposed as

F̄ = (1− φ1)2 ⊂ σ̄ ⊃:⊂ T̄ ⊃:⊂ σ̄ ⊃ −K2(ēp) (75)

with the isotropic hardening function K(ēp) for the three-phase composite. The effective ensemble-volume

averaged plastic strain rate for the three-dimensional random fiber composites can be expressed as

˙̄εp = λ̇
∂F̄

∂σ̄
= 2(1− φ1)2λ̇ ⊂ T̄ ⊃:⊂ σ̄ ⊃ (76)

where λ̇ signifies the plastic consistency parameter.

The effective equivalent plastic strain rate for the composite is defined as

˙̄ep ≡
√

2
3
˙̄εp :⊂ T̄ ⊃−1: ˙̄εp = 2(1− φ1)2λ̇

√
2
3
⊂ σ̄ ⊃:⊂ T̄ ⊃:⊂ σ̄ ⊃ (77)

The λ̇ together with the yield function F̄ must obey the Kuhn-Tucker loading/unloading conditions. The

simple power-law type isotropic hardening function is employed as an example:

K(ēp) =

√
2
3

{
σy + h(ēp)q̄

}
(78)
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where σy is the initial yield stress, and h and q̄ signify the linear and exponential isotropic hardening param-

eters (respectively) for the three-phase composite. For two-dimensional, planar random fiber composites,

⊂ σ̄ ⊃ and ⊂ T̄ ⊃ in Eqs. (74)-(77) are replaced by 
 σ̄ � and 
 T̄ �, respectively.

3. Progressive fiber debonding

The evolutionary interfacial debonding occurs under increasing loads or deformations and influences

the overall behavior of randomly oriented, discontinuous fiber-reinforced composites. After the interfacial

debonding, the debonded fibers may lose the load-carrying capacity in the debonded direction and can be

regarded as partially debonded fibers. Within the context of the first-order (noninteracting) approximation,

the stresses inside fibers should be uniform. For convenience, following Zhao and Weng [13,14] and Ju and

Lee [17], the probability of partial debonding is modeled as a two-parameter, Weibull process. We employ

the average internal stresses of fibers as the controlling factor. Assuming that the Weibull statistics govern,

the cumulative probability distribution function of fiber debonding (damage) Pd at the level of hydrostatic

tensile stress can be expressed as

Pd[(σ̄m)1] = 1− exp

[
−

(
(σ̄m)1
So

)M
]

(79)

where (σ̄m)1 = [(σ̄11)1 + (σ̄22)1 + (σ̄33)1]/3 is the hydrostatic tensile stresses of the fibers, the subscript (·)1
denotes the fiber phase, and So and M are the Weibull parameters.

Therefore, the current partially debonded (damaged) fiber volume fraction φ2 at a given level of (σ̄m)1

is given by

φ2 = φPd[(σ̄m)1] = φ

{
1− exp

[
−

(
(σ̄m)1
So

)M
]}

(80)

where φ is the original fiber volume fraction.

The internal stresses of fibers required for the initiation of interfacial debonding can be found in Ju and

Lee [17] and our previous research [18].
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4. Examples and discussion

In our previous research [18], we compared the present analytical predictions with bounds based on

Halpin-Tsai micromechanics Equations [22] to validate the proposed micromechanical framework for aligned,

discontinuous fiber-reinforced composites. One of the advantages of the Halpin-Tsai Equations is that they

cover both the particulate reinforced case (fiber aspect ratio=unity, lower bound) and the continuous fiber

case (fiber aspect ratio=infinity, upper bound). We plotted the theoretical predictions based on Halpin-

Tsai’s bounds and the proposed method with various fiber aspect ratios. Clearly, our analytical predictions

were well within the Halpin-Tsai’s bounds (see Fig. 2 in Lee and Simunovic [18]).

To illustrate the elastoplastic behavior of the present damage constitutive framework, our present dam-

age models for two- and three-dimensional random fiber composites considering interfacial debonding are

presented in Figs. 3 - 5. The material properties of random fiber composites involving these simulations

are E0 = 3.0GPa, ν0 = 0.35, E1 = 380GPa, ν1 = 0.25, α = 20, σy = 125MPa, h = 400MPa, and

q̄ = 0.5. In addition, to implement the proposed probabilistic micromechanics based on Weibull function

into the present constitutive models, we need to estimate the values of Weibull partameters So and M . For

simplicity, we assume the Weibull parameters to be So = 16.35 ∗ σy and M = 4. First, the stress-strain

relations of a two-dimensional random fiber-reinforced composite under uniform deformations for the planar

random orientation are presented in Fig. 3. It shows a typical transversely isotropic behavior as expected.

Fig. 4 exhibits the effect of the initial volume fraction of fibers on the behavior and progressive debonding

of three-dimensional random fiber composites and includes the results for perfect composites shown by solid

lines and debonded composites shown by dashed lines. More interfacial debonding is observed for high-fiber

volume fraction (φ=0.5) composites. Fig. 5 shows the evolutions of debonded fiber volume fraction as a

function of the uniaxial strain. It is seen that the composite with high initial volume fraction of fibers is

stiffer, but the influence of damage on the stress-strain response of the composite is more drastic because of

quick damage evolution.

We further compare our prediction with the experimental data provided by Meraghni and Benzeggagh

[10] for three-dimensional random fiber composites. Here, we adopt the elastic properties, aspect ratio, and

fiber volume fraction according to Mergahni and Benzeggagh [10] as follows: E0 = 3.0GPa, ν0 = 0.35, E1 =

72GPa, ν1 = 0.17, α = 19.25, and φ1 = 0.5. Using the parameter estimation algorithm developed by Ju

et al. [23] and Simo et al. [24], we estimate the plastic parameters σy , h, and q̄ in accordance with the

isotropic hardening law given in Eq. (78) and Weibull parameters So and M for evolutionary debonding

to be σy = 150MPa, h = 400MPa, q̄ = 0.5, So = 27.14 ∗ σy , and M = 4.0. We depict our prediction
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against the experimental data provided by Meraghni and Benzeggagh [10] in Figs. 6 and 7. Due to the

small-strain constraint, we do not display our prediction beyond ε11=0.012. Since our formulation does not

consider inter-fiber interaction, the stress-strain curve for the present prediction is lower than that based on

the experiment in the early stage. Naturally, the overall stiffness of interacting damage model is higher than

that of noninteracting damage model [19]. As the strain increases, the effect of damage becomes the dominant

one; therefore, the curves corresponding to the present prediction and the experiment will intersect each other

because the proposed damage constitutive model includes the interfacial debonding only. Therefore, it is

concluded that the interaction effect among constituents must be considered in modeling damage behavior

of composites for both moderately and extremely high fiber volume fraction. Furthermore, other damage

mechanisms (e.g., matrix cracking, void nucleation, etc.) must be included in the damage constitutive models

to offer more realistic damage predictions.

Finally, the present model does not account for other damage mechanisms because these effects are

beyond the scope of the present work. In spite of these limitations, the agreement between the present

predictions and experiments is encouraging for possible use of the proposed damage constitutive models

for predicting the progressive damage in composite structures. The present micromechanical constitutive

model also establishes the theoretical foundation needed for simulation of progressive crushing of composite

structures. In a forthcoming paper, implementation of the proposed damage models into finite element

program DYNA3D will be presented to show the dynamic inelastic behavior and progressive crushing in

composites under impact loading. Specifically, inter-fiber interactions, microcrack-weakened composites,

large-strain formulation, and finite element examples will be addressed.
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Figure captions

Fig. 1. Spherical coordinates.

Fig. 2. Planar coordinates.

Fig. 3. Stress-strain relations of a two-dimensional random fiber-reinforced composite under uniform

deformations.

Fig. 4. Effect of the initial volume fraction of fibers on the overall elastoplastic damage behavior of

three-dimensional random fiber-reinforced composites.

Fig. 5. The predicted evolution of debonded fiber volume fraction corresponding to Fig. 4.

Fig. 6. The prediction between the present prediction and experimental data for overall uniaxial tensile

responses of randomly oriented discontinuous fiber composites with initial fiber volume fraction of 0.5.

Fig. 7. The predicted evolution of debonded fiber volume fraction versus strain corresponding to Fig. 6.


