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Abstract

Telesensing involves receiving data wirelessly from a remote sensor.  

Generally, the sensor node is fixed and configured to transmit only or perform very b

reception.  Because of their low power consumption, telesensors can be powered b

battery for long periods of time without a measurement or transmission interruption. 

allows several nodes to be placed at strategic locations and creates a need to have

individual data collected and processed at a centralized location.  Frequency Divisio

Multiple Access (FDMA) provides robust data transmission from multiple telesensor

the same receiver at the cost of added bandwidth.

This thesis focuses on the digital recovery of spread spectrum data in 

FDMA system.  A general digital spread spectrum receiver architecture is given (wit

transceiving capability) and each component is designed, implemented and tested i

receiver as a whole.  A sliding correlator with a threshold is used to synchronize the

pseudonoise (PN) code used to encode the data with the incoming data.  System clo

also recovered from the incoming data and distributed to the downstream modules. 

design is implemented in an FPGA and tested with favorable packet error rate results

FDMA system.  The components of the digital receiver processor could be used in 

conjunction with a Costas Loop demodulator to provide CDMA for multiple sensors 

its functionality and robustness are confirmed in this thesis.  This would fit into a com

CDMA, allowing the demodulator to discriminate between various sensors.
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1.0  Introduction

Low-power wireless sensors can be used to efficiently report specific 

conditions at a remote location.  Micromachined cantilever sensors fabricated on a s

die can be used to provide the sensor data, providing a low-power solution to acquir

certain data [1].  Because these sensors can be so low-power that they could run of

battery, the parts used to transmit the data need to be similarly low-power.  Although

wireless link provided by this project is independent of the data being transmitted on

was designed for a telesensing application.  The transmitter aspect of this wireless so

is provided by an in-house, ORNL-developed analog-to-digital converter (ADC) chip

a commercial low-power transmitter.  To provide data robustness and provide multip

access in future generations, spread spectrum communication is employed.  This re

a digital receiver to recover the spread spectrum signal, despread it and interface w

Personal Computer (PC) to display the data.  This thesis focuses on the design of th

digital spread spectrum receiver to provide remote access for wireless data transfer

1.1  Telesensing

Wireless sensor data transmission is free from certain limitations of cell

telephony.  Transmission bursts do not need to be carefully coordinated to appear a

seamless stream of continuous speech to the human ear.  Therefore, data can be tra

every few seconds or more as opposed to the millisecond increments required by ce

telephony.  As an example, GSM, the Time Division Multiple Access (TDMA) cellula
8
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standard used for wireless telephony in Europe, requires that the speech for a given 

transmitted every 4 ms in 125 us frames.  This frequency of transmission would be 

overkill for a sensor that only needs to update its status on the order of seconds or m

or even once an hour.

As a result of this long lag between transmission bursts, the RF front-e

circuitry can be turned off since the period of time between transmissions greatly dw

the time required to turn it back on and transmit a burst of data.  Also, the digital 

transmission processing core, responsible for relaying the sensor data to the RF circ

can be put into sleep mode to save power.  Both of these power down features grea

reduce the power consumption of the system.

Additional power conservation can be attained if the transmitter is not 

configured for reception as well.  The transmitter does not have to interrupt its sleep 

to spend power on receiving instructions from the host sensor data processor.  How

even if this were a desired trait of a potential wireless telesensor implementation, se

data does not require computationally-expensive and power-hungry digital signal 

processing to restore synthesized human speech, as with digital cellular telephones

These three features of telesensing, RF and digital circuitry power 

conservation and simplified or nonexistent transceiving in the transmitter allow 

telesensing to have tremendous power savings over digital cellular telephony.  Ther

the data transmission circuitry can run autonomously using a single compact battery

instead of a traditional cellular telephone battery.  These wireless telesensor transm

can be left alone to transmit data reliably for months instead of needing to be rechar

every couple of days as with a standard cellular telephone battery.  The telesensors
9
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transmit data less frequently and at lower rates than cellular telephones, but this is u

appropriate for their application to sensor data.

 

1.2  Scope of Thesis

The goal of this thesis is to move an analog voltage representing the o

from an analog sensor wirelessly from the stand-alone sensor site to a host PC for d

Specifically, this thesis focuses on the design of the digital spread spectrum receive

to recover the transmitted data.  The architecture was designed for telesensing, but,

the actual transmission and reception of data is independent of the application, the 

wireless link was not tested with sensors as inputs.  An appropriate background in d

communications is developed so that design considerations in the digital receiver ca

appreciated.  Then, the system overview is given, detailing the specific components

in the system and how this affects the design of the receiver.  Next, the architecture 

digital spread spectrum receiver is detailed and its functionality explained.  Later, th

implementation of the design and the testing and results of the implementation are 

discussed.  Finally, lessons learned from the project and conclusions on digital spre

spectrum design are presented.
10
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2.0  Background

2.1  Wireless Communications

The purpose of wireless communications is to transmit data through a

ambient physical medium, such as air, so that a physical channel does not need to b

and maintained, such as a cable or twisted pair telephone line.  This requires coupli

intended transmitted signal to the medium, something easily done with tethered 

communications since the channel is designed to support the transmitted signal.  Fo

wireless communications, this requires building an antenna to convert an incident vo

the medium of the signal to be sent, to a radio frequency (RF) wave, a different sign

one that can propagate through the desired medium. 

The size of the antenna required to couple a given signal to the air via

waves varies inversely with the frequency of that signal.  Lower frequency signals re

prohibitively large antennas and so must be converted to a higher frequency signal. 

is done by using a higher frequency carrier that is modulated by the signal to be sen

The data to be sent can be transmitted as offsets from the carrier frequ

This is known as frequency shift keying (FSK) and is the method used to transmit th

information in this system.  In this case, the receiver/transmitter pair employ a binary

frequency shift keying (BFSK) alphabet to transmit data.  The general analytic expre

for the alphabet is:
11
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 Equation 1:               

 

where t is time-limited between 0 and T, i is a member of the binary alphabet {0,1} and th

energy transmitted in one bit is Eb.  Different frequencies are used to transmit a 0 and a

usually a fixed frequency increment centered around the carrier frequency.

In order to ensure data fidelity at the receiver, the symbols of the BFSK

alphabet must be orthogonal to each other, so that they do not interfere with one an

Since the signals are time-limited to T seconds, they can be expressed as

 Equation 2:            

where rect(t/T) = 1 when |t| is less than or equal to T/2 and 0 otherwise.  The Fourier 

transform of si(t) is

 Equation 3:             

For signals separated by multiples of 1/T Hertz,

 Equation 4:                       

si t( )
2 Eb⋅

T
------------- 2πfi t ϕ+( )cos⋅=

si t( )
2 Eb⋅

T
------------- 2πfi t ϕ+( )cos rect

t
T
--- 

 ⋅ ⋅=

Si f( ) ℑ si t( ){ } T
πT f fi–( )( )sin

πT f fi–( )
-----------------------------------⋅= =

f1 f0–
m
T
----=
12
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where m is an integer greater than or equal to 1.  The value of 1/T is known as the 

minimum frequency separation for the two signals.  The frequency domain represen

of these signals evaluated at multiples of this minimum separation is nonzero for on

signal while the other is zero and vice versa.  This is evidenced by Figure 1.  Theref

the two signals do not interfere with each other at all and are orthogonal [2], [3], [4], 

For FSK digital communication, an FM superheterodyne receiver is 

usually employed.  It mixes the incoming signal with a local oscillator to an intermed

frequency (IF).  By downconverting to an IF instead of baseband, the receiver does 

have to match the frequency in the local oscillator exactly with the incoming signal.  

creates images at other frequencies, but these can be suppressed by appropriate fil

before the signal is mixed down to IF. 

Since it is much easier to maintain a constant bandwidth in a fixed filte

than a tunable one, the channel filtering is done at IF.  Also, high-stable gain is more

difficult to provide in a tunable amplifier than a fixed-frequency amplifier.  This make

covering a wide frequency band easier and is why superheterodyne receivers are st

for FM radios [6].
13
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 Figure 34:  FSK in the Frequency Domain

2.2  Multiple Access

To employ wireless communication effectively, especially for telesensin

applications, multiple users will need to be accommodated.  For a sensor designed 

detect the presence of a certain element, it usually would not be sufficient to just hav

sensor in one place.  Generally, an array of sensors would be used to cover a larger

These results would need to be coordinated and analyzed at a central location.  If th

receiver is able to listen to all of these sensors, then only one PC is needed to displa
14



ccess 

  The 

ure 2. 

is 

, even 
assimilate the information gathered.  This requires multiple sensors having wireless a

to the receiver.

There are three primary methods of allowing multiple users access to 

wireless RF communication: FDMA, TDMA, CDMA.  Frequency Division Multiple 

Access (FDMA) separates users by the carrier frequency they use to communicate.

separation between carriers must allow for the full spectrum of the signal to be 

communicated so that signals from adjacent carriers do not overlap as shown in Fig

This requires a certain amount of bandwidth, BW, for a given number of users, n, wishing 

to use fb amount of the frequency spectrum, with signals separated by fdi - fdi-1.

 Equation 5:               

There are multiple access schemes that allow more effective use of th

amount of bandwidth since each user gets their own amount of bandwidth to occupy

when they are not using it.  A more efficient way of allocating bandwidth would be 

allowing users to share a carrier.  Time 

 

 Figure 35:  FDMA in the Frequency Domain

BW fbi fdi∆+( )
i 1=

n

∑=

frequency

fc2 fc3fc1

fb1 fd3-fd2
15
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Division Multiple Access (TDMA), lets a certain number of users share a carrier equ

Each user is assigned a time slot in a frame that is transmitted on the carrier, repeat

periodically.  In Figure 3, for example, the frame has a period, T, supports m users, and 

each one transmits on the carrier for T/m seconds.  For the same amount of bandwidth 

above, m*n users can be supported instead of n.  This works well for applications where 

small delays in transmission bursts can go relatively unnoticed.  An example of this 

GSM standard for cellular telephony, which specifies that a 4-ms frame accommoda

users for a transmission time of 125-us each.  This 4-ms lag in speech is barely, if a

perceptible by the human ear, so is adequate for relaying human voice [7].

Code Division Multiple Access (CDMA) allows multiple users to share t

same carrier by encrypting each user’s message.  This requires a code that can onl

decoded by the appropriate decryption key.  To reduce computational complexity, th

encoding algorithm should be easy to invert given the encoding key.  The exclusive 

(XOR) function is an easily invertible binary function and is used for encoding a mes

for CDMA purposes.  Since the encoding and decoding functions are well-known, th

problem now reduces to finding a sufficiently strong encrypting code that does not g

away the message sent and keeping that key secret.

 Figure 36:  A TDMA Frame

  1           2          3         4           ...    m

T seconds
16
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CDMA uses a code in the transmitter that runs at an integer multiple of

data rate to encode data, called spread data.  The rate of the code, called the chippi

must run faster than the data rate because each data bit is being encoded before it 

transmitted.  It must run at an integer multiple so that the receiver can recover the me

data from the spread data, since the receiver has prior knowledge of the code but n

knowledge of the timing (i.e., is not passed a clock from the transmitter).  Making the

encrypting codes, also called spreading codes, unique with respect to each other al

multiple users to share the same carrier without interfering with each other’s data.  T

strength of CDMA lies in the generation of strong individual codes as well as a set o

codes that are unique to each other [2], [8], [9].

  

2.3  Spread Spectrum

The frequency spectrum of a signal is spread when the signal is comb

through modulo-2 addition with a pseudorandom or pseudonoise (PN) sequence.  A

shown in Figure 4, the original data signal, in the case of FSK modulation, consists id

 Figure 37:  Ideal FSK

frequency

fc f1f0
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of narrow signals at the carrier frequency and also at fixed frequency increments fro

carrier.   The frequency spectrum of the ideal signal is limited to the bandwidth need

include the small FSK increments.  The idea behind combining this signal with a PN

sequence is to create a signal that looks like noise when not properly decoded.  Thi

achieved by making the signal appear to be random.  A truly random signal contains

possible frequency components equally.

As a data signal is randomized, it’s frequency spectrum must be sprea

include more of the frequency spectrum.  However, it is only spread to a certain exte

since the PN sequence is not truly random and repeats with some determined perio

Figure 5 shows a broader spectrum than the signals in Figure 4. CDMA is implemen

using spread spectrum at the cost of added bandwidth.  However, this cost is offset 

gain in multiple access afforded by the orthogonality of the PN codes.  It is possible t

the PN code in different ways to encrypt communication.  If the PN sequence is use

directly modulate the carrier, this is direct sequence spread spectrum.  On the other

 Figure 38:  Spread Spectrum

frequency

fc f1f0
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if it is used to shift the carrier frequency in discrete increments, this is known as frequ

hopping [8].  Each user is given their own PN code and may enjoy secure communic

independent of other users on that same carrier frequency as shown in Figure 6.

 Figure 39:  Code Division Multiple Access

frequency

fc

user 1

user 2

user 3
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2.4  PN Codes

 If the encrypting code is a suitably selected sequence, then only the ex

aligned code reveals the message and a misaligned code reveals nothing.  This can

measured by the digital normalized autocorrelation function.  The autocorrelation, Rx[n] , 

 Equation 6:            

measures the correlation between x[n]  and a time-shifted version of itself.  This repeats 

least with period N, since N is the length of the code.  The ideal autocorrelation functio

for an encrypting code then is the Kronecker delta function which only has a nonzer

value at 0.  Transforming white noise from the frequency spectrum to the time doma

also yields a similar function.  Imitating white noise in an encrypting sequence is des

because an improperly decoded signal will resemble white noise and give no useful

information about how to properly decode the signal.

Since deterministic hardware is used to generate these codes, they ca

be truly random; but can approximate random binary strings.  There are three genera

for analyzing digital codes to determine if they sufficiently resemble random bits.  Fi

the number of ones and zeros in the code must not differ by more than one.  Second

autocorrelation must not exceed 1/N, where N is the length of the code, when not exactly

aligned with itself.  Finally, the PN sequence must have balanced runs, i.e., 1/2 of the

of consecutive similar digits are of length 1, 1/4 length 2, 1/8 length 3, and so on [2],

Rx n[ ] 1
N
---- x n[ ] x n i+[ ]⋅

i 1=

N 1–

∑=
20
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Pseudorandom sequences are efficiently generated from linear feedba

shift registers (LFSR).  These LFSRs are a string of one-bit registers cascaded toge

with connections to binary adders (XOR gates) at predetermined positions.  The 

connections to the XOR gates are known collectively as the tap configuration and ar

determined by a generator polynomial.  The output of the tap configuration is fedbac

the first register and the feedback loop continues until the appropriate number of bit

shifted out of the output, which is the last register [10].  

The generic k-stage LFSR in Figure 7 has Y(x) as the output PN sequence

The seed, m(x), is k-bits long and initially loaded into the LFSR.  The tap configuration

given by h(x), is a k-bit binary string of coefficients that determine which switches are 

closed to contribute to the sum fedback into the register holding the least significant

Since the k-stage shift register has 2k possible states, after 2k-1 transitions all have been 

exhausted and the LFSR starts repeating states again.  Therefore the output PN se

would start repeating again with a maximum periodicity of 2k-1.

 Figure 40:  Linear Feedback Shift Register

 +

h0h1

...

+

hk-1

...

Ym0 m1 mk-2 mk-1
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Codes that repeat with maximum periodicity are maximal length (ML) 

codes and are desirable because they demonstrate the autocorrelation property des

earlier.  A code’s periodicity is solely determined by the tap configuration as the choi

seed does not affect the length of the PN sequence as long as it is not all zeros [2], [8

The coefficients of the tap configuration, bit string h(x), are determined experimentally.  

The ML tap configurations for a given length can be found by exhausting all the 

possibilities and checking the periodicity of the resulting codes.  Tables for tap 

configurations that generate ML sequences can be found in [8].

To employ effective multiple access, the generated codes also must no

interfere with each other and there must be enough codes to accommodate several

For a k-stage LFSR, the number of ML sequences that can be generated is Euler’s fu

divided by the LFSR length.

 Equation 7:                  

Euler’s function gives the number of numbers that are coprime to, i.e., have no com

factors with, and less than a certain number, including 1.  Euler’s function is maximiz

for prime numbers since all of the numbers less than it are coprime to it.  Therefore,k-

1 is a prime number, the corresponding k-stage LFSR will generate the maximum numb

of usable PN sequences [8].

However, these sequences must not be mistaken for each other if they

going to be a usable set.  This is determined by the digital cross-correlation function

MLnum
φ 2k 1–( )

k
----------------------=
22
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 Equation 8:             

Rxy represents the cross-correlation between two codes, x[n]  and y[n]  [3], [11].  This is 

useful in examining the orthogonality of two codes, or the difficulty in mistaking one 

the other.

As an example, consider two different LFSR tap configurations that use

same initial seed.  They are chosen to be [0 0 1 1] and [1 0 0 1] and happen to be th

two configurations for a 4-stage LFSR that generate ML sequences.  The resulting 

sequences for seed [1 0 0 0] are respectively,

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 and 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1.

They meet the criteria for number of ones and zeros and runs listed ab

Both have eight ones and seven zeros.  Figure 8 shows that their autocorrelations o

exceed 1/15 when they are exactly aligned with themselves. Finally, they both have 

balanced runs.  Each has 8 runs of consecutive digits: four one-bit runs, two two-bit

a three-bit run, and a four-bit run  Their resulting autocorrelations are shown in the F

8 and are as close to an impulse function as a deterministic algorithm can be.

Rxy
1
N
---- x n[ ] y n i+[ ]⋅

i 1=

N 1–

∑=
23
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 Figure 41:  Autocorrelations

To use these two codes on the same carrier, they must be minimally 

correlated.  The normalized cross-correlation is given in Equation 5 and graphed in F

9.  If we are trying to send [0 1 0 1] as data using these codes, this would result in F

10 and 11, respectively.  Since the chip length is 15, the code spreads the data by 1
24



 Figure 42:  Cross-correlation between Code 1 and Code 2
25



 Figure 43:  Spreading with Code 1
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 Figure 44:  Spreading with Code 2

every bit is turned into 15 bits by the PN code.  The original data can be recovered a

by performing the XOR function again with the correct code, as shown in Figure 12.

However, if the wrong PN code is used, the data is not recovered and the result look

noise, as shown in Figure 13.

Figure 9 shows that the correlation between Codes 1 and 2 never reac

50%.  If one of the codes is compared with the incoming spread data stream and 8 o
27



 Figure 45:  Properly Recovered Data
28
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 Figure 46:  Improperly Decoded Data

of the bits in a window of 15 consecutive bits are positively or negatively correlated, 

the chosen code is probably the correct code for despreading the incoming data.  

Therefore, a threshold of 8 matches can be established for determining whether a c

being properly despread or not.  If fewer then 8 bits are positively or negatively correl

then either the wrong data is trying to be decoded for that PN code or more of the d

needs to be acquired.  Later, this will prove useful in the despreader module of the d

receiver for decoding the spread data without a synchronous clock.   
29
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It is possible to generate ML codes that are not the output of an LFSR

still have a low cross-correlation with other codes of the same set.  A k-stage LFSR 

resulting in n-bit ML codes can only produce a subset of all the possible n-bit strings.  

Therefore as n and k increase, more and more sequences are available that comply wit

randomness properties, but are not attainable with an LFSR.  One way of generating

codes is by XORing two ML codes together.  This results in an ML code known as a 

code.

Some research focuses solely on how to generate more PN sequence

given length.  Lately, research has focused on using chaotic signals to generate new

sequences.  For a certain sequence length there are only a certain number, b, of ML 

sequences that can be generated.  Gold codes create more sequences, but only b2 at the 

most.  For a 6-stage LFSR generating 63-bit codes, according to Equation 8, fewer than 6 

ML codes can be generated.  They yield at most 36 different possible Gold Codes.  

are 263 possible bit strings and many of them could be ML sequences as well.

The signals generated by a chaotic source inherently have minimal no

zero shift autocorrelation and generally have good cross-correlation properties.  Thi

because a chaotic source is very sensitive to initial conditions and can produce a var

outputs.  Therefore, it intrinsically has a broad spectrum.  Heidari-Bateni and McGill

first proposed and studied chaotic sequences generated by a logistics map [12], [13

[15].  Adler and Rivlin used Chebyshev polynomials to generate PN sequences and

et al studied their performance [16], [17].  They found that the chaotic sequences sli

outperformed the Gold Codes in terms of error performance over signal to noise rati
30
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They also found that chaotic sequences allowed significantly more users similar bit 

rate compared to Gold Codes or conversely, that the bit error rate was improved for

chaotic sequences over Gold Codes for the same number of users.
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3.0  System Overview

The goal of this thesis is to design a digital receiver processor to reliab

transfer sensor data to a PC monitor display.  The digital receiver processor is integ

with a receiver RF front-end circuit (RF MicroDevice’s RFMD 2945) to receive signa

from a digital transmission processor (an ORNL-developed chip called ACQ2) and a

transmitter RF front-end circuit (RF MicroDevice’s RFMD 2510).  The ACQ2 and 25

chips generate a direct sequence spread spectrum signal for reception and decoding

2945 chip and the digital receiver.  The sensor data link is shown in Figure 14.

 Figure 47:  Sensor Data Link
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3.1  Data Acquisition Chip

The ACQ2 chip was developed at the Oak Ridge National Laboratory 

provide baseband digital data for wireless monitoring of mouse vital signs.  It sample

four sensor inputs, as shown in Figure 15, and creates a serial data packet and prod

spread spectrum digital stream for wireless transmission in the digital controller.  It 

employs a 10-bit successive approximation analog-to-digital converter (ADC) and a 2

bandgap reference to digitize the sensor inputs.  The digital controller is responsible

the front-end electronics, RAM, PN engine, packet builder, and spreading control.  It

has a differential encoder to ensure a robust data stream and can choose from two m

length sequence 63-chip PN codes as well as a 63-chip Gold code to ensure secure

spectrum communication.  Off-chip RF front-end circuitry can be put into sleep mode

between sampling periods to save power.

 Figure 48:  ACQ2 Block Diagram
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3.2  Low-power Transmitter

The RFMD 2510 is a low-power wireless transmitter that can operate in

US 915 MHz band.  It has an on-chip voltage-controlled oscillator (VCO) consisting 

phase detector and charge pump as well as a programmable phase-locked loop for 

frequency synthesis.  The loop filter for the VCO is off-chip and included in the evalua

board in addition to the reference crystal needed.  It also has power-down capability

only consumes 1 uA when in sleep mode.  It is this low-power feature that made the

attractive since wireless transmitters generally spend more time sleeping than 

transmitting.  A basic diagram of the transmitter is given in Figure 16.

 Figure 49:  RFMD 2510 Block Diagram
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3.3  FSK Receiver

The RFMD 2945 receiver converts an input RF signal into a digital out

signal using a frequency modulated feedback demodulator.  A block diagram is sho

Figure 17.  The VCO output provides the RF carrier reference, which is mixed with t

incoming RF signal.  This tracks, through two filters, the incoming RF signal and hol

at the discriminator center frequency.  If the input frequency falls below this carrier 

frequency then a 0 is output and if it is above, then a 1 is output [8], [19].

 Figure 50:  RFMD 2945 Block Diagram
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3.4  Component Limitations

Multiple access was required to allow more than one sensor node to 

transmit data to a single digital receiver to be displayed on the PC.  Since the ACQ 

has a PN engine in it and can build spread packets, originally, the system was to ha

multiple sensors chirping on the same frequency separated by different PN codes --

CDMA. However, due to the limitations of the RFMD 2945 receiver, this was not poss

and the sensors instead had to be separated by different carrier frequencies -- FDM

2945 chip only allows, as inputs, an RF signal and a carrier frequency.  The 2945 

demodulates frequency-shift keyed (FSK) data from the given carrier frequency leav

digital signal. However, to strip out the PN code and recover the data for a given 

transmitter, the matched filter and correlation functions necessary to do this need to

performed before the RF signal is demodulated. Since this could not be done with th

components chosen to provide the RF link, an FDMA scheme was employed instea

Figure 18 shows the necessary components of a direct sequence spre

spectrum receiver.  The correlation needs to be calculated before the IF mixing and 

filtering, which is impossible given the constraint of the RFMD 2945 receiver.  The P

reference code needs to be discovered in the RF signal before it is demodulated an

brought down to baseband.  The clock generation and synchronicity decision need t

made while demodulation is occurring and not segregated to a separate digital proc

because at baseband multiple PN codes will concatenate and their information will b

utterly unrecoverable.
36



sted 

ultiple 

d 

ovide 

nce in 

 two 

all data 

am 
 Figure 51:  Direct-Sequence Spread Spectrum Receiver

Two transmitters were built and tested, Tx101 and Tx104.  They consi

of an evaluation board for the 2510 chip and ACQ chip.  Each transmits three data 

channels, a temperature channel, and a sequential packet counter.  Each can use m

length PN codes, but for this demonstration only 63-chip Gold codes were considere

when building the digital receiver.  In fact, since the transmitters were separated in 

frequency, one PN code was shared by both transmitters.  Even though it did not pr

multiple access, the PN code did provide data robustness and a measure of confide

the fidelity of the received data.  For display purposes only the temperature, the first

data channels and the sequential packet counter were shown on the PC. However, 

channels were analyzed and demonstrated reliable transmission. A LABVIEW progr

coordinated the results display on the PC.
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4.0  Digital Receiver Architecture

Once the RF signal has been demodulated and the baseband digital s

has been recovered, the serial data stream is sent to the digital receiver for despread

stacking for display on the PC.  The digital receiver has no prior knowledge of the ph

of the clocks used to generate the baseband digital data stream in the transmitter an

must deduce this information from the inbound data stream.  Also, this clock recove

must be done in real time so that received digital data can continue to stream throug

receiver.  To present stacked parallel words to the PC from the inbound digital bit str

the digital receiver must perform five main functions, separated as design modules:

polarity decoding, despreading, protocol stripping, packet validation and packet 

processing.  The partitioning of these functions is shown in Figure 19.

4.1  Clock Recovery and Chip Resolution

Clock recovery and chip resolution are performed by the first module, 

polarity decoder.  First, the polarity of each inbound data chip must be resolved.  Thi

module takes the demodulated data as input (DEMOD) as well as a reference clock

(SMPCLK).  It uses an oversampling scheme to resolve the logic polarity of each ch

(SPDA), derive the PN clock (DPNCLK), and align the PN clock.

Three consecutive five-sample windows of the input data are analyzed

early, middle, and late.  The windows are compared to each other and the derived P

clock (DPNCLK) is dithered according to which one has the greatest magnitude.   T
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 Figure 52:  Digital Receiver Block Diagram

clock is dithered on the falling edge meaning that the time between the last falling e

and the next rising edge is always the same.  The periodicity of the clock is determin

the falling edge.  Figure 20 shows the polarity decoder in the default state so no dith

is performed. If the early window had the largest sampled magnitude of the three, th

falling edge would be advanced one sample clock (SMPCLK) cycle as indicated by 

dashed lines to the left of the default falling edge.  If the late window were largest, th

falling edge to the right of the default edge would be used to retard the clock.
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 Figure 53:  Polarity Decoder Dither Conditions

As shown in Figure 21, the polarity decoder consists of a 7-bit shift regi

to form the three consecutive oversampling windows, a comparator to decode the po

of the oversampled bit and the dithering logic.  The dithering logic compares the 

magnitude of the three windows and adjusts the clock generation and synchronizati

logic according to the method described above. 
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 Figure 54:  Polarity Decoder Block Diagram

4.2  Digital Despreader

The second module measures the correlation of the spread code to th

inbound data, compares it to a stored reference code and determines the polarity of

despread data bit.  Also, track mode is determined and parameters for establishing 

disengaging it are updated.  The despread clock is derived and aligned with the data

despreader is shown in Figure 22.
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 Figure 55:  Despreader Correlator Block Diagram

Earlier, correlation was presented as normalized, that is, as a fraction o

maximum correlation.  However, this correlation calculation requires the computation

expensive operation of division and is not used in the implementation of the digital 

receiver, since it is not necessary.  The earlier derivation provides a way of analyzin

codes of various lengths, but since the length of the PN code for this design is know

fixed, scaling the correlation is unnecessary.  As long as the comparison thresholds 

understood to be valid for 63-bit PN codes, then the absolute correlation calculation

without the normalization suffices.

The first job of the despreader correlator is to calculate the correlation

the inbound data stream with the reference PN code.  This is done using three conse
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63-bit windows of the inbound chips, a 63-bit right shift register and summing the bit

each window.  Then, the inbound chip stream is analyzed using comparators to perf

two functions: dithering the derived despread data clock (DSPCLK) and deriving the

polarity of the serial despread data (SDATA).

Dithering the derived despread data clock is accomplished by compar

the correlation windows.  Like the polarity decoder dithering in Figure 20, the rising e

of the derived PN clock always stays the same, relative to the last falling edge and t

following falling edge is dithered according to the output of the sliding correlator.  If t

first window has the largest correlation, then the falling edge of DSPCLK occurs 1 cl

cycle of DPNCLK earlier with respect to the last rising edge than it did the previous cy

If the last window has the largest correlation, then the falling edge of DSPCLK occu

clock cycle of DPNCLK later with respect to the last rising edge than it did the previo

cycle.  Otherwise, the middle window is assumed to have the largest correlation and

periodicity of the previous clock cycle is repeated.

The derivation of the polarity of the despread data involves analyzing t

inbound chip stream for correlation with the stored PN reference and periodicity of th

signal.  The correlation dimension statistics determine the polarity of the current bit, w

the temporal statistics indicate a measure of confidence of how well the inbound spr

data is being despread.  Figure 23 shows a histogram of how this works.
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 Figure 56:  Despreader Correlator Histogram

The red, green, and black dashed lines represent thresholds for correl

decisions.  They are calculated with respect to a baseline of 0, which would indicate

the inbound signal is not at all related to the stored reference.  Positive values of 

correlation indicate that the data bit is a zero, since XOR with 0 is a transparent oper

Negative correlation values indicate that the data bit was a one since XOR with a on

results in inversion.
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The red dashed lines indicate the maximum positive and negative valu

correlation possible for a 63-bit code.  This occurs when the inbound chips exactly m

the stored reference; and for this implementation, that value is 63.  The green dashe

indicate the detection threshold (DSMDTH[5:0]) set for the despreader correlator an

set in Figure 23 at 50 as an example.  The black dashed lines indicate the bit thresh

(DSMBTH[5:0]) set for the despreader correlator and are set in Figure 23 at 10 as a

example.  

If the absolute value of the correlation calculated lies above the detect

threshold, the serial data is aligned closely enough with the reference PN code and 

despread data bit polarity is declared.  This is shown in Figure 23 as the blue peaks

correlation.  The decoded data is 01001.  If the absolute value of the calculated corre

lies between the bit and detection thresholds, the inbound chips are not yet correctly

aligned with PN reference meaning there is a missing polarity detection but a data b

been detected.  If it falls below the bit threshold, it is assumed that the inbound data h

correlation with the PN reference and that neither a data bit nor a polarity detection 

been detected.  This is shown in the two blue peaks near the baseline.  This can be

by one of the chips becoming corrupted in the transmission.  However, due to the 

robustness of the PN codes, this minor correlation is rejected and the data can still b

correctly decoded.

Correlation statistics must be tracked temporally, that is, over consecu

PN chip length bit cycles (for this project, 63 bits) to determine how well the sliding 

correlator is performing.  These statistics are used to declare the pre-track and track

modes, which enable the downstream processing circuitry as well as provide the 
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acquisition processor information for determining the fidelity with which an entire pac

of data was decoded.  The number of consecutive detection cycles must exceed DS

before track can be declared.  The key is that the detection cycles need to repeat w

periodicity equal to the PN chip length.  If consecutive failures to repeat exceed DSN

then the track is disabled and establishing a new track must begin again.  However,

instance, there is only one cycle where the maximum correlation failed to repeat wit

correct periodicity, then information indicating which thresholds it passed is sent to t

acquisition processor, as the missed detect (MD) and missed bit (MB) statistics, and

track mode is kept enabled.  The acquisition processor compares these accumulated

for a packet to a threshold (PKMDTH[5:0] and PKMBTH[5:0], respectively) and this 

contributes to the decision of whether the packet is considered good and cached or b

discarded.

  

4.3  Embedded Protocol Removal

The third module removes the embedded communications protocol fro

the despread data stream.  The embedded protocol is differential encoding calculate

recursively as

 Equation 9:                 

where enc[0] = 1.  To decode

enc k[ ] in k[ ] enc k 1–[ ]⊕=
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 Equation 10:                 

where enc[0] = 1.

 Equation 11:            

 Equation 12:                       

Therefore, the protocol remover is simply an exclusive OR gate with a clocked outpu

However, this is not just the encoder implemented in reverse.  Unlike the encoder w

the output is fed back to encode the next bit, the decoder uses a sliding window of tw

incoming encoded bits to determine the next decoded bit instead of feeding back th

decoded bit.

4.4  Packet Detector 

Now that the incident serial chip stream has matched the stored 

pseudorandom reference to the satisfaction of the first two modules and the embedd

communications protocol has been removed, the despread bit stream is assumed to

serial data packet stream built in the manner configured in the data acquisition chip 

(ACQ2).  The fourth module validates the preamble words at the beginning of the 

despread serial packet, measures the acquisition mode parameters, converts the se

dec k[ ] enc k[ ] enc k 1–[ ]⊕=

dec k[ ] in k[ ] enc k 1–[ ] enc k 1–[ ]⊕ ⊕=

dec k[ ] in k[ ]=
47



proof-

 and 

ds.  

unter, 

 and 

de and 

trobe 

trobe 

 and 

ounter 
words to parallel, and counts the number of words in each packet.  For the Graviton 

of-concept demonstration the 8-word packet followed the form of Table 1.

The first two words, RF sync and Frame sync, are the preamble words

are stripped out as the packet detector converts the serial data to 10-bit parallel wor

Once these two words have been found, the packet detector skips the sequential co

and validates the transmitter identification number, word four.  If the two sync words

the identification number all match, then the packet detector enables the acquire mo

sends the now 6-word packet (PKDA[9:0]) to the acquisition processor with a data s

(PKDWR).  The packet detector also counts the number of words in the packet 

(PKWC[5:0]) and sends that to the acquisition processor as well with a word count s

(PKWWR).

The values of the last six words in Table 1 are given only as examples

represent the pinned-down settings used to test the digital receiver.  The sequential c

Table 1: Packet Format

Word # Function Hex Value

1 RF Sync. 333

2 Frame Sync. 01F

3 Seq. Counter 001

4 Tx ID 005

5 Temp. 1FD

6 Data 1 014

7 Data 2 019

8 Data 3 02F
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increments between 1 and 3FFhex and indicates the order in which the packets were se

The transmitter identification can be used to rotate through different transmitters and

identify which data came from which transmitter.  In a true CDMA scheme this would

helpful, but not so much so for an FDMA setup, so those values were pinned.  The 

temperature channel ranges from 40o F to 120o F and is sensed on the ACQ chip.  The 

other three data channels range from 0 to 2.5 V with a precision of about 0.002 V.  F

ease of testing, all four data channels were pinned to the values given in Table 1.

The Packet Detector is shown in Figure 24.  The serial data from the 

protocol decoder is converted to 10-bit parallel words.  The first two words of the pa

are verified and the third is skipped so that the fourth, the identification number can 

 Figure 57:  Packet Detector Block Diagram
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verified.  A word count is generated for the acquisition processor as well as strobes f

parallel data and the packet word count.

4.5  Acquisition Processor

The fifth module validates the packet by evaluating the flags generated

the previous modules.  These flags include number of words in the packet and num

missed bits and detects.  This module is also responsible for stacking the good data

interfacing with the host.  The acquisition processor uses two FIFOs to store the inb

data.  The first is a temporary FIFO to hold all the words in a packet together as the

packet error logic validates the packet.  The packet error logic will throw out a packe

has too few words or too many missed bits or missed detects from the despreader. 

packet is deemed good, it is transferred to the data FIFO, otherwise, it is cleared fro

temporary FIFO.  In either case the acquisition mode (ACQ) is cleared and the proc

waits for the next packet.  If the data FIFO is full, then the acquisition processor aler

host PC via the data ready signal (DRDY) and awaits a clock from the PC to clock the

out of the FIFO to the output port pins.  The data FIFO holds 16 6-word 10 bits/word

packets when it is full.  The acquisition processor is shown in Figure 25.

When the acquisition processor is transitioning a good packet from the

temporary FIFO to the data FIFO, it cannot accept an incoming packet.  For this pro

the time between packets is about 3-5 seconds, which is fast for telesensing.  Usua
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 Figure 58:  Acquisition Processor Block Diagram

sensor readouts need only be updated a few times an hour.  This limitation helped si

the processing logic and since there is no threat of a packet arriving while the previo

being processed, it is an appropriate design trade-off.
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5.0  Implementation

The digital receiver was implemented in an Altera FLEX 10K50RC240

Field Programmable Gate Array (FPGA) using the Altera Max+Plus II version 9.3 

software.  Modules 1 and 2, the polarity decoder and the despreader correlator, 

respectively were written in a different VHDL environment and so had to be converte

the Max+Plus II environment, along with their simulation stimuli.  The changes to the

code were mostly semantic changes and did not affect the structure or functionality 

code.

All of the modules were written in VHDL except for the data cache FIF

and the temporary packet FIFO, which were implemented using Altera’s Library of 

Parameterized Modules (LPM).  LPMs are technology-independent modules that con

to industry-wide conventions for implementing common functions in gate arrays [20]

The LPMs used were sections of the chip optimized to implement data storage func

The synthesis tool had control over the physical placement of the design, but with so

limitation.  In order to ensure accuracy in the polarity decoder’s sample clock (SMPC

and the derived PN clock (DPNCLK), these two clocks were placed on the device’s 

clock trees.  Also, each module was assigned as a clique, which meant that the fittin

would route each individual module in a physically confined area.

The thresholds used to determine the dithering conditions were brough

off-chip to programmable pins on the test board along with other programmable 

thresholds.  This allowed flexibility in determining the optimal settings for reliable 

reception.  A LABVIEW program was written to clock the data out of the cache FIFO
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when it was ready and display it on the screen as graphs of individual data channels

digital receiver test board was built that allowed programming of the dithering thresh

to test the device.  It had a socketed Electrically Erasable Programmable Read-Only

Memory (EEPROM) so that the design could be iterated without removing the devic
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6.0  Testing and Results

Initially, the design did not fit into the device chosen, meaning that the 

compiler could not find a way to implement the design given the resources of the de

specified.  Originally, it contained a monitor multiplexer to allow analysis of internal 

signals as testing was performed.  This was taken out and the design fit.  The device

be reprogrammed to bring different internal signals to the output pins as necessary, 

while this made analysis slower, it significantly reduced the amount of resources the

design required and allowed fit into the originally chosen part.

The design was tested both cabled and wirelessly.  The cabled test wa

performed with 40 dB of signal loss and allowed initial functional testing of the devic

without interference or multipath so that the primitive functionality of the device could

confirmed.  Wireless testing was then performed once basic functionality was confirm

Interference from other RF transmitters was not a concern since the building in whic

testing was performed acted as an RF shield.  The threshold settings were not imme

optimized: functional settings were found and the testing was performed holding the

constant.  Figure 26 shows the results.  Occasionally, packet displayed on the PC wo

incorrect.  This was considered a data drop out and its frequency is shown in Table 2

results in Table 2 were taken over the 1024-sample window shown in Figure 26 and

typical for each device.

The cause of the data dropouts was traced back to the downstream 

processing of the despread serial packet.  The data (SPDA[9:0]) out of the packet 
54



 Figure 59:  Initial Wireless Testing

Table 2: Data Acquisition Error Rate

Channel Tx101 Tx104

Temp. 5.87E-3 1.466E-2

Data 1 5.87E-3 4.564E-2

Data 2 5.87E-3 1.662E-2

Counter 4.89E-3 1.075E-2
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detection module going into the temporary storage buffer was not resembling the se

data out of the protocol remover.  It worsened the more the despread clock (DSPCLK

to dither.  Therefore, the incorrect data was probably due to incorrect values being la

into the serial to parallel converter in the packet detector module as a result of the dit

clock being routed inefficiently on the chip.  As a result of the limitation of resources

internal to the device, DSPCLK could not be put on a clock tree and had to be route

regular signal.

The test environment was shielded from outside RF signals, but includ

several nearby solid objects.  These objects could reflect RF waves causing interfere

the receiver, a phenomenon known as multipath.  This also degrades error rate 

performance, but is not something that could have been easily measured.  Therefor

effect of multipath on the error performance has not been directly quantized.  These

real world implementation issues, internal clock routing and RF multipath, probably 

account for most of the data errors and explain why the system demonstrated worse

performance than is generally predicted by digital communication theory.

The transmitters were also tested for range.  They were able to range 

yards non-line-of-sight and still the receiver was able to decode the information.  Th

setup was not tested for packet or word error rate.  This error rate testing was perform

ranges of 6 to 10 feet.

  The transmitter and the receiver were both repackaged for portability a

demonstration purposes.  The repackaged transmitter is shown in Figures 27 and 2

the repackaged receiver is shown in Figures 29, 30 and 31.  The repackaging of the

transmitter caused shielding problems that degraded performance.  The design was
56



 Figure 60:  Repackaged Wireless Transmitter
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 Figure 61:  Internal Circuitry of Repackaged Wireless Transmitter
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 Figure 62:  Repackaged Wireless Receiver
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 Figure 63:  RF Front-End Circuitry of Repackaged Wireless Receiver
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 Figure 64:  Digital Spread Spectrum Baseband Processing Board
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iterated to try to alleviate the DSPCLK distribution problem.  Instead of clocking the lo

in the downstream modules on the falling edge of DSPCLK, the edge that is being 

dithered, the logic was clocked on the rising edge.  This helped some but not much 

only vindicated the notion that the clock distribution problem needs to addressed in 

ASIC environment where clock routing is well-defined or in a programmable part wit

more clock trees to ensure the fidelity of the clock signal.  

To further optimize the design, the thresholds were optimized and ente

into the design as constants to free up logic cells for more efficient routing.  The tran

between the data storage FIFO and the temporary packet FIFO was cleaned up and

simplified.  The wired and wireless results are shown in Figures 32 and 33, respecti

They do not show performance comparable to the initial testing, but provide the des

a a compact package that is portable.
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 Figure 65:  Repackaged Wired Testing
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 Figure 66:  Repackaged Wireless Testing
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7.0  Conclusions and Future Work

The monitor multiplexer was unnecessary.  It was included in the origin

design as a carryover from a design in the ASIC environment where it was useful in

analyzing devices whose designs could not be easily iterated.  This was not necess

an FPGA implementation since the device can be easily reprogrammed to bring out

necessary signals.  Additionally, setting the programmable thresholds as constants 

VHDL code helped free up logic cells.  While changing these constants is significan

slower than changing dip switches on a test board, the free logic cells allowed easie

more efficient routing of the design.  This was especially important since the design 

done in VHDL and not hand-placed schematic capture, which would have allowed th

compiler less flexibility in fitting the design.

There were not enough clock trees on the Altera part, which meant tha

third clock (DSPCLK) had to be routed as a regular clock signal.  This proved costly 

this clock was already being dithered and occasionally caused problems in the 

downstream modules latching data correctly.  Some of the data lines may have bee

violating setup and hold times, but this was hard to determine due to the aperiodic n

of a dithered clock routed inefficiently.  This scenario is possible but not as likely as 

lines in the same parallel word being latched at different times creating erroneous ou

This is likely since the problem became much worse with the wireless testing as the

had to do more dithering.

There were some routing problems with the software tool trying to 

optimize the VHDL conversion by using internal chip resources called embedded ar
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blocks (EAB).  These blocks were physically in the middle of the chips floor plan and

occasionally interfered with requiring each individual module to be routed tightly 

together.  For instance, a module may use an adder and be implemented in one cor

the chip, except for that adder, which is placed halfway across the chip in the EAB.  

may not have been the main routing problem, but did not help keep the design close

together.  This problem can also be solved by the three reasons given above for the

generation design.

These were limitations of the part chosen, but will not be a problem in 

future generations of the digital receiver design for three reasons.  First, the next-

generation is being composed of fundamental modules that are being physically han

placed in the device.  Second, the choice of FPGA has changed to a device that has

clock trees and will ensure a tighter design with more predictable clock delays.  Thir

once the system specifications are decided for the wireless system, the digital receiv

be implemented in an ASIC with well-defined timing for clocks.

Sheng and Broderson’s book on low-power wideband CDMA helped 

illuminate the problems encountered on clock distribution.  They designed a system

support asymmetrical multipoint transceivers transmitting to a centralized base stati

receiver.  The book focuses mainly on the downlink (base station receiving from the

transceivers) design and shows how to build a CMOS implementation of the transm

baseband modulator, RF transmitter, RF analog receiver, and the baseband digital s

processor (DSP).  They used a matched filter correlator for both the I and Q channe

the DSP is segmented from the RF front end as in this system.  They paid a signific

amount of attention to clock buffering.  They minimized skew by balancing the capac
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load seen by the buffers.  With a knowledge of the process parameters, transistors w

sized appropriately and predictable clock distribution and propagation resulted [21].

The digital spread spectrum receiver worked well.  The receiver was a

to demonstrate reliable wireless spread spectrum transmission across a room.  The

testing showed low error rate for the unpackaged design and was able to show Grav

Inc. how spread spectrum telesensing can be achieved.  Repackaging made the rec

look more like a viable product, but exacerbated some problems the receiver was ha

with timing.  However, these are issues that will be addressed and remedied in the n

generation.  The current digital receiver was not able to demonstrate CDMA, but this

due to component limitations in the rest of the system and not a result of a flaw in th

design.  However, the receiver did demonstrate the fundamental digital circuitry need

implement CDMA and its reliable reception of sensor data proves that it will be a 

fundamental building block of the next-generation design.

CDMA communication requires intricate interface between complex 

digital and analog functions.  Therefore, to implement a CDMA receiver both have to

considered.  The digital portion of the receiver must be able to adjust the analog fron

circuitry responsible for demodulating the incident RF signal.  Also, the timing and 

distribution of the clocks must be tightly controlled in the digital portion of the receive

has this has a tremendous effect on the data being recovered by the receiver.  With 

CDMA’s sustained popularity and wide range of design topics to explore, it will conti

to be a widely-researched topic.
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8.0  VHDL Code

8.1  Clock Divider

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity clk_div is
port
(
  signal smpclkx8:in std_logic;
  signal smpclk:out std_logic
);
end clk_div;

architecture behavior of clk_div is
signal smpclk_1:std_logic;
signal smpclk_2:std_logic;
signal smpclk_3:std_logic;

begin

div_by_8: process(smpclkx8)
begin
if rising_edge(smpclkx8) then

smpclk_1 <= not(smpclk_1);
else

smpclk_1 <= smpclk_1;
end if;
if rising_edge(smpclk_1) then

smpclk_2 <= not(smpclk_2);
else

smpclk_2 <= smpclk_2;
end if;
if rising_edge(smpclk_2) then

smpclk_3 <= not(smpclk_3);
else

smpclk_3 <= smpclk_3;
end if;
smpclk <= smpclk_3;
end process div_by_8;
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end behavior;

8.2  Polarity Decoder

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity poldec_alt2 is
port
(
 
--**************************************************************
-- Declare I/O interface 
--**************************************************************

signal rfdata: in std_logic;
signal smpclk: in std_logic;
signal mrstb: in std_logic;

signal sysclrb: out std_logic;
signal ldvar: out std_logic;
signal dpnclk_o:out std_logic;
signal bitdith: out std_logic_vector(1 downto 0);
signal bitsmp: out std_logic_vector(6 downto 0);
signal spda: out std_logic;
signal Apol_o:out std_logic;
signal Bpol_o: out std_logic;
signal Cpol_o: out std_logic;
signal bitseg: out std_logic_vector(2 downto 0)
);
end poldec_alt2;

--**************************************************************
-- Declare architecture behavior body
--**************************************************************

architecture behavior of poldec_alt2 is
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--**************************************************************
-- Declare the internal signals
--**************************************************************

signal ldvar_sig1, ldvar_sig2, sysclrb_sig:std_logic;
signal bitsmp_d,bitsmp_q:std_logic_vector(6 downto 0);
signal bitseg_d,bitseg_q:std_logic_vector(2 downto 0);
signal bitdith_d,bitdith_q:std_logic_vector(1 downto 0);
signal dpnclk_d,dpnclk_q:std_logic;
signal spda_d,spda_q:std_logic;

signal Amagh:std_logic_vector(2 downto 0);
signal Bmagh:std_logic_vector(2 downto 0);
signal Cmagh:std_logic_vector(2 downto 0);
signal Amagl:std_logic_vector(2 downto 0);
signal Bmagl:std_logic_vector(2 downto 0);
signal Cmagl:std_logic_vector(2 downto 0);
signal Amag:std_logic_vector(2 downto 0);
signal Bmag:std_logic_vector(2 downto 0);
signal Cmag:std_logic_vector(2 downto 0);
signal Apol:std_logic;
signal Bpol:std_logic;
signal Cpol:std_logic;
signal temp:std_logic_vector(2 downto 0);

--**************************************************************
-- Declare the required constants
--**************************************************************

constant DEFAULT: std_logic_vector(1 downto 0) :=”00”;
constant RETARD: std_logic_vector(1 downto 0) :=”01”;
constant ADVANCE: std_logic_vector(1 downto 0) :=”10”;

constant RETARDPT: std_logic_vector(2 downto 0) :=”011”;
constant DEFAULTPT: std_logic_vector(2 downto 0) :=”100”;
constant ADVANCEPT: std_logic_vector(2 downto 0) :=”101”;
constant MAXPT: std_logic_vector(2 downto 0) :=”101”;

constant GND : std_logic_vector(1 downto 0) :=”00”;

--**************************************************************

-- If in DEFAULT: BITHDIT=0, BITSEG roll point=4, SPDA=Bpol.
--
-- If in RETARD:  BITHDIT=1, BITSEG roll point=3, SPDA=Cpol.
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--
-- If in ADVANCE: BITHDIT=2, BITSEG roll point=5, SPDA=Apol.

--**************************************************************

--**************************************************************
-- Declare the operational sequence definitions (text only)
--**************************************************************

-- This module is used to recover an accurate and robust data stream
-- with a flexible data clock. The recovered input (RFDATA) data
-- stream is oversampled (5 to 1 ratio) to enable an accurate and 
-- flexible data sample window. Because of the times five oversample 
-- five bits are sampled plus to enable a sliding (Tau-dither) scheme
-- two additional bits are sampled. The seven sampled bits are divided
-- into three windows (A,B,C) each with five bits. Magnitudes are 
-- detected and compared for optimum sampling decisions, bit polarity
-- alignment, and to recover an accurate data clock from the data stream.
   
--**************************************************************
-- Begin architecture behavior application
--**************************************************************

begin
--The operation controller sets the system reset (sysclrb) and programmable
--settings load (ldvar)
opcon: process(smpclk, mrstb)
begin
if mrstb = ‘0’ then

sysclrb_sig <= ‘0’;
ldvar_sig1 <=  ‘0’;
ldvar_sig2 <= ‘0’;

elsif falling_edge(smpclk) then
sysclrb_sig <= ‘1’;
ldvar_sig1 <= ldvar_sig2;
ldvar_sig2 <= ‘1’;

end if;
sysclrb <= sysclrb_sig;
ldvar <= ldvar_sig1;
end process opcon;

flops: process(smpclk, sysclrb_sig)
  begin

if sysclrb_sig = ‘0’ then
bitsmp_q <= “0000000”;
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bitseg_q <= “000”;
bitdith_q <= “00”;
dpnclk_q <= ‘0’;
spda_q <= ‘0’;
elsif falling_edge(smpclk) then
bitsmp_q <= bitsmp_d;
bitseg_q <= bitseg_d;
bitdith_q <= bitdith_d;
dpnclk_q <= dpnclk_d;
spda_q <= spda_d;
else
bitsmp_q <= bitsmp_q;
bitseg_q <= bitseg_q;
bitdith_q <= bitdith_q;
dpnclk_q <= dpnclk_q;
spda_q <= spda_q;
end if;

--**************************************************************
-- Declare the port outputs for test outputs only,remove later
--**************************************************************

Apol_o <= Apol;
Bpol_o <= Bpol;
Cpol_o <= Cpol;

--**************************************************************
-- Declare the port outputs from a flip flop 
--**************************************************************

spda <= spda_q;
dpnclk_o <= dpnclk_q;
bitsmp <= bitsmp_q;
bitseg <= bitseg_q;
bitdith <= bitdith_q;

end process flops;

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************

process(bitsmp_q)
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--**************************************************************
--**************************************************************

-- Begin the process

-- This process is used to detect the magnitude of logical low’s
-- and the magnitude of logical high’s for each of the three sample
-- windows (A,B,C) which are set to contain sampled bits 0-4, 1-5,
-- 2-6 respectively. A magnitude value for each of the six signals
-- (Amagh,Amagl,Bmagh,Bmagl,Cmagh,Cmagl) is output in 3 bit fields.
 
--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************

-- no flip flops in this particuliar process

--**************************************************************
-- Declare the default states for the flip flops in this process.
--**************************************************************

Amagh <=  (GND & bitsmp_q(0)) + (GND & bitsmp_q(1)) + (GND & bitsmp_q(2))
+ (GND & bitsmp_q(3)) + (GND & bitsmp_q(4)); 

 

Amagl <=  (GND & not(bitsmp_q(0))) + (GND & not(bitsmp_q(1))) + (GND & 
not(bitsmp_q(2)))

+ (GND & not(bitsmp_q(3))) + (GND & not(bitsmp_q(4))); 

Bmagh <=  (GND & bitsmp_q(1)) + (GND & bitsmp_q(2)) + (GND & bitsmp_q(3))
+ (GND & bitsmp_q(4)) + (GND & bitsmp_q(5)); 

Bmagl <=  (GND & not(bitsmp_q(1))) + (GND & not(bitsmp_q(2))) + (GND & 
not(bitsmp_q(3)))

+ (GND & not(bitsmp_q(4))) + (GND & not(bitsmp_q(5))); 

Cmagh <=  (GND & bitsmp_q(2)) + (GND & bitsmp_q(3)) + (GND & bitsmp_q(4))
+ (GND & bitsmp_q(5)) + (GND & bitsmp_q(6)); 
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Cmagl <=  (GND & not(bitsmp_q(2))) + (GND & not(bitsmp_q(3))) + (GND & 
not(bitsmp_q(4)))

+ (GND & not(bitsmp_q(5))) + (GND & not(bitsmp_q(6))); 

end process;

--**************************************************************
-- End process 
--**************************************************************

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************

process(Amagh,Bmagh,Cmagh,Amagl,Bmagl,Cmagl)

--**************************************************************
--**************************************************************

-- Begin the process

-- This process is used to resolve the maximum magnitude of the
-- logical low’s and the magnitude of logical high’s for each of
-- the three sampled windows (A,B,C). The results are output as
-- Amag,Bmag,Cmag and are represented in three bit fields. The data 
-- polarity (logic low or logic high) is also resolved and is output
-- as Apol,Bpol,Cpol with each represented by a single bit.

--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************

-- no flip flops in this particuliar process

--**************************************************************
-- Declare the default states for the flip flops in this process.
--**************************************************************
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Amag <= Amagh;
Bmag <= Bmagh;
Cmag <= Cmagh;
Apol <= ‘1’;
Bpol <= ‘1’;
Cpol <= ‘1’;

--**************************************************************
-- Begin body of process arguments
--**************************************************************

if (Amagh < Amagl) then
Amag <= Amagl;
Apol <= ‘0’;
end if;

if (Bmagh < Bmagl) then
Bmag <= Bmagl;
Bpol <= ‘0’;
end if;

if (Cmagh < Cmagl) then
Cmag <= Cmagl;
Cpol <= ‘0’;
end if;

end process;

--**************************************************************
-- End process 
--**************************************************************

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************

process(rfdata,bitsmp_q,bitseg_q,bitdith_q,dpnclk_q,spda_q,Amag,
Bmag,Cmag,Apol,Bpol,Cpol)

--**************************************************************
--**************************************************************

-- Begin the process
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-- This process is used to resolve which 5 bit window (A 0-4,
-- B 1-5,C 2-6) of data has the best ratio of matching bits.
-- This decision (bitdith) is used in a Tau-dither scheme to
-- determine where the sample window needs to be placed (RETARD,
-- DEFAULT, ADVANCE) for the next cycle. This decision is also
-- used to slide the trigger point (RETARDPT,DEFAULTPT,ADVANCEPT)
-- for the outbound derived (DPNCLK) PN clock.

--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************

spda_d <= spda_q;
dpnclk_d <= dpnclk_q;
bitdith_d <= bitdith_q;

--**************************************************************
-- Declare the default states for the flip flops in this process.
--**************************************************************

dpnclk_d <= ‘0’;

bitseg_d <= bitseg_q+1;

bitsmp_d(6 downto 1) <= bitsmp_q(5 downto 0);
bitsmp_d(0) <= rfdata;

--**************************************************************
-- Begin body of process arguments
--**************************************************************

if (bitseg_q = MAXPT) OR
((bitdith_q = DEFAULT) AND (bitseg_q = DEFAULTPT)) OR
((bitdith_q = RETARD) AND (bitseg_q = RETARDPT)) OR
((bitdith_q = ADVANCE) AND (bitseg_q = ADVANCEPT)) then
bitseg_d <= “000”;
dpnclk_d <= ‘1’;
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if (Amag > Bmag) AND (Bmag >= Cmag) then
spda_d <= Apol;
bitdith_d <= ADVANCE;
elsif (Cmag > Bmag) AND (Bmag >= Amag) then
spda_d <= Cpol;
bitdith_d <= RETARD;
else
spda_d <= Bpol;
bitdith_d <= DEFAULT;
end if;
end if;

if bitseg_q < “001” then
dpnclk_d <= ‘1’;

end if;
end process;

--**************************************************************
-- End process 
--**************************************************************

end behavior;

8.3  Despreader Correlator

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity desprd2_alt is
port
(
 
--**************************************************************
-- Declare I/O interface 
--**************************************************************

signal spda: in std_logic;
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signal dpnclk: in std_logic;
signal ldvar: in std_logic;
signal sysclrb: in std_logic;

signal dpack: out std_logic;
signal dspclk: out std_logic;
signal pretrk: out std_logic;
signal trk: out std_logic;
signal mbit: out std_logic;
signal mdet: out std_logic;
signal dsretard_o:out std_logic;
signal dsdefault_o:out std_logic;
signal dsadvance_o:out std_logic;
signal maxpol_o:out std_logic;

signal maxmag_o:out std_logic_vector(5 downto 0);
signal dsseg: out std_logic_vector(6 downto 0);
signal dstkacc:out std_logic_vector(1 downto 0);
signal dsntacc:out std_logic_vector(3 downto 0)
);
end desprd2_alt;

--**************************************************************
-- Declare architecture behavior body
--**************************************************************

architecture behavior of desprd2_alt is

--**************************************************************
-- Declare the internal signals
--**************************************************************

signal dpack_d,dpack_q:std_logic;
signal dspclk_d,dspclk_q:std_logic;
signal pretrk_d,pretrk_q:std_logic;
signal trk_d,trk_q:std_logic;
signal mbit_d,mbit_q:std_logic;
signal mdet_d,mdet_q:std_logic;
signal dsCpol_d,dsCpol_q:std_logic;
signal dsBpol_d,dsBpol_q:std_logic;
signal dsApol_d,dsApol_q:std_logic;
signal dsretard:std_logic;
signal dsdefault:std_logic;
signal dsadvance:std_logic;
signal dsretard_d,dsretard_q: std_logic;
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signal dsdefault_d,dsdefault_q: std_logic;
signal dsadvance_d,dsadvance_q: std_logic;
signal maxpol:std_logic;

signal dsseg_d,dsseg_q:std_logic_vector (6 downto 0);
signal dsmbth_d,dsmbth_q:std_logic_vector (5 downto 0);
signal dsmdth_d,dsmdth_q:std_logic_vector (5 downto 0);
signal dstkth_d,dstkth_q:std_logic_vector (1 downto 0);
signal dsntth_d,dsntth_q:std_logic_vector (3 downto 0);
signal dsmdacc_d,dsmdacc_q:std_logic_vector (5 downto 0);
signal dstkacc_d,dstkacc_q:std_logic_vector (1 downto 0);
signal dsntacc_d,dsntacc_q:std_logic_vector (3 downto 0);
signal xor_array: std_logic_vector (62 downto 0);
signal sum1,sum2,sum3,sum4: std_logic_vector (5 downto 0);
signal dsshf_d,dsshf_q:std_logic_vector (62 downto 0);
signal dspn_d: std_logic_vector (62 downto 0);
signal dspn_q: std_logic_vector (62 downto 0);
signal dsCmag_d,dsCmag_q:std_logic_vector (5 downto 0);
signal dsBmag_d,dsBmag_q:std_logic_vector (5 downto 0);
signal dsAmag_d,dsAmag_q:std_logic_vector (5 downto 0);
signal compmag:std_logic_vector (5 downto 0);
signal maxmag:std_logic_vector (5 downto 0);

--**************************************************************
-- Declare the required constants
--**************************************************************

constant DSRETARDPT: std_logic_vector(6 downto 0) := “0111101”;
constant DSDEFAULTPT: std_logic_vector(6 downto 0) := “0111110”;
constant DSADVANCEPT: std_logic_vector(6 downto 0) := “0111111”;
constant DSMAXPT: std_logic_vector(6 downto 0) := “1000000”;

constant PNCODE: std_logic_vector(62 downto 0):= 
“101010110011011101101001001110001011110010100011000010000011111”;
constant GND6:std_logic_vector(5 downto 0):= “000000”;

--set programmable thresholds as constants to free up logic cells.
--dsmbth=50, dsmdth=62, dsntth=15, dstkth=2
constant dsmbth:std_logic_vector(5 downto 0) := “110010”;
constant dsmdth:std_logic_vector(5 downto 0) := “111110”;
constant dstkth:std_logic_vector(1 downto 0) := “10”;
constant dsntth:std_logic_vector(3 downto 0) := “1111”;

--**************************************************************
-- Declare the operational sequence definitions (text only)
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--**************************************************************

-- The despreader correlator is used to search,synch, and lock
-- to the expected PN code. A scheme is used to correlate and
-- optimize the recovered PN pattern, dither the clock switching
-- points based on the pattern, derive the appropriate data bit
-- polarity, and derive a accurate despread data clock. Operational
-- flags are generated for pretrack and track modes to be used by
-- other modules, the search mode is the defaulted operation. 
-- Programmable thresholds are available for tracking mode entry
-- magnitude, and tracking mode exit magnitudes. The module also
-- contains logic to measure missed bits and missed detection cycles
-- once the pretrack or track modes are entered. Programmable 
-- thresholds are also available for missed bit magnitude and missed
-- detect magnitude.  A missed bit flag (above the magnitude threshold)
-- or missed detect cycle flag are sent to other modules.   
   
--**************************************************************
-- Begin architecture behavior application
--**************************************************************

begin

flops: process(sysclrb, dpnclk, ldvar)
begin
if sysclrb = ‘0’ then

dpack_q <= ‘0’;
dspclk_q <= ‘0’;
pretrk_q <= ‘0’;
trk_q <= ‘0’;
mbit_q <= ‘0’;
mdet_q <= ‘0’;
dsCpol_q <= ‘0’;
dsBpol_q <= ‘0’;
dsApol_q <= ‘0’;
dsadvance_q <= ‘0’;
dsretard_q <= ‘0’;
dsdefault_q <= ‘0’;
dsseg_q <= “0000000”;
dstkacc_q <= “00”;
dsntacc_q <= “0000”;
dsshf_q <= 

“000000000000000000000000000000000000000000000000000000000000000”;
dsCmag_q <= “000000”;
dsBmag_q <= “000000”;
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dsAmag_q <= “000000”;
elsif falling_edge(dpnclk) then

dpack_q <= dpack_d;
dspclk_q <= dspclk_d;
pretrk_q <= pretrk_d;
trk_q <= trk_d;
mbit_q <= mbit_d;
mdet_q <= mdet_d;
dsCpol_q <= dsCpol_d;
dsBpol_q <= dsBpol_d;
dsApol_q <= dsApol_d;
dsadvance_q <= dsadvance_d;
dsretard_q <= dsretard_d;
dsdefault_q <= dsdefault_d;
dsseg_q <= dsseg_d;
dstkacc_q <= dstkacc_d;
dsntacc_q <= dsntacc_d;
dsshf_q <= dsshf_d;
dsCmag_q <= dsCmag_d;
dsBmag_q <= dsBmag_d;
dsAmag_q <= dsAmag_d;

end if;

if sysclrb = ‘0’ then
dspn_q <= 

“000000000000000000000000000000000000000000000000000000000000000”;
dsmbth_q <= “000000”;
dsmdth_q <= “000000”;
dstkth_q <= “00”;
dsntth_q <= “0000”;

elsif rising_edge(ldvar) then
dspn_q <= dspn_d;
dsmbth_q <= dsmbth_d;
dsmdth_q <= dsmdth_d;
dstkth_q <= dstkth_d;
dsntth_q <= dsntth_d;

end if;

-- **************************************************************
-- Output assignments
-- With these statement here, the process block cannot overwrite them
--
-- **************************************************************

dpack <= dpack_q;
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dspclk <= dspclk_q;
pretrk <= pretrk_q;
trk <= trk_q;
mbit <= mbit_q;
mdet <= mdet_q;
dsseg <= dsseg_q;
dstkacc <= dstkacc_q;
dsntacc <= dsntacc_q;

dsretard_o <= dsretard_q;
dsdefault_o <= dsdefault_q;
dsadvance_o <= dsadvance_q;
maxpol_o <= maxpol;
maxmag_o <= maxmag;

end process flops;

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************

process(spda,dsshf_q,dspn_q)

--**************************************************************
--**************************************************************

-- Begin the P1 process

-- This process is used to accummulate the input spread data stream.
-- The input spread data is right shifted into a 63 (PN spread ratio)
-- bit shift register. The chip bits (spda) are clocked into this 
-- shift register with the derived PN clock (dpnclk). The spda data
-- and the ddspnclk are sent to the despreader module from the polarity 
-- decoder (POLDEC) module. The results from this process are the
-- expected PN (PNCODE) code and the accumulated (dsshf_q) inbound
-- PN value.

--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************
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--**************************************************************
-- Declare the default states for the flip flops in this process.
--**************************************************************

dsshf_d(62 downto 1) <= dsshf_q(61 downto 0);
dsshf_d(0) <= spda;

dspn_d <= PNCODE;

xor_array <= dsshf_q XOR dspn_q;

end process;

--**************************************************************
-- End process 
--**************************************************************

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************

process(xor_array)
begin

sum1<=(GND6&xor_array(0))+(GND6&xor_array(1))+(GND6&xor_array(2))+(GND6
&xor_array(3))+(GND6&xor_array(4))

+(GND6&xor_array(5))+(GND6&xor_array(6))+(GND6&xor_array(7))+(GND6&xor_a
rray(8))+(GND6&xor_array(9))

+(GND6&xor_array(10))+(GND6&xor_array(11))+(GND6&xor_array(12))+(GND6&x
r_array(13))+(GND6&xor_array(14));

sum2<=(GND6&xor_array(15))+(GND6&xor_array(16))+(GND6&xor_array(17))+(G
D6&xor_array(18))+(GND6&xor_array(19))

+(GND6&xor_array(20))+(GND6&xor_array(21))+(GND6&xor_array(22))+(GND6&x
or_array(23))+(GND6&xor_array(24))
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+(GND6&xor_array(25))+(GND6&xor_array(26))+(GND6&xor_array(27))+(GND6&x
or_array(28))+(GND6&xor_array(29))

+(GND6&xor_array(30));
 
sum3<=(GND6&xor_array(31))+(GND6&xor_array(32))+(GND6&xor_array(33))+(G
D6&xor_array(34))+(GND6&xor_array(35))

+(GND6&xor_array(36))+(GND6&xor_array(37))+(GND6&xor_array(38))+(GND6&x
or_array(39))+(GND6&xor_array(40))

+(GND6&xor_array(41))+(GND6&xor_array(42))+(GND6&xor_array(43))+(GND6&x
or_array(44))+(GND6&xor_array(45))

+(GND6&xor_array(46));

sum4<=(GND6&xor_array(47))+(GND6&xor_array(48))+(GND6&xor_array(49))+(G
D6&xor_array(50))+(GND6&xor_array(51))

+(GND6&xor_array(52))+(GND6&xor_array(53))+(GND6&xor_array(54))+(GND6&x
or_array(55))+(GND6&xor_array(56))

+(GND6&xor_array(57))+(GND6&xor_array(58))+(GND6&xor_array(59))+(GND6&x
or_array(60))+(GND6&xor_array(61))

+(GND6&xor_array(62));

end process;

P2: process(sum1,sum2,sum3,sum4)

--**************************************************************
--**************************************************************

-- Begin the P2 process

-- This process is used to perform an XOR and comparison of the
-- expected PN code and the inbound PN code. The result is a zero
-- polarity magnitude, based on the 63 bit total magnitude field. 
 
--**************************************************************
--**************************************************************

begin

compmag <= sum1 + sum2 + sum3 + sum4;
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end process P2;

--**************************************************************
-- End process 
--**************************************************************

--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************
P3:
process(compmag,dsAmag_q,dsBmag_q,dsCmag_q,dsApol_q,dsBpol_q,dsCpol_q
dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dsntacc_q,dstkacc_q)

--**************************************************************
--**************************************************************

-- Begin the P3 process

-- This process is used to perform four essential and sequential
-- operations. The first operation is to subtract a zero magnitude
-- from the comparator (from the P2 process) magnitude. The second
-- operation is to derive a bit polarity from the PN magnitude.
-- The third operation stores and rotates three PN magnitudes and
-- their associated bit polarities. The fourth operation is used
-- to compare the three magnitude values and decide if the dither
-- controller needs to be in default or retard or advance.
-- 
-- retard mode:  dsretard=1,dsseq roll=61,maxmag=dsAmag.maxpol=dsApol
-- default mode: dsdefault=1,dsseq roll=62,maxmag=dsBmag.maxpol=dsBpol
-- advance mode: dsadvance=1,dsseq roll=63,maxmag=dsCmag.maxpol=dsCpol

--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************

--**************************************************************
-- Declare the default states for the flip flops in this process.
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--**************************************************************

dsBmag_d <= dsCmag_q;
dsBpol_d <= dsCpol_q;
dsAmag_d <= dsBmag_q;
dsApol_d <= dsBpol_q;

--**************************************************************
-- Begin body of process arguments
--**************************************************************

if (63 - compmag) > compmag then
dsCmag_d <= (63 - compmag);
dsCpol_d <= ‘0’;
else dsCmag_d <= compmag;
dsCpol_d <= ‘1’;
end if;

if (dsAmag_q > dsBmag_q) AND (dsBmag_q >= dsCmag_q) then
maxmag <= dsAmag_q;
maxpol <= dsApol_q;
dsadvance <= ‘0’;
dsdefault <= ‘0’;
dsretard <= ‘1’;
elsif (dsCmag_q > dsBmag_q) AND (dsBmag_q >= dsAmag_q) then
maxmag <= dsCmag_q;
maxpol <= dsCpol_q;
dsadvance <= ‘1’;
dsdefault <= ‘0’;
dsretard <= ‘0’;
else
maxmag <= dsBmag_q;
maxpol <= dsBpol_q;
dsadvance <= ‘0’;
dsdefault <= ‘1’;
dsretard <= ‘0’;
end if;

end process P3;

--**************************************************************
-- End process 
--**************************************************************
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--**************************************************************
-- Declare the process sensitivity list (inputs to the process)
--**************************************************************
P4:
process(maxmag,maxpol,dsretard,dsdefault,dsadvance,dpack_q,dspclk_q,pretrk_q
trk_q,dsmbth_q,dsmdth_q,dsntth_q,dstkth_q,dsmdacc_q,dstkacc_q,dsntacc_q,dsse
dsdefault_q,dsretard_q,dsadvance_q)

--**************************************************************
--**************************************************************

-- Begin the P4 process

-- This process is used to derive the spread (dspclk) clock. This
-- clock is generated by applying the DSRETARDPT or DSDEFAULTPT or
-- DSADVANCEPT to slide the trigger point for the outbound derived
-- spread clock. This process also resolves the the outbound desrpead
-- (dpack) data. This process also cotrols whether the despreader
-- correlator module is in search or pretrack or track mode. This
-- process also measures missed bit and missed detect thresholds.

--**************************************************************
--**************************************************************

begin

--**************************************************************
-- Declare the flip flops which require feedback
--**************************************************************

dpack_d <= dpack_q;
dspclk_d <= dspclk_q;
pretrk_d <= pretrk_q;
trk_d <= trk_q;
dstkacc_d <= dstkacc_q;
dsntacc_d <= dsntacc_q;
dsseg_d <= dsseg_q+1;

--**************************************************************
-- Declare the default states for the flip flops in this process.
--**************************************************************

dspclk_d <= ‘0’;
mbit_d <= ‘0’;
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mdet_d <= ‘0’;
dsmbth_d <= dsmbth;
dsmdth_d <= dsmdth;
dstkth_d <= dstkth;
dsntth_d <= dsntth;
dsdefault_d <= dsdefault_q;
dsretard_d <= dsretard_q;
dsadvance_d <= dsadvance_q;

--**************************************************************
-- Begin body of process arguments
--**************************************************************

if (dsseg_q = DSMAXPT) OR
   ((dsdefault_q = ‘1’) AND (dsseg_q = DSDEFAULTPT)) OR
   ((dsretard_q = ‘1’) AND (dsseg_q = DSRETARDPT)) OR
   ((dsadvance_q = ‘1’) AND (dsseg_q = DSADVANCEPT)) then
dsdefault_d <= dsdefault;
dsretard_d <= dsretard;
dsadvance_d <= dsadvance;
dsseg_d <= “0000000”;
dspclk_d <= ‘1’;
dpack_d <= maxpol;

if trk_q = ‘0’ then
if maxmag > dsmdth_q then
dstkacc_d <= dstkacc_q+1;
if dstkacc_q > dstkth_q then
trk_d <= ‘1’;
end if;
else
pretrk_d <= ‘0’;
end if;
else
if maxmag < dsmdth_q then
dsntacc_d <= dsntacc_q+1;
if dsntacc_q > dsntth_q then
trk_d <= ‘0’;
pretrk_d <= ‘0’;
dpack_d <= ‘0’;
end if;
else
dsntacc_d <= “0000”;
end if;
end if;
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if (trk_q = ‘1’) AND (maxmag < dsmbth_q) then
mbit_d <= ‘1’;
end if;

if (trk_q = ‘1’) AND (maxmag < dsmdth_q) then
mdet_d <= ‘1’;
end if;

end if;

if (maxmag > dsmbth_q) AND (pretrk_q = ‘0’) then
pretrk_d <= ‘1’;
dsseg_d <= “0000000”;
dstkacc_d <= “00”;
dsntacc_d <= “0000”;
end if;

if pretrk_q = ‘0’ then
dpack_d <= ‘0’;
end if;

if dsseg_q < “0100000” then
dspclk_d <= ‘1’;
end if;

end process P4;

--**************************************************************
-- End process 
--**************************************************************

end behavior;

8.4  Protocol Remover

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
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use ieee.std_logic_unsigned.all;

--
************************************************************************
*
-- I/O Interface Declaration
--
************************************************************************
*

entity protocol_alt is
port
(
-- inputs

  signal dpack:          in std_logic;
  signal dspclk:           in std_logic; 
  signal sysclrb:           in std_logic;
  signal trk:          in std_logic;
  signal mdet:          in std_logic;
  signal mbit:          in std_logic;

-- outputs

  signal strk:      out std_logic;
  signal smdet:      out std_logic;
  signal smbit:      out std_logic;
  signal sdata:      out std_logic

);
end protocol_alt;

--
************************************************************************
*
-- Architecture body
--
************************************************************************
*

architecture behavior of protocol_alt is

signal in1, in2:std_logic;
signal sdata_sig: std_logic;
signal trk_q:  std_logic;
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signal mdet_q: std_logic;
signal mbit_q: std_logic;

begin

process(sysclrb, dspclk)

begin
if sysclrb = ‘0’ then

trk_q <= ‘0’;
mdet_q <= ‘0’;
mbit_q <= ‘0’;
in1 <= ‘1’;
in2 <= ‘0’;

elsif rising_edge(dspclk) then
trk_q <= trk;
mdet_q <= mdet;
mbit_q <= mbit;
in2 <= in1;
in1 <= dpack;

end if;

sdata_sig <= in1 xor in2;
strk <= trk_q;
smdet <= mdet_q;
smbit <= mbit_q;
sdata <= sdata_sig;

end process;

end behavior;

8.5  Packet Detector

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
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--**********************************************************
-- I/O Interface Declaration
--**********************************************************

entity pack_det is
port(
--inputs
  sdata: in std_logic;
  dspclk: in std_logic;
--  uid: in std_logic_vector(2 downto 0);
  clacq: in std_logic;
  rstb: in std_logic;
  ldvar: in std_logic;
  strk: in std_logic;
  
--outputs
  wsclk: buffer std_logic;
  pkda_ec: bufferstd_logic_vector(9 downto 0);
  match: buffer std_logic;
  pkdwr: out std_logic;
  pkwc:  buffer integer range 0 to 63;
  pkwwr: buffer std_logic;
  acq: out std_logic;
  pkda: out std_logic_vector(9 downto 0)
);
end pack_det;

--*********************************************************
-- Architecture Body
--*********************************************************
architecture behavior of pack_det is

--Constants for Graviton demo
--Packet words are transmitted from the ACQ LSB first
constant pklen:integer:= 6;
constant pkwid:integer := 10;
constant frame_sync:std_logic_vector(9 downto 0):=”1111100000”;
constant GNDA:std_logic_vector(9 downto 0):=”0000000000”;
constant GND7:std_logic_vector(6 downto 0):=”0000000”;

--set programmable parameters as constants to free up logic cells.
constant  uid: std_logic_vector(2 downto 0) := “101”;

signal id_cnt: integer range 0 to 20;
signal uid_sig: std_logic_vector(2 downto 0);
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signal pkwwr_sig:std_logic;
signal pkdwr_sig:std_logic;
signal pkdwr_sig_d1:std_logic;
signal pkdwr_sig_d2:std_logic;
signal pkdwr_sig_d3:std_logic;
signal pkdwr_sig_d4:std_logic;
signal pkdwr_sig_d5:std_logic;
signal acq_sig: std_logic;
signal ref_uid: std_logic_vector(pkwid-1 downto 0);
signal pkwc_sig:integer range 0 to 63;
signal ec_cnt: integer range 0 to 10;
signal pkda_sig:std_logic_vector(9 downto 0);
signal pkda_sig1:std_logic_vector(pkwid-1 downto 0);
signal pkda_sig2:std_logic_vector(pkwid-1 downto 0);
signal pkda_int:std_logic_vector(9 downto 0);

begin

acquisition: process(rstb, clacq, dspclk)
begin
if ldvar = ‘1’ then
uid_sig(0) <= uid(2);
uid_sig(1) <= uid(1);
uid_sig(2) <= uid(0);
ref_uid <= GND7 & uid_sig;
else 
ref_uid <= ref_uid;
end if;
if rstb = ‘0’ or clacq = ‘1’ then
pkda_int <= GNDA;
match <= ‘0’;
acq_sig <= ‘0’;
ec_cnt <= 0;
wsclk <= ‘1’;
id_cnt <= 0;
elsif falling_edge(dspclk) then
pkda_int(8 downto 0) <= pkda_int(9 downto 1);
pkda_int(9) <= sdata;
if (match or acq_sig) = ‘1’ then
if ec_cnt = 9 then
pkda_ec <= pkda_int;
ec_cnt <= 0;
wsclk <= ‘0’;
else
pkda_ec <= GNDA;
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ec_cnt <= ec_cnt + 1;
wsclk <= ‘1’;
end if;
else 
ec_cnt <= ec_cnt;
wsclk <= ‘1’;
end if;
if pkda_int = frame_sync then
match <= ‘1’;
else
match <= match;
end if;
if match = ‘1’ and acq_sig = ‘0’ then
if pkda_int = ref_uid and id_cnt = 19 then
acq_sig <= ‘1’;
id_cnt <= 0;
else
if id_cnt = 20 then 
acq_sig <= ‘0’;
id_cnt <= 0;
match <= ‘0’;
else
acq_sig <= acq_sig;
id_cnt <= id_cnt + 1;
end if;
end if;
else
acq_sig <= acq_sig;
id_cnt <= id_cnt;
end if;

end if;
acq <= acq_sig;
end process acquisition;

data_strobe: process(dspclk, rstb, acq_sig)
begin
if rstb = ‘0’ or acq_sig = ‘0’ then
pkwwr_sig <= ‘1’;
pkdwr_sig <= ‘1’;
pkdwr_sig_d1 <= ‘1’;
pkdwr_sig_d2 <= ‘1’;
pkdwr_sig_d3 <= ‘1’;
pkdwr_sig_d4 <= ‘1’;
elsif falling_edge(dspclk) then
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if acq_sig = ‘1’ then
pkdwr_sig_d4 <= wsclk;
else
pkdwr_sig_d4 <= pkdwr_sig_d4;
end if;
pkdwr_sig <= pkdwr_sig_d1;
pkdwr_sig_d1 <= pkdwr_sig_d2;
pkdwr_sig_d2 <= pkdwr_sig_d3;
pkdwr_sig_d3 <= pkdwr_sig_d4;
if pkwc_sig = pklen then
pkwwr_sig <= pkdwr_sig;
else
pkwwr_sig <= pkwwr_sig;
end if;
if strk = ‘0’ then
pkwwr_sig <= ‘0’;
end if;
end if;
pkdwr <= pkdwr_sig;
pkwwr <= pkwwr_sig;
end process data_strobe;

data_out: process(dspclk, rstb)
begin
if rstb = ‘0’ then
pkda_sig <= GNDA;
pkda_sig1 <= GNDA;
elsif rising_edge(dspclk) then
if wsclk = ‘0’ then
pkda_sig1 <= pkda_sig;
pkda_sig <= pkda_ec;
else 
pkda_sig1 <= pkda_sig1;
pkda_sig <= pkda_sig;
end if;
end if;
pkda <= pkda_sig1;
end process data_out;

word_count: process(wsclk, rstb, acq_sig)
begin
if rstb = ‘0’ or acq_sig = ‘0’ then
pkwc_sig <= 0;
elsif rising_edge(wsclk) then
if pkwc_sig = pklen or strk = ‘0’ then
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pkwc_sig <= pkwc_sig;
else
pkwc_sig <= pkwc_sig + 1;
end if;
end if;
pkwc <= pkwc_sig;
end process word_count;

end behavior;

8.6  FIFO Controller

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

--**********************************************************
-- I/O Interface Declaration
--**********************************************************

entity fctrl is
port(
--inputs
  signal dspclk:in std_logic;
  signal rstb: in std_logic;
  signal strk: in std_logic;
  signal rd: in std_logic;
  signal acq: in std_logic;
  signal pkst: in std_logic;
  signal pkdwr:in std_logic;
  signal pkwwr:in std_logic;
  signal full: in std_logic;

--Data FIFO full
  signal mty: in std_logic;

--Data FIFO empty   
  signal temp_full:in std_logic;
 
--outputs
  signal ovr: buffer std_logic;
  signal temp_clrb:buffer std_logic;

--temp_clrb is the asynchronous active low data FIFO clear.
  signal tempwr:buffer std_logic;
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--tempwr is the active high write to the data FIFO signal.
  signal tpclk: buffer std_logic; 
  signal drdy: buffer std_logic;
  signal xfer: buffer std_logic;

--xfer is the active high data FIFO write signal
  signal dfclk: buffer std_logic;
  signal dfrd: buffer std_logic;
  signal clacq: buffer std_logic
);
end fctrl;

--*********************************************************
-- Architecture Body
--*********************************************************
architecture behavior of fctrl is

--The data FIFO is 96 by 10
--Expected word count is the expected packet length minus 2.
--For the Graviton demo, pklen = 6.

constant pklen:integer := 6;
constant pkwid:integer := 10;

signal temp_clrb_d, temp_clrb_q:std_logic;
signal tempwr_d, tempwr_q:std_logic;
signal dfrd_d, dfrd_q:std_logic;
signal clacq_d, clacq_q:std_logic;
signal drdy_d, drdy_q:std_logic;
signal xfer_d, xfer_q:std_logic;
signal xfer_d2, xfer_q2:std_logic;
signal ovr_d, ovr_q:std_logic;
signal dfwrclk:std_logic;
signal tprdclk: std_logic;
signal clk_cnt: integer range 0 to pkwid;
signal ovr_cnt:integer range 0 to 7;
signal xfer_cnt:integer range 0 to pklen;
signal dfclk_d:std_logic;
signal dfclk_q:std_logic;

begin

--****************************************************************
-- Synchronicity
--****************************************************************
flops: process(rstb, dspclk)
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begin
if rstb = ‘0’ then

temp_clrb_q <= ‘1’;
tempwr_q <= ‘0’;
clacq_q <= ‘0’;
xfer_q <= ‘0’;
xfer_q2 <= ‘0’;
drdy_q <= ‘0’;
ovr_q <= ‘0’;
dfclk_q <= ‘1’;

elsif falling_edge(dspclk) then
temp_clrb_q <= temp_clrb_d;
tempwr_q <= tempwr_d;
clacq_q <= clacq_d;
xfer_q <= xfer_d;
xfer_q2 <= xfer_d2;
drdy_q <= drdy_d;
ovr_q <= ovr_d;
dfclk_q <= dfclk_d;

end if;
temp_clrb <= temp_clrb_q;
tempwr <= tempwr_q;
dfrd <= drdy_q;
clacq <= clacq_q;
xfer_d2 <= xfer_q;
xfer <= xfer_q2;
drdy <= drdy_q;
dfclk <= dfclk_q;
ovr <= ovr_q;
end process flops;

--****************************************************************
-- Clock Generation
--****************************************************************

--Generate clocks for the single-clock FIFOs

clk_gen: process(rstb, dspclk)
begin
if rstb = ‘0’ then

clk_cnt <= 0;
tprdclk <= ‘1’;
dfwrclk <= ‘1’;

elsif falling_edge(dspclk) then
case clk_cnt is
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when 0 =>
tprdclk <= ‘0’;
dfwrclk <= ‘1’;
clk_cnt <= clk_cnt + 1;
when 1 =>
tprdclk <= ‘1’;
dfwrclk <= ‘0’;
clk_cnt <= clk_cnt + 1;
when pkwid - 1 =>
clk_cnt <= 0;
tprdclk <= ‘1’;
dfwrclk <= ‘1’;
when others =>
tprdclk <= ‘1’;
dfwrclk <= ‘1’;
clk_cnt <= clk_cnt + 1;
end case;

end if;
end process clk_gen;

--*************************************************************
-- Clock Selection
--*************************************************************

--Generate the data ready signal (drdy) and switch clocks

clk_sel: process(rstb, dspclk)
begin
if rstb = ‘0’ or mty = ‘1’ then

drdy_d <= ‘0’;
elsif rising_edge(full) then

drdy_d <= ‘1’;
end if;
if drdy = ‘1’ then

dfclk_d <= rd;
elsif xfer = ‘1’ then

dfclk_d <= dfwrclk;
else

dfclk_d <= ‘1’;
end if;
if xfer = ‘0’ then

tpclk <= pkdwr;
else

tpclk <= tprdclk;
end if;
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end process clk_sel;

--*************************************************************
-- Data FIFO and Temporary Packet Buffer Control
--*************************************************************

--Write to the temporary packet buffer is disabled if tracking is
--lost (strk=0), the packet is bad (pkst=1), or the data FIFO has
--overflowed (temp_full=1).  If the packet is good then it is written to
--the temporary packet buffer.

temp_ctrl: process(rstb, dspclk)
begin
if rstb = ‘0’ or acq = ‘0’ or drdy = ‘1’ or temp_full = ‘1’ then

tempwr_d <= ‘0’;
elsif falling_edge(dspclk) then

tempwr_d <= ‘1’;
end if;
clacq_d <= pkst or not (pkwwr) or drdy;
temp_clrb_d <= rstb and not(pkst) and not(full);
end process temp_ctrl;

--If the data in the temporary packet buffer is ready to
--be sent to the data FIFO, then writing to the data FIFO and reading
--from the temporary packet buffer (xfer) is enabled.

data_ctrl: process(rstb, dfclk)
begin
if rstb = ‘0’ then

xfer_cnt <= 0;
xfer_d <= ‘0’;

elsif rising_edge(dfwrclk) then
case xfer_cnt is
when 0 => 
if temp_full = ‘1’ then
xfer_cnt <= 1;
end if;
when 6 =>
xfer_cnt <= 0;
when others =>
xfer_cnt <= xfer_cnt + 1;
end case;
if xfer_cnt = 0 then
xfer_d <= ‘0’;
else
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xfer_d <= ‘1’;
end if;

end if;
end process data_ctrl;

--********************************************************
-- Overflow
--********************************************************

oc: process(rstb, mty, dspclk)
begin
if rstb = ‘0’ or mty = ‘1’ then

ovr_cnt <= 0;
elsif falling_edge(dspclk) then

if full = ‘1’ then
ovr_cnt <= ovr_cnt + 1;
else
ovr_cnt <= ovr_cnt;
end if;
if ovr_cnt = 100 then
ovr_d <= ‘1’;
else
ovr_d <= ‘0’;
end if;

end if;
end process oc;

end behavior;

8.7  Packet Error Logic

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

--**********************************************************************
-- I/O Interface Declaration
--**********************************************************************

entity pack_err is
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port
(
-- inputs
  signal clk: in std_logic;
  signal pkwwr:in std_logic;
  signal pkwc: in integer range 0 to 63;
--  signal pkwcth:in integer range 0 to 63;
  signal mbit: in std_logic;
--  signal pkmbth:in integer range 0 to 63;
  signal mdet: in std_logic;
--  signal pkmdth:in integer range 0 to 63;
  signal acq: in std_logic;
  signal sysclrb:in std_logic;
  signal ldvar: in std_logic;

-- outputs
  signal ambit: buffer integer range 0 to 63;
  signal amdet: buffer integer range 0 to 63;
  signal pkst: buffer std_logic
);
end pack_err;

--**********************************************************************
-- Architecture body
--**********************************************************************

architecture behavior of pack_err is

signal mbabove:std_logic;
signal mdabove:std_logic;
signal wcbelow:std_logic;
signal mbth: integer range 0 to 63;
signal mdth: integer range 0 to 63;
signal wcth: integer range 0 to 63;

--set programmable thresholds as constants to free up logic cells.
constant pkwcth:integer := 6;
constant pkmdth:integer := 3;
constant pkmbth:integer := 3;

begin

--*****************************************************************
-- Load Programmable Settings
--*****************************************************************
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load: process (ldvar)
begin
if rising_edge(ldvar) then

--Load externally programmable settings
mbth <= pkmbth;
mdth <= pkmdth;
wcth <= pkwcth;

else
mbth <= mbth;
mdth <= mdth;
wcth <= wcth;

end if;
end process load;

--*****************************************************************
-- Missed Bit and Missed Detect Accumulators
--*****************************************************************
acc: process (mbit, mdet, sysclrb, acq)
begin
if sysclrb = ‘0’ or acq = ‘0’ then

ambit <= 0;
elsif falling_edge(mbit) then

ambit <= ambit + 1;
end if;
if sysclrb = ‘0’ or acq = ‘0’ then

amdet <= 0;
elsif falling_edge(mdet) then

amdet <= amdet + 1;
end if;
end process acc;

--*****************************************************************
-- Packet Status Check
--*****************************************************************
psc: process (clk, pkwwr, sysclrb, acq)
begin
if sysclrb = ‘0’ then

mbabove <= ‘0’;
mdabove <= ‘0’;
wcbelow <= ‘0’;

elsif falling_edge(clk) then
--Compare missed detect and missed bit counts to thresholds
if (ambit > mbth) then
mbabove <= ‘1’;
else
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mbabove <= ‘0’;
end if;
if (amdet > mdth) then
mdabove <= ‘1’;
else
mdabove <= ‘0’;
end if;
-- Check incoming packet word count to see if it is below the threshold
if (pkwc < wcth) then
wcbelow <= ‘1’;
else
wcbelow <= ‘0’;
end if;

end if;
if acq = ‘0’ then

pkst <= ‘0’;
elsif falling_edge(pkwwr) then

--Check for packet errors and set pkst flag high if packet is bad
pkst <= mdabove OR mbabove OR wcbelow;

end if;
end process psc;
end behavior;
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