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Abstract

In this report we present parallel solvers for large linear systems arising

from the �nite-element discretization of the three-dimensional steady-state

groundwater 
ow problem. Our solvers are based on multigrid and Krylov

subspace methods. The parallel implementation is based on a domain

decomposition strategy with explicit message passing using NX and MPI

libraries. We have tested our parallel implementations on the Intel Paragon

XP/S 150 supercomputer using up to 1024 parallel processors and on other

parallel platforms such as SGI/Power Challenge Array, Cray/SGI Origin

2000, Convex Exemplar SPP-1200, and IBM SP using up to 64 proces-

sors. We show that multigrid can be a scalable algorithm on distributed

memory machines. We demonstrate the e�ectiveness of parallel multigrid

based solvers by solving problems requiring more than 70 million nodes in

less than a minute. This is more than 25 times faster than the diagonal

preconditioned conjugate gradient method which is one of the more pop-

ular methods for large sparse linear systems. Our results also show that

multigrid as a stand alone solver works best for problems with smooth

coe�cients, but for rough coe�cients it is best used as a preconditioner

for a Krylov subspace method such as the conjugate gradient method. We

show that even for extremely heterogeneous systems the multigrid pre-

conditioned conjugate gradient method is atleast 10 times faster than the

diagonally preconditioned conjugate gradient method.
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1. Background

In order to determine 
ow �elds in a groundwater aquifer, a partial di�erential

equation (p.d.e) commonly referred to as the groundwater 
ow equation needs to

be solved. For the steady-state saturated case, this equation is an elliptic p.d.e

given by

r � (Krh)� q = 0 (1)

where K is the hydraulic conductivity tensor, h is the head �eld, and q represents

the source/sink terms coming from injection/pumping wells. In general, �nite-

element or �nite-di�erence techniques are used to discretize Equation (1).

For many realistic problems, the groundwater 
ow equation involves rough

coe�cients (tensor K) resulting from heterogeneous hydraulic conductivity �elds

(or K-�elds). In order to resolve �ne-scale heterogeneity e�ects on large-scale

regional models (on the order of kilometers) a �ne discretization is required (on

the order of a few meters). For such problems �nite-element or �nite-di�erence

discretizations give rise to very large linear systems (on the order of 10's of millions

of nodes) that need to be solved.

The matrices that result from the discrete approximation of Equation (1) are

sparse, symmetric and positive de�nite[8]. The preconditioned conjugate gra-

dient method is a popular Krylov method (see next section) commonly used

to solve such systems [13], [15]. For methods such as preconditioned conjugate

gradients, the number of iterations required for convergence increases with the

problem size and the degree of heterogeneity when traditional preconditioners

such as diagonal scaling or incomplete Cholesky are used. However, we can im-

prove on this behavior by using a multigrid method, either on its own, or as

a preconditioner in a Krylov subspace method. By using multigrid techniques

we can make the convergence behavior less dependent on the problem size and

to some extent the roughness of the coe�cients [1], [4], [14], [2]. But the dif-

�culty in implementing multigrid techniques on distributed memory machines
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has prevented this method from gaining popularity on machines such as the In-

tel Paragon. Ashby and co workers [2], [3] implemented multigrid preconditioned

solvers for a �nite-di�erence formulation of the groundwater 
ow problem on Cray

T3D and J90 architectures. In this work we implement parallel multigrid based

solvers for a �nite-element formulation of the same problem on various distributed

memory platforms. The performance of these solvers are then compared with a

diagonally preconditioned conjugate gradient solver. Performance is measured

in terms of raw solution time, scalability, parallel e�ciency, and Mega
op rate

(A Mega
op/s stands for 106 
oating point operations per second). E�ciency of

multigrid methods for increasing problem sizes and increasing roughness is also

compared.

2. Krylov Subspace Methods

Krylov subspace methods for solving a linear systemAx = b are iterative methods

that pick the j-th iterate from the following a�ne subspace

xj 2 x0 +Kj(A; r0)

where x0 is the initial guess, r0 the corresponding residual vector and the Krylov

subspace Kj(A; r0) is de�ned as

Kj(A; r0) = spanfr0; Ar0; : : : ; A
j�1r0g

These methods are very popular for solving large sparse linear systems because

they are powerful and yet o�er considerable savings in both computation and

storage. Some of the more popular Krylov methods are Preconditioned Conju-

gate Gradients (PCG), Bi-Conjugate Gradient Stabilized (Bi-CGSTAB), Gener-

alized Minimal Residual (GMRES), Quasi-Minimal Residual (QMR), and Adap-

tive Chebychev [8], [17], [7]. Of these, PCG is used for only symmetric positive

de�nite systems.
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3. Multigrid Methods

Multigrid methods for partial di�erential equations use multiple grids for resolv-

ing various features of the solution on the appropriate spatial scales [5], [6], [10],

[9]. They derive their e�ciency by not attempting to resolve coarse scale features

on the �nest grid.

The basic idea of multigrid is depicted in Figure 1, for the two-grid version.

Starting with an initial guess, uoldh , on the �nest grid, we apply �1 iterations of a

smoothing method (Rh), such as weighted Jacobi or Gauss-Seidel and form the

residual rh of the resulting grid vector. This is \restricted" down to the coarse

grid, where it is used as the right hand side (r2h) of the coarse grid correction

equation, L2hc = r2h, where L2h is an appropriately de�ned coarse grid operator.

The solution to this problem (c2h) is interpolated back to the �ne grid where it

is added to the current approximation. Finally an additional �2 sweeps of the

smoother are applied to the corrected approximation, to obtain unewh . The grid

transfers involve �ne to coarse (restriction, I2hh ) and coarse to �ne (prolongation

or interpolation, Ih2h) stages. At the coarsest level, a full matrix solve is performed

before moving up to the next �ner level. The coarse-grid solve is usually done by

PCG or banded Gaussian elimination.

In practice, the two-grid algorithm is applied recursively. The most common

approach is the V-cycle, where an initial guess must be supplied on the �nest

grid. The V-cycle can be used on its own or as a preconditioner to a Krylov

method. The performance of multigrid can be \tuned" through an appropriate

choice of parameters like the number of levels, or the smoothing sweeps (�1, �2).

4. Algorithmic Framework

For the three-dimensional isotropic case, Equation (1) reduces to
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uoldh
-

R�1
h

uh - rh = fh � Lhuh
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Solve

- c2h
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Ih2h

ch - uh + ch -
R�2

h

unewh

Figure 1: The Two-Grid Version of Multigrid

where K(x; y; z) is the hydraulic conductivity value at location (x; y; z). To solve

Equation (2) we employ the Galerkin �nite element discretization using eight-

node linear brick elements [12], [11]. This discretization results in a matrix equa-

tion of the form Ax = b, where A is a sparse, symmetric positive de�nite matrix.

For a logically rectangular grid structure and "natural ordering" of unknowns

matrix A has a 27-diagonal banded non-zero structure. If the non-zero entries of

the matrix are stored by diagonals, vectorizing compilers can generate extremely

e�cient code for operations like a matrix vector product, which are used in multi-

grid and Krylov methods. In our implementation we exploit symmetry and store

only the 14 super-diagonals of the matrix.

For the multigrid implementation we use a V-cycle for each multigrid iter-

ation. In order to construct the restriction operator within each V-cycle, we

implemented three methods: simple injection, half weighting (7-point), and full

weighting (27-point). For the prolongation (interpolation) operator within each

V-cycle, we use a linear interpolation scheme. The coarse grid operator for each

level is simply the �nite-element global matrix at these levels. For cases with

rough coe�cients, the elemental hydraulic conductivity values at the coarser lev-

els are obtained by a local averaging scheme. We implemented three options

to perform this averaging: arithmetic, geometric and harmonic averaging. For

most of our test cases, simple injection and arithmetic averaging proved to be

the best options. For the coarse grid solve we used the diagonally preconditioned

conjugate gradient method.
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For the smoothing operation we chose the weighted (or underrelaxed) Jacobi,

which, for Ax = b and A = D � L � U , is de�ned by

x(n+1) = [(1� !)I + !D�1(L+ U)x(n) + !D�1b

where ! is the weighting factor. Although Jacobi is less powerful than meth-

ods such as Gauss-Seidel, it is easily parallelized and is generally adequate as a

smoother.

We also implemented options to use multigrid as a preconditioner for CG

and BiCGSTAB methods. Summarizing, our parallel solvers consisted of the fol-

lowing methods: DPCG (diagonally preconditioned conjugate gradient method),

MG (stand alone multigrid solver), MGCG (multigrid preconditioned conjugate

gradient method), and MGBiCGSTAB (multigrid preconditioned Bi-CGSTAB).

The results for BiCGSTAB with multigrid preconditioning were very similar to

those for MGCG, and will not be presented here. We also note here that our

multigrid implementations are currently restricted to uniform rectangular grids.

5. Parallel Implementation

Our parallel implementation was originally targeted for the Intel Paragon ma-

chines using the Paragon's native NX message passing library. The code was

then ported to the SGI/Power Challenge Array, SGI/Cray Origin 2000, Convex

Exemplar and IBM SP systems using an MPI (Message Passing Interface) imple-

mentation. Since most of our tests were performed on the Intel Paragon XPS/150

we brie
y describe this architecture below.

The Intel Paragon XP/S 150 (1024 MP-nodes) at the Oak Ridge National

Laboratory's Center for Computational Sciences (CCS)1 has 1024 MP (multiple

thread) nodes connected in a 16 � 64 rectangular mesh con�guration. Each node

has a local memory of 64 Megabytes. The native message passing library on the

1For more details, see the CCS web page at http://www.ccs.ornl.gov



- 6 -

Paragon is called NX. The inter-node message bandwidth is about 152 Mb/s for

long messages (� 1Mb) with a zero-length latency of 35 ms.

For parallelization we used a two-dimensional (2-D) domain decomposition in

the x and y directions as depicted in Fig 2. A 2-D decomposition is generally ade-

quate for groundwater problems because common groundwater aquifer geometries

involve a vertical dimension which is much shorter than the other two dimensions.

For the �nite-element discretization such decomposition involves communication

with at most 8 neighboring processors. We note here that a 3-D decomposition

in this case would require communication with up to 26 neighboring processors.

We overlap one layer of processor boundary elements in our decomposition

to avoid additional communication during the assembly stage at the expense of

some duplication in element computations. There is no overlap in node points. In

order to preserve the 27-diagonal band structure within each processor submatrix,

we perform a local numbering of the nodes for each processor subdomain. This

resulted in non-contiguous rows being allocated to each processor in the global

sense. For local computations each processor is responsible only for its portion of

the rows which are locally contiguous. However, such a numbering gives rise to

some di�culties during explicit communication and I/O stages. For example, in

explicit message passing, non-contiguous array segments had to be gathered into

temporary bu�ers prior to sending. These are then unpacked by the receiving

processor. This bu�ering contributes somewhat to the communication overhead.

When the solution output is written to a �le we had to make sure that the proper

order is preserved in the global sense. This required non-contiguous writes to a

�le resulting in I/O performance degradation particularly when a large number

of processors were involved.

For simplicity we use the same static decomposition at all multigrid levels.

This strategy limits the number of multigrid levels that can be used because even

the coarsest grid problem has to be distributed across all processors.

All explicit communications between neighboring processors were performed

using asynchronous NX or MPI calls. System calls were used for global commu-
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Figure 2: Plan View of Two-Dimensional Domain Decomposition. Each gray
region belongs to a processor; the white regions are overlapped. The arrows show
the communication pattern.

nication operations such as those used in dot products. The codes are written

primarily in FORTRAN (except for some I/O routines which are in C) using

double-precision arithmetic. Although each MP node on the XPS/150 is capable

of using up to three parallel threads the results presented in this report are only

for the single threaded mode. Our initial attempts at using multiple threads on

the Paragon was not successful since the application is highly memory bandwidth

limited. We note here that assembler level coding would be required to exploit

even two processors of an MP node in this application and this level of e�ort is

beyond the scope of this study.

6. Model Problem

For all the test simulations we setup a model problem as shown in Fig 4. This

setup corresponds to a contamination scenario where the contaminant leaches

from a single rectangular source into a naturally 
owing groundwater aquifer.

The 
ow �eld generated from such simulation can be used as an input to a

transport simulator to generate the contaminant plume [13]. Boundary conditions
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q=0.04 m2/d

h=0

Contaminant Plume

No flow boundary

No flow boundary

Lx/4

Lx/8

h=Lx/100

natural gradient flow

Lx
z

y

x

Figure 3: Vertical Cross-Section of Model Problem.

for this setup are as follows: Fixed heads of h = Lx/100 and h = 0 at the faces

of x = 0 and x = Lx respectively, a rectangular patch of Lx/8 � Ly/8 centered

at (x = Lx/4, y = Ly/2, z = Lz) with a uniformly distributed 
ux of 0.04 m2=d,

and no 
ow boundaries elsewhere. For tests involving heterogeneous K-�elds (i.e.

rough coe�cients), we obtained the spatially correlated random K-�elds by using

a parallelized version of the turning bands code [16]. The degree of heterogeneity

is measured by the parameter �, which is an input parameter to the turning

bands code.

7. Performance Results and Discussion

In this section we present and compare the performance of our implementations

with respect to problem size, scalability, raw 
oating point performance, and

roughness of coe�cients. The following selections were used for all performance

tests unless otherwise stated:

� convergence criteria for matrix solution: two-norm of relative residual <

10�8
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� coarse grid solve: DPCG with tolerance set to 10�4

� homogeneous K-�eld (constant coe�cient case)

� timings are for matrix solution only

In the following, P denotes the number of processors. All performance analy-

ses are for the Intel Paragon XP/S 150 except section which deals with multiple

platforms. Timings are obtained by dclock() (for the Paragon) or MPI wtime()

(for other platforms) system calls. Timings reported are for the processor that

takes the maximum time.

7.1. Scalability of Multigrid and DPCG

We analyze the scalability of multigrid and DPCG by increasing the problem size

with a corresponding increase in the number of processors (i. e. N=P is �xed).

The results of this experiment are presented in Table 1. The grid sizes ranged

from 33�33�65 for a single processor to 1025�1025�65 for the 1024 processors.

The most striking result in Table 1 is that the multigrid iterations remain �xed,

while the DPCG iterations grow as we scale up the problem size. Furthermore,

we see that the multigrid solution time for the largest problem (approximately

68 M nodes) on 1024 processors is about twice that for the smallest problem

(approximately 70 K nodes) on 1 processor. In particular, the 68 million node

problem was solved in under 35 seconds on 1024 processors.

The multigrid data from Table 1 is plotted in Fig 4. The total multigrid

solution time is broken down into the coarse grid solve time and the rest. A

closer inspection of our timings revealed that most of the loss in scalability is due

to the coarse grid solve which is performed by DPCG.

Even though the multigrid iterations remain the same throughout the scaling

process, the DPCG coarse grid solve iterations increase because the coarse grid

problem becomes larger as we scale. By the same token we can see from Fig 4

that all phases of the V-cycle other than the coarse grid solve show very good

scalability.
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Table 1: Scaling Behavior of Multigrid and DPCG. Homogeneous K �eld, four
grid levels, and �1 = �2 = 3. P is the number of processors.

P Px � Py nx � ny � nz MG MG DPCG DPCG
( = P ) Iter Time Iter Time

1 1 � 1 33 � 33 � 65 4 20.38 114 43
2 2 � 1 65 � 33 � 65 4 20.57 168 63
4 2 � 2 65 � 65 � 65 4 20.89 177 67
8 4 � 2 129 � 65 � 65 4 21.33 283 106
16 4 � 4 129 � 129 � 65 4 21.59 287 108
32 8 � 4 257 � 129 � 65 4 22.23 442 165
64 8 � 8 257 � 257 � 65 4 23.02 551 205
128 16 � 8 513 � 257 � 65 4 23.02 843 313
256 16 � 16 513 � 513 � 65 4 23.95 1085 406
512 32 � 16 1025 � 513 � 65 4 26.91 1658 646
1024 32 � 32 1025 � 1025 � 65 4 31.17 2142 907

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

 LOG_2 (NUMBER OF PROCESSORS)

 T
IM

E
 IN

 S
E

C
O

N
D

S

 SCALABILTY OF THE MULTIGRID SOLVER

 Total multigrid time 

 Multigrid time w/o the coarse grid solve 

 Coarse grid solve time 

Figure 4: Scaling Behavior of Multigrid.
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7.2. Parallel Performance for Fixed Problem Size

In Fig 5 we compare the parallel e�ciency of the total time to the matrix solution

and explicit inter-processor communication times. Timings are for the �xed size

problem (257 � 257 � 65) using the MG solver. The number of levels was three

and �1 = �2 = 3. The total time includes initial setup, �nite-element matrix

assembly, matrix solution and I/O.
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Figure 5: Parallel Performance for Fixed Problem Size (257 � 257 � 65). The
number of multigrid levels was three and �1 = �2 = 3.

From Fig 5 we can observe that even though the MG solution has subpar par-

allel e�ciency, the total time has a reasonable speed up behavior. The explicit

communication time decreases slightly in the beginning and then starts to grad-

ually increase as we increase P. We attribute the initial drop in communication

time to messages becoming shorter (message bandwidth limited) and the increase

near the end to the latency overhead.
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7.3. Results on Multiple Platforms

In this section we compare the performance of the stand alone multigrid solver

on a variety of parallel platforms for a �xed problem size of 129� 129� 17. The

comparison was done for IBM SP (4, 8, 16, 32, and 64 processors), Intel Paragon

XPS/150 (4, 8, 16, 32, and 64 processors), Cray/SGI Origin 2000 (4, 8, 16, and

32 processors), SGI Power Challenge Array (4, 8, and 16 processors), and Convex

Exemplar SPP-1200 (4 and 8 processors). In this test case we used a homogeneous

K �eld, 3 multi grid levels, and 5 pre- and post- smoothings. In all cases we used

MPI for message passing. Our aim here is to evaluate whether our implementation

is satisfactory for machines with varying message passing, memory bandwidth,

and 
oating point properties. We note here that on all systems except the Intel

Paragon we simply used the default '-O' compilation optimization 
ag. On the

Paragon we used the '-Mvect -O3 -Knoieee' 
ags. The results are shown in

Table 2.

P IBM SP XPS/150 SGI-PC Origin Convex
4 8.7 21.2 11.2 6.0 29.8
8 4.6 11.6 6.2 2.4 18.8
16 2.8 7.0 3.7 1.2 -
32 2.1 4.5 - 1.0 -
64 1.8 3.5 - - -

Table 2: Comparison of MG solution time (in seconds) for various parallel sys-
tems. The Problem Size is �xed at 129 � 129 � 17. The number of multigrid
levels was three and �1 = �2 = 5. P is the number of processors.

It is evident from Table 2 that all machines exhibit the expected speedup

behavior for the moderate number of processors tested here. In Figure 6 we com-

pare the performance of the three bigger systems, namely, the IBM SP, XPS/150,

and the Origin 2000 in terms of the total, solution, and communication times.

This comparison is for a 257x129x65 problem with 4 grid levles and �1 = �2 = 5.

From Figure 6 we see that except for Origin 2000 the communication over-

head is acceptable even though we use the same parallel decomposition on all

four multigrid levels. We could not determine the cause for the slightly higher
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Figure 6: Comparing the overall parallel performance for a bigger problem. The
Problem Size is �xed at 257�129�65. The number of multigrid levels was three
and �1 = �2 = 5. 32 processors was used in all cases.

communication overhead for the Origin 2000. We note here that the advertised

peak internode message bandwidth of 156 Mb/s for a 32 processor Origin 2000 is

comparable to the Intel Paragon numbers. Latency would have played a smaller

role in the communication overhead since this problem is signi�cantly larger than

the one presented for 32 processors in Table 2.

7.4. Roughness of Coe�cients

In this section we investigate the performance of our solvers for problems with

rough coe�cients. The roughness of the coe�cients of Equation (2) is measured

by a parameter �2 (variance of the log of K-�eld) which represents the degree of

heterogeneity of the K-�eld. In these tests, �2 = 0:0 corresponds to a homoge-

neous K-�eld and �2 � 3:0 correspond to extremely heterogeneous K-�elds. In

Table 3 we show the e�ect of increase in �2 on the convergence behavior of our

solvers. The tests were performed up to �2 = 4:0 which is considered extremly
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high heterogeneity not common to many groundwater aquifers. The results we

present are for a 1025 � 1025 � 65 problem on 1024 processors. The multigrid-

based methods used 5 levels and 5 pre- and post- smoothings. The results show

that multigrid is best used as a preconditioner when the heterogeneity is high.

Examining Table 3 reveals that the convergence of MGCG and DPCG are less

a�ected by �2 than MG. However, for practical values of �2 we see that MGCG

still outperfroms DPCG by at least a factor of 10. This is consistent with the

�ndings of [2] who succesfully applied MGCG for heterogeneous groundwater


ow problems using a �nite di�erence implementation. Our success with MGCG

is somewhat surprising since we did not use operator-based restriction and pro-

longation for the multigrid implementation. We believe this is related to the

robustness of our coarse grid operator which is based on coe�cient averaging and

a �nite element discretization.

Table 3: E�ect of Varying Heterogeneity. 1024 Processors, 1024�1024�64 mesh.
The numbers in the table are times in seconds and in parentheses, the number of
iterations. �2 = 0:0 corresponds to a homogeneous K-�eld.

�2 Multigrid DPCG MGCG
0.0 34.81 (4) 875.93 (2035) 44.78 (4)
0.5 68.2 (9) 1130.3 (2662) 63.0 (7)
1.0 110.7 (15) 1184.2 (2789) 76.1 (9)
2.0 203.2 (28) 1343.3 (3165) 113.3 (14)
3.0 353.1 (49) 1554.0 (3662) 141.6 (18)
4.0 568.3 (79) 1819.7 (4288) 178.6 (23)

7.5. Floating Point Performance

Since most of our tests were performed on the Intel Paragon, the performance

results discussed in this section are only for this architecture. We estimated the

M
op rates for our solvers using a MATLAB routine which computes the number

of 
oating point operations as a function of various V-cycle parameters. The peak

performance for the MG solver is about 4.2 G
ops compared to 10.3 for DPCG.



- 15 -

These numbers are for the largest problem shown in Table 1. For the MG solver

the M
op per processor ranged from 7.8 for the single processor problem in Table

1 to 4.1 for the largest problem on 1024 processors. Even though these numbers

represent only a fraction of the theoretical peak for the Intel Paragon, we consider

these reasonable since most of our operations involve sparse matrices or level 1

BLAS operations which are limited by memory bandwidth rather than the CPU

speed. For double precision 
oating point operations involving sparse matrices,

15 M
ops per processor is usually considered very good for the Portland Group

Fortran compiler on the i860 chip. In order to get a higher fraction of the peak,

assembler level coding has to be exploited which is beyond the scope of this study.

7.6. Tuning the Performance of Multigrid

The performance of multigrid solvers can be tuned by varying parameters that

control the multigrid V-cycle. For example, by selecting optimal values for the

number of smoothings and the number of levels we can improve the performance

of the solver for a given problem size and processor count.

In Figure 7, the e�ect of varying (�1, �2) is examined for the homogeneous case.

Recall that �1 and �2 are the number of pre-smoothings and post-smoothings, re-

spectively. For this experiment we chose �1 = �2. N=P , the number of unknowns

per processor, was kept �xed for all the cases, P = 1, P = 256 and P = 1024.

Note that the pay-o� for doing more smoothings is greater for P = 1024 than for

the single processor case. The reason is that the number of V-cycles, and hence

the number of coarse grid solves, is reduced as �1, �2 are increased. This reduces

the impact of the coarse grid solve which is the least e�cient component of the

parallel multigrid algorithm.

We also studied the performance of the code by varying the number of levels

used in the multigrid algorithm. We note here that our code is limited to �ve levels

on the Paragon, because we require the coarse grid problem to be distributed

across all processors. Although we do not present the results here, for large

problems, it pays to use all �ve levels because this cuts down the fraction of the
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Figure 7: E�ect of Varying (�1, �2). For this experiment we chose �1 = �2. N=P
was kept �xed for all three cases, P = 1, P = 256 and P = 1024.

time spent in the coarse grid solver. However, the improvement in time decreased

as we increased the number of levels (e.g. the improvement in time by going from

4 to 5 levels is less than that going from 3 to 4 levels). This implies that by going

beyond 5 levels at the expense of additional coding and load imbalance overhead

may not improve the performance appreciably.

8. Conclusions

We have implemented parallel solvers based on multigrid and conjugate gradient

methods for the solution of �nite-element equations for the 3-D groundwater 
ow

problem on distributed memory machines. Our study indicates that multigrid

based solvers are very e�cient for solving very large steady-state groundwater 
ow

problems involving rectangular grids. For example, for the 1K � 1K � 65 node

problem, DPCG would have to run at 150 G
ops to solve the problem as quickly

as multigrid. Our results further indicate that while the standard multigrid V-
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cycle solver (MG) is very e�cient for large problems with homogeneous or mildly

heterogeneous K-�elds, the multigrid preconditioned conjugate gradient solver

(MGCG) is better suited for problems with stronger K-�eld heterogeneity. These

�ndings are consistent with the �ndings of [2] which are for a �nite-di�erence

implementation of the groundwater 
ow problem.



- 18 -

9. References

[1] R. E. Alcou�e, A. Brandt, J. E. Dendy, Jr., and J. W. Painter. The multi-

grid method for the di�usion equation with strongly discontinuously coe�-

cients. SIAM J. Sci. Stat. Comput., 2:430{454, 1981.

[2] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conju-

gate gradient algorithm for groundwater 
ow simulations. Technical Report

UCRL-JC-122359, Lawrence Livermore National Laboratory, CA, October

1995.

[3] S. F. Ashby, R. D. Falgout, S. G. Smith, and T. W. Fogwell. Multigrid

preconditioned conjugate gradient algorithm for the numerical simulation

of groundwater 
ow on the cray T3D. Technical Report UCRL-JC-118622,

Lawrence Livermore National Laboratory, CA, September 1994.

[4] A. Behie and P. Forsyth, Jr. Multigrid solution of three-dimensional prob-

lems with discontinuous coe�cients. Appl. Math. Comp. Soc. Petr. Eng. J.,

13:229{240, 1983.

[5] A. Brandt. Multilevel adaptive solutions to boundary-value problems. Math.

Comp., 31:311{329, 1977.

[6] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, 1988.

[7] R. Barrett et al. Templates for the Solution of Linear Syatems: Building

blocks for iterative methods. SIAM Publications, Philadelphia, 1993.

[8] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore, 2nd edition, 1989.

[9] M. Holst, R. Kozack, F. Saied, and S. Subramaniam. Treatment of elec-

trostatic e�ects in proteins: Multigrid-based Newton iterative method for

solution of the full nonlinear Poisson-Boltzmann equation. Proteins: Struc-

ture, Function, and Genetics, 18(3):231{245, 1994.



- 19 -

[10] M. Holst and F. Saied. Multigrid solution of the Poisson-Boltzmann equa-

tion. J. Comp. Chem., 14(1):105{113, 1993.

[11] P. S. Huyakorn and G. F. Pinder. Computational Methods in Subsurface

Flow. Academic Press, New York, 1983.

[12] J. D. Istok. Groundwater modeling by the �nite element method. Water

Resources Monograph 13. American Geophysical Union, Washington, D.C.,

1989.

[13] G. Mahinthakumar and A. J. Valocchi. Application of the Connection Ma-

chine to 
ow and transport problems in three-dimensional heterogenous

aquifers. Advances in Water Resources, 15:289{302, 1992.

[14] T. J. McKeon and W.-C. Chu. A multigrid model for steady 
ow in partially

saturated porous media. Water Resources Research, 23:542{550, 1987.

[15] P. D. Meyer, A. J. Valocchi, S. F. Ashby, and P. E. Saylor. A numerical in-

vestigation of the conjugate gradient method as applied to three-dimensional

groundwater 
ow problems in randomly heterogeneous porous media. Water

Resources Research, 25:1440{1446, 1989.

[16] A. B. F. Tompson, R. Aboubu, and L. W. Gelhar. Implementation of the

three-dimensional turning bands random �eld generator. Water Resources

Res., 25(10):2227{2243, 1989.

[17] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant

of Bi-CG for the solution of non-symmetric problems. SIAM J. Sci. Stat.

Comput., 13:631{645, 1992.



- 21 -

ORNL/TM-13441

INTERNAL DISTRIBUTION

1. A. S. Bland
2. E. F. D'Azevedo
3. J. P. Gwo
4. G. K. Jacobs
5. K. L. Kliewer
6. D. R. Mackay

7{11. G. Mahinthakumar

12. C. E. Oliver
13. B. A. Riley
14. O. Yasar
15. Laboratory Records - RC

16{17. Laboratory Records
Department/OSTI

18. Central Research Library

EXTERNAL DISTRIBUTION

19. Daniel A. Hitchcock, ER-31, Acting Director, Mathematical, Information, and
Computational Sciences Division, O�ce of Computational and Technology Re-
search, O�ce of Energy Research, Department of Energy, Washington, DC 20585

20. Frederick A. Howes, ER-31, Mathematical, Information, and, Computational Sci-
ences Division, O�ce of Computational and Technology Research, O�ce of Energy
Research, Department of Energy, Washington, DC 20585

21. Tom Kitchens, ER-31, Mathematical, Information, and, Computational Sciences
Division, O�ce of Computational and Technology Research, O�ce of Energy Re-
search Department of Energy, Washington, DC 20585

22. David B. Nelson, ER-30, Associate Director, O�ce of Energy Research, Direc-
tor, O�ce of Computational and Technology Research, Department of Energy,
Washington, DC 20585

23{27. Faisal Saied, Department of Computer Science, University of Illinois, Urbana, IL
61801

28. Albert J. Valocchi, Department of Civil Engineering, University of Illinois, Urbana,
IL 61801


