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COMPUTING CONNECTION COEFFICIENTS OF COMPACTLY

SUPPORTED WAVELETS ON BOUNDED INTERVALS

C.H. Romine

B.W. Peyton

Abstract

Daubechies wavelet basis functions have many properties that make

them desirable as a basis for a Galerkin approach to solving PDEs: they

are orthogonal, with compact support, and their connection coe�cients

can be computed. The method developed by Latto et al. [6] to compute

connection coe�cients does not provide the correct inner product near the

endpoints of a bounded interval, making the implementation of boundary

conditions problematic. Moreover, the highly oscillatory nature of the

wavelet basis functions makes standard numerical quadrature of integrals

near the boundary impractical. We extend the method of Latto et al. to

construct and solve a linear system of equations whose solution provides the

exact computation of the integrals at the boundaries. As a consequence, we

provide the correct inner product for wavelet basis functions on a bounded

interval.

- vii -



1. Introduction

Wavelets are receiving increased attention not only as a mechanism for construct-

ing �lter banks or compressing data, but as a natural basis for multilevel schemes

for solving PDEs. Several papers in recent years have described the use of wavelet

basis functions in solving PDEs, for example Amaratunga et al. [1, 2], Bacry et

al. [3], Qian and Weiss [8], and Restrepo and Leaf [9].

Wavelet basis functions have many properties that make them desirable as a

basis for a Galerkin approach to solving PDEs: they are orthonormal, with com-

pact support, and their connection coe�cients (that is, integrals of products of

basis functions, with or without derivatives) can be computed [6]. However, these

properties rely on the assumption that the PDE is periodic in the computational

domain (which is equivalent to the assumption that the domain is unbounded),

and do not all carry over when the domain of the PDE is bounded. Orthogo-

nality, for example, is lost when the basis functions are truncated at a boundary

because the domain of integration is a �nite interval.

Approaches that assume periodicity complicate the treatment of boundary

conditions for PDEs in a �nite domain. In a Galerkin formulation, the discretized

form of the equation involves connection coe�cients on bounded intervals. We

call these proper connection coe�cients, since they involve proper integrals. The

usual connection coe�cients computed in Latto et al. with a doubly in�nite

domain of integration will be called improper connection coe�cients. Note that

when the support of the integrand lies entirely within the interior of the compu-

tational domain, corresponding proper and improper connection coe�cients are

equal.

The highly oscillatory nature of wavelet basis functions makes standard nu-

merical quadrature for computing connection coe�cients impractical. Latto et

al. circumvent this problem for improper connection coe�cients by exploiting

properties of the wavelet basis functions to derive a linear system of equations

whose solution has as its components the exact improper connection coe�cients.

As far as we know, no one has previously devised a method for computing
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proper connection coe�cients. As a result, the natural inner product for Galerkin

solution of boundary value problems has been unavailable, and researchers have

been restricted to more indirect means of resolving the boundary, e.g., the capaci-

tance matrix method of Proskurowski and Widlund [7]; see Amaratunga, et al. [2]

and Qian and Weiss [8]. Motivated by the need to extend methods for resolving

boundary conditions in a new and natural direction, we address the problem of

computing proper connection coe�cients. We adapt the methology of Latto et

al., exploiting the properties of the wavelet basis functions to derive two linear

systems whose solutions have as their components the exact proper connection

coe�cients.

The paper is organized as follows. Section 2 presents background and no-

tation. Section 3 describes our technique for computing proper connection co-

e�cients. In section 4, we use our technique to solve a simple one-dimensional

di�erential equation with Dirichlet boundary conditions. Section 5 provides a

few concluding remarks.

2. Background and Notation

The �rst step in developing a basis is to de�ne the underlying scale function. The

scale function satis�es the recursive dilation equation

�(x) =
N�1X
k=0

ak�(2x� k)

where N is an even integer no smaller than two and fakg are the �lter coe�cients.

Daubechies [5] imposed conditions on the �lter coe�cients so that the resulting

scale functions with Daubechies number N are di�erentiable and the resulting

bases are orthonormal and have N
2 � 1 vanishing moments (i.e., can be used

to exactly represent polynomials of degree � N
2 � 1). We will use all these

important properties in our derivations. Throughout we will use the Daubechies

scale functions D4 (N = 4), D6 (N = 6), D8 (N = 8), etc. A graph of the scale

function � for N = 6 is given in Figure 2.1. Also, to improve our notation we
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will let

�k(x) := �(x� k):

For more about Daubechies wavelets and their properties consult Daubechies [5],

Strang [10], Strang and Nguyen [11] or Coddington et al. [4].
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Scale function for N=6

Figure 2.1: The scale function for Daubechies number N = 6.

The wavelet-Galerkin method for solving PDEs on an unbounded domain

produces improper connection coe�cients as terms in its equations. If we use

the notation �(n) := dn�
dxn

, then the two-term improper connection coe�cients are

de�ned (as in Latto, et al.) as

�d1d2
j :=

Z
1

�1

�(d1)(x)�
(d2)
j (x)dx
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and three-term improper connection coe�cients are de�ned by

�d1d2d3
j;k :=

Z
1

�1

�(d1)(x)�(d2)j (x)�(d3)k (x)dx:

Only the nonzero coe�cients are computed: in the two-term case 2 � N � j �

N � 2, and in the three term case 2 � N � j; k � N � 2 and jj � kj � N � 2.

There is no loss of generality in �xing the shift on the �rst term at zero because

�d1d2
i;j =

Z
1

�1

�
(d1)
i (x)�

(d2)
j (x)dx =

Z
1

�1

�(d1)(x)�
(d2)
j�i (x)dx

and

�d1d2d3
i;j;k :=

Z
1

�1

�
(d1)
i (x)�(d2)j (x)�(d3)k (x)dx =

Z
1

�1

�(d1)(x)�(d2)j�i (x)�
(d3)
k�i (x)dx:

The scale function is the foundation upon which the basis is constructed.

Each member of the basis at resolution m is of the form

�m;k(x) := 2m=2�(2mx� k) = 2m=2�k(2
mx):

Each member of the basis is thus a scaled, dilated, and translated version of the

underlying scale function.

The wavelet-Galerkinmethod for solving PDEs on a bounded domain produces

proper connection coe�cients as terms in its equations. If we assume (in one

dimension) that the interval of computation is [0, 1], then for the resolution m

basis, the proper two-term connection coe�cients will be of the form

Z 1

0
�
(d1)
m;i (x)�

(d2)
m;j (x)dx:

Since the resolution m basis functions are simply scaled, translated, and dilated

versions of the underlying scale function, it is enough to compute proper connec-
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tion coe�cients of the form:

�d1d2
i;j :=

Z N�1

0
�
(d1)
i (x)�(d2)j (x)dx

The limits of integration 0 and N � 1 are a natural choice to ensure that the

support of no basis function in the integrand crosses both limits of integration.

Once the proper connection coe�cients �d1d2
i;j have been tabulated, all connection

coe�cients at resolution m can be derived. For example, if the computational

domain is [0, 1] then assuming 2m > N � 1,

Z 1

0
�
(d1)
m;�1�

(d2)
m;�2dx

=
Z 2m

0
�(d1)(y + 1)�(d2)(y + 2)dy; (where y = 2mx)

=
Z N�1

0
�(d1)(y + 1)�(d2)(y + 2)dy

= �d1d2
�1;�2;

since the support of �(d1)(y + 1)�(d2)(y + 2) is [-1, N � 3]. Similarly,

Z 1

0
�
(d1)
m;2m�1�

(d2)
m;2m�2dx

=
Z N�1

�2m+(N�1)
�(d1)(y � (N � 2))�(d2)(y � (N � 3))dy;

(where y = 2mx� 2m + (N � 1))

=
Z N�1

0
�(d1)(y � (N � 2))�(d2)(y � (N � 3))dy

= �d1d2
N�2;N�3;

since the support of �(d1)(y� (N �2))�(d2)(y� (N�3)) is [N � 2, 2N � 4]. Note

that if the support of the integrand lies entirely within the computational domain,

the corresponding proper and improper connection coe�cients are equal; that is,

�d1d2
i;j = �d1d2

j�i (using the notation in Latto, et al.). Two basis functions for a

proper two-term connection coe�cient that involves a boundary are illustrated

in Figure 2.2.
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Three-term proper connection coe�cients are de�ned by

�d1d2d3
i;j;k :=

Z N�1

0
�
(d1)
i (x)�(d2)j (x)�(d3)k (x)dx

and similar de�nitions apply for higher numbers of terms. In the two-term case

we can restrict our attention to proper connection coe�cients for which either

2 � N � i; j � �1, or 1 � i; j � N � 2. All others are either zero, or are

equivalent to some improper connection coe�cient. Similarly, for the three-term

case we restrict our attention to proper connection coe�cients for which either

2�N � i; j; k � �1, or 1 � i; j; k � N � 2.
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Example of truncated connection coefficient

Figure 2.2: Basis functions for a proper connection coe�cient

Note that the integrals can no longer be shifted to reduce the total number of

distinct proper connection coe�cients by assigning a zero shift to the �rst term.
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Moreover, the truncation of a basis function is not arbitrary, but occurs at one

of the dyadic points (i=2m) in the given resolution. Equivalently, the truncation

occurs at an integer value at the resolution of the scale function. The interval of

integration ([0, N � 1]) combined with all possible integer shifts cover all possible

truncations at integer points of shifted products of the scale function.

3. Computing Proper Connection Coe�cients

We illustrate our technique by computing the three-term proper connection coef-

�cients. The same technique is easily applied to the two-term proper connection

coe�cients. Our approach is based on suitable modi�cations of the scaling equa-

tions, moment equations, and the normalization equation, described in Latto, et

al. [6].

3.1. Scaling equations

We begin this section by deriving a relationship among the unknowns �d1d2d3
i;j;k

that will eliminate half of them. We note �rst that the support of �(d)i is

[i, i+ (N � 1)]. Then for 1 � i; j; k � N � 2 we have:

�d1d2d3
i;j;k :=

Z N�1

0
�d1i �

d2
j �

d3
k dx

and

�d1d2d3
i�(N�1);j�(N�1);k�(N�1) :=

Z N�1

0
�d1i�(N�1)�

d2
j�(N�1)�

d3
k�(N�1)dx

=
Z 2N�2

N�1
�d1i �

d2
j �

d3
k dx:

Hence, since the support of �d1i �
d2
j �

d3
k is completely contained in the interval

[0, 2N � 2], we have the identity

�d1d2d3
i;j;k + �d1d2d3

i�(N�1);j�(N�1);k�(N�1) = �d1d2d3
j�i;k�i; (3.1)
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where �d1d2d3
`;m denotes the improper connection coe�cient described in Latto et

al. [6].

We now derive the scaling equations. If 2�N � i � �1, then since

�i(x) = �(x� i) =
N�1X
p=0

ap�(2x� (2i+ p))

we have

�
(d1)
i (x) = 2d1

N�1X
p=0

ap�
(d1)(2x� (2i+ p)):

Similarly, with 2�N � j; k � �1 we have

�
(d2)
j (x) = 2d2

N�1X
q=0

aq�
(d2)(2x � (2j + q))

and

�
(d3)
k (x) = 2d3

N�1X
r=0

ar�
(d3)(2x� (2k + r)):

Hence,

�d1d2d3
i;j;k = 2d

N�1X
p=0

N�1X
q=0

N�1X
r=0

apaqar�

Z N�1

0
�(d1)(2x � (2i+ p))�(d2)(2x� (2j + q))�(d3)(2x� (2k + r))dx;

(where d = d1 + d2 + d3), or

�d1d2d3
i;j;k = 2d

N�1X
p=0

N�1X
q=0

N�1X
r=0

apaqar�

Z 2N�2

0
�(d1)(y � (2i+ p))�(d2)(y � (2j + q))�(d3)(y � (2k + r))dy;
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or

�d1d2d3
i;j;k = 2d

N�1X
p=0

N�1X
q=0

N�1X
r=0

apaqar�

(
Z N�1

0
�(d1)(y � (2i+ p))�(d2)(y � (2j + q))�(d3)(y � (2k + r))dy

+
Z N�1

0
�(d1)(y � (2i+ p � (N � 1)))�(d2)(y � (2j + q � (N � 1)))�

�(d3)(y � (2k + r � (N � 1)))dy);

or

�d1d2d3
i;j;k = 2d�1

N�1X
p=0

N�1X
q=0

N�1X
r=0

apaqar� (3.2)

(�d1d2d3
2i+p;2j+q;2k+r + �d1d2d3

2i+p�(N�1);2j+q�(N�1);2k+r�(N�1))

Note that some of the terms on the right hand side of (3.2) are equal to improper

connection coe�cients, since the entire support of some of the integrands lies

within the bounds of integration. These terms are known (thanks to Latto,

et. al.), and hence can be moved to the other side. Moreover, we exploit the

identity (3.1) to eliminate the unknowns corresponding to 1 � i; j; k � N � 2,

producing a matrix equation of the form:

(I � 2d�1A)�d1d2d3 = R (3.3)

in (N �2)2 unknowns, where R is a vector accumulating the known values in the

sum (3.2). A similar treatment holds for the proper connection coe�cients �d1d2d3
i;j;k

with 1 � i; j; k � N �2, though as noted, these can be computed from (3.1) once

the values of �i;j;k for �(N � 2) � i; j; k � �1 are known.

The linear system (3.3) is inhomogeneous; however, the coe�cient matrix

I � 2d�1A in (3.3) may not be of full rank. Indeed, our observations of the

spectrum of I � 2d�1A indicate that it has a zero eigenvalue with multiplicity d,
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which would imply that the rank de�ciency of the coe�cient matrix in (3.3) is d.

3.2. Moment Equations

If the coe�cient matrix in (3.3) is singular, we augment the matrix by adding

d1 + d2 + d3 moment equations to the linear system in (3.3), which are derived

as follows (see Latto, et al. [6]). We assume that the Daubechies number is

su�ciently high that we have maxfd1; d2; d3g vanishing moments. Then for each

q < d1 there exist coe�cients fM q
i g such that

xq =
1X

i=�1

M q
i �i(x):

The set fM q
i g are called the moments of � and its translates, and the reader is

referred to Latto et al. [6] for details on how to compute them.

On the closed interval [0, N � 1], we have the identity

xq =
N�2X

i=2�N

M q
i �i(x); (3.4)

where we have included all terms in the sum whose support intersects the given

interval. Di�erentiating (3.4) d1 times yields

0 =
N�2X

i=2�N

M q
i �

d1
i (x): (3.5)

If we then multiply both sides of (3.5) by �d2j �
d3
k for some �xed j and k and

integrate over [0, N � 1], we obtain

0 =
N�2X

i=2�N

M q
i �

d1d2d3
i;j;k : (3.6)

Again, some of the entries on the right hand side of (3.6) are equal to improper

connection coe�cients, and hence can be moved to the other side. Others can

be eliminated via the identity (3.1). This provides d1 further (inhomogeneous)
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linear equations in the unknowns �d1d2d3
i;j;k , one for each value of q. Similarly, we

can derive d2 further moment equations

0 =
N�2X

j=2�N

M q
j �

d1d2d3
i;j;k :

and d3 moment equations

0 =
N�2X

k=2�N

M q
k�

d1d2d3
i;j;k :

3.3. Normalization Equation

The rectangular system of linear equations derived from the scaling equations

and moment equations for the improper connection coe�cients is homogeneous,

and hence require a nonhomogeneous equation to \normalize" the solution [6].

The rectangular system of equations described above for the proper connection

coe�cients is already nonhomogeneous; however, the matrix may still be rank-

de�cient. We now derive the normalization equation for the proper connection

coe�cients, and include it in the system of equations. We conjecture (and our

tests indicate) that the rectangular system of equations containing the scaling

equations, the moment equations and the normalization equation is of full rank,

and therefore the nonhomogeneous linear system has a unique solution.

If we assume that the basis functions have maxfd1; d2; d3g vanishing moments,

then we have the following:

xd1 =
1X

i=�1

Md1
i �i:

Di�erentiating d1 times, we obtain

d1! =
1X

i=�1

Md1
i �

d1
i :

Including only those basis functions whose support intersects the interval [0, N � 1],
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we have the identity:

d1! =
N�2X

i=2�N

Md1
i �

d1
i on [0, N � 1]: (3.7)

Similarly,

d2! =
N�2X

j=2�N

Md2
j �

d2
j on [0, N � 1] (3.8)

and

d3! =
N�2X

k=2�N

Md3
k �

d3
k on [0, N � 1]: (3.9)

Multiplying equations (3.7), (3.8) and (3.9) together, and integrating over [0, N � 1]

we obtain

(N � 1)d1!d2!d3! =
N�2X

i=2�N

N�2X
j=2�N

N�2X
k=2�N

Md1
i M

d2
j M

d3
k �d1d2d3

i;j;k : (3.10)

Again, some of the terms in (3.10) are either known, or can be eliminated via the

identity (3.1).

We provide tables of proper connection coe�cients in the appendix for the

two cases (N = 6, d1 = 0, d2 = 2) and (N = 6, d1 = 1, d2 = 0 and d3 = 0), the

same two cases provided by Latto et al. in [6]. Although the values of �d1d2d3
i;j;k

for 1 � i; j; k � N � 2 can be computed indirectly using the identity (3.1) we

compute both tables of proper connection coe�cients independently and use 3.1

as an accuracy check. For the tables provided in the appendix, the identity (3.1)

is satis�ed to within approximately 10�15.

Since the multiresolution wavelet basis f m;kg is de�ned in terms of the scale

function, the proper connection coe�cients derived here can also be used for mul-

tiresolution analysis. Speci�cally, if the multiresolution wavelet basis is used in

a Galerkin formulation for the solution of PDEs, the necessary wavelet connec-

tion coe�cients can be computed directly from the proper connection coe�cients

given here.
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4. Results

In this section, we demonstrate the applicability of proper connection coe�cients

by solving a simple one-dimensional di�erential equation on the bounded domain

[0, 1]. We use the 1-D Poisson problem

uxx � f = 0; (4.1)

and impose Dirichlet boundary conditions at the endpoints:

u(0) = � and u(1) = �:

The Galerkin approach approximates u and f with linear combinations of basis

functions:

u �
X
i

ui�m;i; and f �
X
i

fi�m;i:

The left hand side of (4.1) is now approximated by

uxx � f �
X

ui�
00

m;i �
X

fi�m;i: (4.2)

In general, these approximations will not satisfy the di�erential equation exactly;

however, we can �nd the orthogonal projection onto the space spanned by f�jg

by ensuring that (4.2) is orthogonal to each so-called \test function" �j. That is,

we de�ne an inner product

h�m;i; �ji =
Z 1

0
�m;i�j dx

and solve the following linear equations for the unknowns ui:

X
uih�

00

i ; �ji � fih�i; �ji = 0: (4.3)

If the test functions and the basis functions coincide (the choice for Galerkin test

functions), the linear system will have a square coe�cient matrix.
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One approach to imposing Dirichlet boundary conditions in a Galerkin formu-

lation is to replace two of the rows in (4.3) with the two linear equations derived

from the two boundary conditions, preserving a square coe�cient matrix. An

alternative, and the approach we chose, is to append the two boundary equations

to the matrix, and solve the resulting rectangular system.

Our test problem is

uxx = �4�2 sin(2�x); u(0) = 1; u(1) = 2

whose exact solution is u = sin(2�x)+x+1. Figure 4.1 is a graph of the error as a

function of resolution on a log-log scale for Daubechies numberN = 6. The slope

of the resulting line demonstrates cubic convergence with increase in resolution.
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Figure 4.1: Illustration of convergence rate
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5. Summary

Proper connection coe�cients are important for the solution of nonperiodic PDEs.

We have demonstrated a technique for deriving a linear system whose solution

is the set of proper connection coe�cients needed to compute the natural inner

product on bounded intervals. The ability to compute proper connection co-

e�cients provides a natural mechanism for imposing boundary conditions. We

exhibited a simple one-dimensional test problem that illustrates the use of proper

connection coe�cients for PDE's on bounded domains with Dirichlet boundary

conditions. We showed that convergence of the solution using Daubechies D6

basis functions was cubic with increasing resolution.

The wavelet-Galerkin approach for solving PDEs has su�ered from the inabil-

ity to properly set PDE problems on bounded domains and to impose boundary

conditions in a straightforward way. We have shown that this drawback can

be eliminated when the proper connection coe�cients can be computed. More-

over, these proper connection coe�cients can also be used to compute the proper

wavelet connection coe�cients arising from a multiresolution analysis of PDEs.
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A. Tables of Proper Connection Coe�cients

j = �4 �3 �2 �1

i = �4 -0.00038529074526 -0.00386035962858 0.01423373435011 -0.01534522683341

�3 -0.00573652265285 -0.09863430110098 0.33947817016054 -0.35475020354956

�2 0.02181281253982 0.33904059142268 -1.37506723951242 1.77076145459755

�1 -0.06519463330387 -0.90634814610999 4.01066114451254 -5.67304693652727

Table A.1: Table of �02i;j :=
RN�1
0 �i(x)�

(2)
j (x)dx for N = 6
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i = �4

k = �4 �3 �2 �1

j = �4 -0.00000002530682 -0.00000068992720 0.00000306963647 -0.00001055718019

�3 -0.00000068992720 -0.00002337260152 0.00010672670559 -0.00037345654025

�2 0.00000306963647 0.00010672670559 -0.00048341871765 0.00168470385967

�1 -0.00001055718019 -0.00037345654025 0.00168470385967 -0.00585973132675

i = �3

k = �4 �3 �2 �1

j = �4 -0.00000032826247 -0.00000752895920 0.00003138211915 -0.00010322628046

�3 -0.00000752895920 -0.00028821307592 0.00136993458233 -0.00488523455350

�2 0.00003138211915 0.00136993458233 -0.00714394837814 0.02677812707263

�1 -0.00010322628046 -0.00488523455350 0.02677812707263 -0.10280576120976

i = �2

k = �4 �3 �2 �1

j = �4 0.00000077866139 0.00001753615235 -0.00007347449696 0.00024195517558

�3 0.00001753615235 0.00076195056336 -0.00351927324338 0.01231761138106

�2 -0.00007347449696 -0.00351927324338 0.01914653677375 -0.07281061430283

�1 0.00024195517558 0.01231761138106 -0.07281061430283 0.28689868099225

i = �1

k = �4 �3 �2 �1

j = �4 -0.00000194921939 -0.00004221923539 0.00017491280955 -0.00057333107231

�3 -0.00004221923539 -0.00190418619493 0.00818703214249 -0.02741471871558

�2 0.00017491280955 0.00818703214249 -0.04587567964823 0.17576474944728

�1 -0.00057333107231 -0.02741471871558 0.17576474944728 -0.70948149953627

Table A.2: Table of �100i;j;k :=
RN�1
0 �

(1)
i (x)�j(x)�k(x)dx for N = 6


