m&;ﬁﬁganmgmf =
-

EEEsesssEseres —_—
. =

,%_L s o s

- -

- §w§mm

m ms-é 35 -

o

- :g;-wz
S
P,,;g%%i&:, .

&0

. =
s

i
| e
- - -y ! e
N < "l - 7 Eégx@ -
= 4 - ‘;‘zm’ o e
L -
-

i

'%m

i
‘o

e
e zm«;&rv 1&2 N E=: e
e e -
o mﬂ% ¥==§§3@; e s e
T e e e
ﬂxs&'g_

i

e
e e w8 -
xzasz’sgﬂx = g;w: -
- - = = £ v =
-

. e

0
b

o ;;

o - -
e s e s Lo -
e o e - o
T m,;g‘;@ s g e s S .
e T 2,’1
- -
- e g
,:,- .

D | ﬂv

e f% =

v - - e
- - - -
- -
= . =
o . e . - ﬁza«ﬁ%

S - 55

-
- N;,;,Xn s

ey

s

Ermpaih S
- - o -
“-_ = -z,s;% ﬁ;@«m = o %ag;g; ,§ e
- = - z; i‘;s e
e z = sl
0 - zx» e o S o e e 3«”1; et
e e ,;,,Q, ag,; ﬁg; e gM > Seo Bresa s
S e . o i mx;.»?!!,‘ = Eean
T . . 7- -
o S e SaE B o

S -

S
i

Ean

- - -
- .. me
- = - . .-
c . yy e . ff“" e
. -
.

= e o 2 i
- - -
e . T e e

. - . . i,ﬂ
R ﬁ’;ﬁ e o SeSErEaw SEd = SRS & Tt
. - . .

e - S

e ZEan S o §:g %z: o

£ Eohlasr e o

- =

|- v"xaii,wﬁagaé - -

o s %i‘g = e gz;a:w

. .- mi’\zjf . %L e .
. - mg;iﬁ - i onte s Lo e

o LR e R u‘?m;-?*‘*:p:‘ﬁgg o aaas'; S

e

Vi%i?

- = - =

] o - e a
.- - .

. %m:@ o ,;,:mse; =

... o e

. . .- .
Tty Lt e s wE s
e - - Te e ae :
. e e **ﬂ? o ‘%ix’f Es: HEnne s
S e -
EE o = ESin
. . o
- . o
Soe L = =

2o “?T S :555 21 R 5
- - . o
SRS ixE S Qriaxg& S

r%,ﬁy . = =
e o e - -]
. . = Z Soara s e an b

.
“E,?{ a% . -

- -
= J?f,z‘,z: Sy

: 2 2“2 - ‘f ﬁ;’ = 553 f!sE -
- :';i?.:ﬁ%i? = ::« ;’»:g:« f: %’ - 324’4? = ""g :m *""*ﬁ =

a@é: .. -
. i g*~ = - axﬁtéjz -

e e

b e o

Tetmae ﬁrf&mt E> ..Z ;“i‘;”v e e ﬁ s
- - = =
- m,?gzu Seomim el e

- -
... . -
- - z

T :7(;;: a;:z,azjs, =

4 ‘, i t;w
V

i

S e e
":;-'.rr‘"*'“‘ e ,s;gézﬁé -
- o

i
.

1
i

.

k. -

- gs%;m - co e .

. - s
- . ;yggm

-,-a:a;;g = e T e =
- 2%@ %% ...
o :ﬁ;;&z’xrw - e :a:»;s;;"‘ =
.
i “‘“x; :w. e
e §a = . : -
= s: "‘5 - - iza S 2;;;35
e S
- -

e

=
= :;:ga_ = g - g"'f o - -
E Mz& 2%21 = §f<’i g; ggg ,{*’; cgg» S j'g '3;,»_ gg» m%*g 55&; -
- = .
- Aa,g%gﬁaggw e e = V;Z‘,m::sw. o

- ,u;'éiff%%feiig
e ﬁm?,w e e
e da -
e
2ot e mgq
.

e
e e
- S

¢

e o

- Lﬁ!?sf& - s
o

e
e e ;' -
... - ... - - a L
... - _ __ . -
e - zig;mr Shaean R S fga;:.ﬁz semn
S 2 -
. - .. @ e
e = - . .
szg%sﬁaﬁv’j@‘" R o e -
= - - -

= s o ‘1 . =

;m s

S
= =

e
o 1,,\,?, - = : S e
- &zw. 5»1 e - . . = :‘%z*s«f = -
e = S memE - c =
- . aga -
- ai; = -
! S =

‘“’% ‘}“x‘ ﬁzggzg .
S

= =
crnac =
Teaas e ;,35 Rean

=
e

s .
-

e

-
- - B
. =
- é;gzs::i’fﬁ . - “"% -
.. @ - -
Eo s e ggm s e .
= - - -
-

E - e ; i
| v - e =

o i e = :x: e =
| ol o & s
e Tt MIRAIRE W -

. q,_ i

Saae
- e

e =
Con

g CorEvE 4
HEama e ~§M« 5

‘i"?@%ﬁm’& i?f 3‘-\'%@@“”&
”:ME;NQZ' = '#E‘“’ — '“'Xiﬁ Z;;aﬁ}%

£ :um D e m,\;,,r: -
e e el

- . rE e ;ﬁ -

e W; or o
e o - ;! = - - xf ag =
Ean n%ai 5.1 - e
. E%s - -
ead) - sgzézg - g- = ;;;: =

- = wz; e - - -
S o = 2 e e e e e -
S ‘%"E . . oo B

e M:a:q;&,m\‘ix‘é e
- = o L =

- . . -

e or e e masmre ey

. _TM .- .
S Taal T se e

- e o Gaemnne s Snse et o San s

£ usg;!&am« . - . Seen

SRR e SEmamas
.

&5“ sandzae -
o

o agg T é’%;é 5 oped - - -

RECEIVED
AY 1 6 1997

OSTI

ORNL/TM-13304

A Parallel Performance Study of the
Cartesian Method for Partial
Differential Equations
on a Sphere

John B. Drake
Matthew P. Coddington

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific
and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices
available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government of any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

ORNL/TM-13304
) Computer Science and Mathematics Division

Mathematical Sciences Section

A PARALLEL PERFORMANCE STUDY OF THE CARTESIAN METHOD
FOR
PARTIAL DIFFERENTIAL EQUATIONS ON A SPHERE

John B. Drake
Oak Ridge National Laboratory
and
Matthew P. Coddington
Swarthmore College

Date Published: April 1, 1997

Research sponsored by the U.S. Department of Energy CHAMMP
Program of the Office of Health and Environmental Research.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Lockheed Martin Energy Research Corp.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-960R22464

Contents

INTRODUCTION e e e e e
THE SHALLOW WATER EQUATIONS ON ASPHERE
3 DISCRETIZATION ON A SPHERICALGRID
3.1 Leapfrog Explicit Update e e
3.2 The Local Cartesian Spectral Approximation
3.3 Discrete Operator Formulas
34 Operation Counts e e e
4 PARALLEL ALGORITHM FOR TIME INTEGRATION
4.1 Numerical Mesh Example and Organization of Section
4.2 Partitioning of the Global Mesh
4.3 Indexing and Data Storage,
44 OQverlap Updates e
PERFORMANCE RESULTS FOR A STEADY, ZONAL FLOW TEST
References L e 1

[A
B O O 00 =3 O OT O W LB N e

™ o

- iii -

Acknowledgments

This report is one of a series of documents describing the use of parallel computers for global
climate modeling. The work reported is sponsored by the CHAMMP program of the Depart-
. ment of Energy’s Office of Energy Research, Environmental Sciences Division. We gratefully
acknowledge the support of the CHAMMP program and the ORNL PIP program.

We would like to thank our collegues Paul Swarztrauber and David Williamson of the
National Center for Atmospheric Research for their work in developing the Cartesian method.
The ORNL Center for Computational Sciences (CCS) computers were used for this study under
the auspices of the CHAMMP program.

A PARALLEL PERFORMANCE STUDY OF THE CARTESIAN METHOD
FOR
PARTIAL DIFFERENTIAL EQUATIONS ON A SPHERE

John B. Drake
Oak Ridge National Laboratory
and
Matthew P. Coddington
Swarthmore College

Abstract

A 3-D Cartesian method for integration of partial differential equations on a spheri-
cal surface is developed for parallel computation. The target computer architectures are
distributed memory, message passing computers such as the Intel Paragon. The parallel
algorithms are described along with mesh partitioning strategies. Performance of the algo-
rithms is considered for a standard test case of the shallow water equations on the sphere.
We find the computation times scale well with increasing numbers of processors.

1. INTRODUCTION

The solution of partial differential equations (PDEs) forms the core of many scientific appli-
cations. The flow equations in a rotating spherical geometry, for example, are important to
weather and climate modeling. This report describes a new method for solving PDEs on a
spherical domain and a parallel algorithm implementing the method on a massively parallel
computer.

The use of triangular meshes for the solution of PDEs on a spherical domain is attractive
for several reasons. Triangles allow nearly uniform meshes, while rectangular meshes suffer the
problem of varying resolution near the poles for the standard spherical coordinates. Secondly,
triangles require only a simple data structure for use with adaptive mesh techniques or for
meshes that resolve irregular features. Adapting a mesh to fit a coastline is an obvious example.
Our renewed interest in these methods springs from advances in computing and numerical
analysis. The granularity of tasks that can be performed in parallel is advantageous for the
finite difference and finite element methods and offers the possibility of effective use of many
processors of a parallel computer.

Williamson and several others investigated the use of icosahedral-triangular meshes in a
series of early papers [7, 14, 15, 16, 17, 19]. The shallow water equations on the sphere served
as a primary equation set for testing the numerical methods because of their relevance in
atmospheric flow models. The review article by Williamson [18] gives further references.

The Cartesian form of the shallow water equations was proposed by Swarztrauber in [20].
This formulation avoids the singularity in the velocity at the pole by expressing velocities in
a 3-D Cartesian form instead of in spherical coordinates. It was used for the calculation of
derivatives using a spectral vector harmonic method in [10]. In this paper we consider the
Cartesian formulation for the calculation of derivatives using a stencil of points located on
an icosahedral grid. We focus on the computational performance and the parallelism of the
method.

In section 2, the shallow water equations and the Cartesian formulation are introduced.
The numerical algorithm and the discretization of the differential operators on the sphere are
discussed in section 3. Parallelism is addressed in section 4 with a description of the mesh
partitioning algorithms and the structure of the parallel code. Section 5 gives performance
results for a particular shallow water flow simulation on an Intel Paragon Parallel Computer.

2. THE SHALLOW WATER EQUATIONS ON A SPHERE

The equations representing conservation of momentum and mass for a fluid on the sutface of a
sphere of radius a can be written in advective form

& o fkxv—gVh+Ty, (1)
dt
and .
= =~h'V-v+ F;. (2)
The (material) derivative, given by
d, ._ 9
E()=§()+V'V()» 3)

is the rate of change as seen from a particle moving with the fluid. The velocity is referred to
a rotating Cartesian frame and the components of v = (u,v), are in the longitudinal ()) and
latitudinal (#) directions, respectively. The height of the fluid layer above the reference surface

-9.

(r = a) is denoted h = h* + h,. The bottom surface height can be used to specify orography
and is given by the time invariant function h,. Thus, h* represents the depth of fluid from top
to bottom. The external forcing, if present, is included in Fy = (Fy, F,) and Fj.

The velocity vector can be extended to a three dimensional (spherical) vector v, = (w, v, u)7,
where for motion on the sphere w = 0. If we define V = (X, Y, Z)T as the velocity in Cartesian
coordinates (z,y, z) then

v = QV (4)
where
cos @ cos A cosfsinA sinf
Q= | —sinfcosA —sinfsinA cosf |. (5)
—sin A cos A 0

It is shown in [11] that the equivalent Cartesian form of the momentum equations is

ov
?37+QT(A+7+A)=O, (6)
where 4 contains the forcing terms,
0 -z g X
QTA=(C—+-3&"'1 z 0 -z Y |, (N
a -y =z 0 Z
and _—
QTA=PV. (gh + —)- (8)

The vorticity ¢ is defined in the spherical coordinate system as { = k-Vxv =k -V, x V where
k is the unit vector in the direction normal to the sphere. In terms of Cartesian derivatives the

curl is the standard,
VexVe= (-) . (9)
8z T By

Similarly, the conservation of mass equation in Cartesian form is
h*
ot

The matrix P projects an arbitrary Cartesian vector onto a plane that is tangent to the sphere
at the point (z,y, 2).

SRIReR

el

+VIPVYR* + h*V.-V = F,. (10)

3. DISCRETIZATION ON A SPHERICAL GRID

The spatial discretization is developed as in [11] using the spherical harmonics in a Cartesian
trivariate polynomial representation. From the spatial discretization a set of ordinary differen-
tial equations are obtained and are integrated using a three time-level, explicit scheme.

3.1. Leapfrog Explicit Update

The time integration of the mass and momentum conservation equations uses the leapfrog
method, a centered in time, second order approximation. At each grid point 1 < 7 < N,
the solution vector can be written U; = (Xj;,Yj,Z;,h]). Collecting all the terms but the
time derivative on the right hand side of equations (6) and (10) and denoting the vector U =

- 3.
(U1,Us,...,Un,)T, the system of ordinary differential equations can be written,
ou
— = . 11
= Rt,U) (1)

The three time levels of the leap frog method are denoted by superscripts n—1,n,n+ 1. If
the solution vector is known at all points for time level n — 1 and n, the solution at time level
n + 1 can be computed using the formula,

Uttt = Ut 4 2AtRE, UT). (12)

The time step At is held constant over the integration period. The update step is repeated,
incrementing the simulation time by At, until the simulation ending time is exceeded.

3.2. The Local Cartesian Spectral Approximation

The spherical harmonic functions form a basis for functions defined on the surface of the sphere.
In one sense, the harmonics are the natural basis for functions on the sphere since they are the
complete orthonormal basis associated with the Laplace operator on the sphere [13]. For each
eigenvalue o] of the Laplacian,

VY™ = o™y, (13)

The spherical harmonic, Y;" is defined with the normalized associated Legendre functions
Fr(8) by o
Y =™ Pm (0<n,—n<m< n). (14)

The normalized associated Legendre polynomials can be defined from Rodrigues’ formula [9]

- 2n+l(n-m)}?* 1 . dmtn
m —_ (1Y m 2 _ 1y .

P& =(-1) [5 (ntm) 2nn!(sm‘9) o= (z°-1) (15)

where z = cosf and 6 is colatitude. Equations (14) and (15) are combined to give a formula

for the Cartesian representation of the spherical harmonics [13].

+n

Y (2,0 2) = Oz + iy)™

(=1, (16)

where

(= [2n+1(n—m)1]”2 (17)

T onql 2 (n+m)

3.3. Discrete Operator Formulas

One way of calculating the derivative at a point is to fit an interpolating formula to the sur-
rounding data and then differentiate the formula. Though this is a general method we have
taken a different approach. Alternatively, one can approximate the differential operators di-
rectly by requiring that the (approximate) discrete operators act correctly on a selected set of
basis functions. Given a cluster of M points p;, I = 0, ..., M — 1 on the surface of the sphere
and a tabulation U(p;) about the point pp, then we determine coefficients ¢; such that

M-1

LWU)po) = Y al(p). (18)

1=0

- 4.

q Grid Points Triangles hpmin(km) Amar(km) hgpe(km) hpmin/Pmaz
- 12 20 6699.0 6699.0 6699.0 1.0000

0 42 80 3482.0 3938.0 3710.0 0.8843

1 162 320 1613.0 2070.0 1901.0 0.7792

2 642 1280 761.1 1049.0 956.2 0.7255

3 2562 5120 368.4 526.3 478.8 0.7001

4 10242 20480 181.2 263.4 239.5 0.6878

Figure 1: Geometric information for icosahedral grids

The sense of the approximation (=) will be described shortly. To this end we require (18) to
hold for all spherical harmonics through some degree n, including the first N harmonics,

M-1
LY (po) = D ar™Y (1) (19)
=0
This system is then solved for the stencil coefficients, ¢;. This procedure is followed for each
of the linear operators L(U) = %, %[yi, %g—, and the Laplacian, V2U. This approach is general
and is applicable to any distribution of points on the sphere.

The sense of the approximation in (18) is determined by the exact formulation and sense
of the approximation in (19). We order the spherical harmonics Y, so that with increasing
number the degree increases, (see the Appendix of [11] for a listing of the harmonics as trivariate
polynomials). This formulation leads to a linear least squares problem. The problem can be
stated in matrix form: find ¢ which minimizes

|Hc - d)? (20)

where H is a N x M matrix of the lower order spherical harmonics evaluated at points of the
cluster, and d are the analytic derivatives of hte harmonics evaluated at the center point.

The least squares problem is solved using the singular value decomposition (SVD) [4]. The
choice of N and M determine the formal accuracy and smoothness of the derivative approx-
imations. In the work reported here, we choose M points from an icosahedral spherical grid
nearly symmetric about the point py. Table 1 gives geometric information about the different
icosahedral meshes. The number of points used in the stencil will determine the efficiency of
the method because evaluation of the derivatives requires a combination of values from these
neighboring points. For the icosahedral grid, each point has 5 or 6 immediate neighbors and
M=T.

One further parameter that can be introduced is the truncation level in the SVD solution.
The least squares problem has minimum norm solutions if the number of points is greater than
N. We have found it advantageous to use the same truncation at all points. For M = 7, we
truncate at six because the primary points of the icosahedron have only five neighbors.

Higher order methods are obtained by adding more points to the stencil. Values of M = 13
and N = 16 or M = 19 and N = 25 are good candidates for third order and fourth order
versions of the Cartesian method with the icosahedral grid. A higher order version would incur
a cost proportional to the product of M and the number of grid points, thus linear in the number
of grid points. But the extra accuracy of the higher order methods may offer substantial benefit
to the quality of the simulation.

3.4. Operation Counts

The operation count of the Cartesian method is low in comparison with the spectral transform
method, but comparable to other grid point methods. For example, the floating point operation
count per grid point, per time step in a spectral shallow water model [3] is 4.2Nj4¢ + 107 log Nig: .
(A floating point operation is usually defined as one multiplication plus one addition.) The grid
in a spectral model is Njy; X 2Nyq:. For a triangular truncation of spectral coefficients with
the maximum degree of the Legendre polynomials at 42 (T42), the value of Ni4, is 64. Thus,
a T42 resolution spectral model requires 713 floating point operations per grid point, per time
step. The promising spectral element method [12] offers some of the advantages of the spectral
method with an operation count that scales like a grid point model. For an 8x8 grid on elements,
the spectral element method for the shallow water equations requires 192 operations per grid
point.

The approximation of the terms of the shallow water equations using a stencil with M points
requires 15 derivative approximations or 15M floating point operations. The total operation
count for a time step is 15M N + 17TN. For M = 7, there are 122 floating point operations per
grid point.

It is somewhat problematic to compare the operation count of different methods. For
example, the method of Masuda [5] studied in {1, 2] uses a similar stencil to the Cartesian
method, and consequently, should have a similar operation count. But the Masuda formulation
solves the pole problem by introduction of the scalar stream function and velocity potential.
With this formulation there are two elliptic equations to solve each timestep. These can be
efficiently solved using the multi-grid method. But since this is an iterative method and may
require a variable number of steps to converge, the operation count is problematic. It is best
to compare computation times between methods as in [1].

The spectral method also gains an advantage when a semi-implicit time discretization is
used. The resulting Helmholtz equation can be solved in spectral space in O(NZ,) time. If
the semi-implicit spectral model is able to take timesteps up to 10 times as long as the explicit
methods then there is no advantage to be gained.

4. PARALLEL ALGORITHM FOR TIME INTEGRATION

The parallel algorithm is derived by partitioning the global nodes among processors. The
partitioning of the nodes among a set of P processors then defines the division of tasks to be
performed in parallel. Each processor performs the computation required to update values at
the nodes in its partition. In the context of the integration of the partial differential equation,
an update is performed each time step. Since the update of equations at each node depends on
values at neighboring nodes, and some neighboring nodes are on another processor, information
must be sent between processors each timestep. A node adjacent to a node on another processor
is called a boundary node. The set of adjacencies (or graph edges) between boundary nodes is
called the cut set. For each edge in the cut set, communication is required. By minimizing the
number of edges in the cut set a parallel algorithm is obtained with low communication cost.
For an efficient paralle} algorithm, the computational load must also be balanced between the
processors. As a graph partitioning problem, this requirement is that the number of nodes in
each partition be nearly equal.

4.1. Numerical Mesh Example and Organization of Section

The graph theoretic terminology is useful in describing the parallel algorithm and so will be
developed further in this section. Figure 3 is an example of a triangular mesh partitioned
between two processors, P; and P,. The set of boundary nodes for P; is {3, 8, 10}, and for P;,

Number of global nodes

Number of nodes on local processor

Number of processors

Processor =

adj In parallel code, array of node adjacencies
end In parallel code, an array pointing to the end
of each node’s adjacencies in the adj array.
Node ¢’s adjacencies start at index
end(i-1)+1 and end at end(3).

MU Q

Figure 2: Notation used in section 4

4 8

Figure 3: Sample mesh divided between two processors

-T7-

{4,11,12}. Adjacency information is stored in an array adj that lists the neighbors of a given
node. The global adj array for fig. 3 starts {2,10,9,1,10,3,...} since node 1 is adjacent to
nodes 2, 10, and 9, and node 2 is adjacent to nodes 1, 10, and 3. Since node 1’s adjacency list
ends at adj[3], end[l]= 3.

In the parallel code, the generation of the global adjacency information as well as the
partitioning is done in a master code. The master code spawns a parallel process for each
partition and sends information about their set of nodes. The partitioning algorithm (see
section 4.2) is part of in the master code Fig. 3 is partitioned so that each processor has an
equal workload.

After receiving data from the host, each process reindexes its information into local arrays
and executes initialization routines before beginning time stepping (section 4.3). During the
time stepping, messages are sent with tags labeling their time step. This process ensures that
no lagging processor receives information from the wrong time step.

4.2. Partitioning of the Global Mesh

We considered two ways to partition the global mesh: first minimizing the number of sends, and,
second, minimizing the length of the messages. Minimizing the number of sends is the more
efficient method because the large bandwidths of modern parallel networks make it possible to
send large packages of data without drastically reducing parallel efficiency. Both partitioning
algorithms are discussed below.

By minimizing the cut set of the partitions, we minimize the number of neighbor nodes
that need to be sent between processors. To obtain a minimum cut set while maintaining a
load balance among processors, the spectral bisection method can be used [6, 8]. This method
has become a standard for irregularly meshed regions. It is general, but can also be expensive
to apply. The recursive spectral bisection algorithm of [8] uses a modified Lanczos algorithm
to compute an eigenvalue of the “mesh Laplacian” matrix to split the mesh in two. Further
divisions of each of these parts are obtained by recursive application of the processes. For
the icosahedral grid there is enough regularity to suggest reasonable partitions without the
application of the spectral bisection algorithm. We leave to future work the application of
these methods on irregular structured meshes.

To minimize the number of sends, a partition was developed in which processors take nodes
on specific latitudes, or strips around the globe. This results in a partition such that no one
.processor should do more than two sends: one send to the processor to the north and one send
to the processor to the south. More sends may be required if a set of nodes does not stretch all
the way around the globe, but, in this case, there are probably too many processors for good
efficiency. To form this partition the global nodes are reordered from minimum to maximum
latitude, and then within each latitude, from minimum to maximum longitude.

After reordering, the nodes are divided up as equally as possible between processors (so that
each processor has the same amount of work to do each timestep). Processor n is given node

n-1)xG
(__ﬁ_—_) +1 (21)
through c
n x
iz (22)

Any remainders are divided so that the difference between the number of nodes per processor
is no greater than one.

bnode_count=1 % count of all nodes sent
loop i=1,L
loop x=end(i-1)+1,end(i)
if (adj(x) is not a local node)
sp=which_processor(x)
send latitude, longitude, node index, to proc. sp
smat (1,bnode_count)=global node index of x
smat (2,bnode_count)=sp
bnode_count=bnode_count+i
endif
endloop
endloop

Figure 4: Initialize — send algorithm

4.3. Indexing and Data Storage

Every processor starts with a list of its local nodes’ longitudes and latitudes along with the
global node number index array. They also receive from the host a local adjacency array and an
array containing pointers to the position in the global index array where each processors’ nodes
end. Using its local adjacency array, the processor is able to find the local nodes it must send
to other processors. It determines which processor to send each node to (the whichyrocessor
function called in Figure 4) by accessing its array pointing to processor positions within the
global node array. The processor then sends the information of these nodes (at this point just
their longitudes and latitudes) to the appropriate processor. While this send is occurring, the
sending processor is writing a matrix, smat that contains a global node number and destination
processor number for each boundary node. The matrix is later reordered so that the nodes sent
to one processor are grouped together. This matrix is accessed during the time steps for efficient
sending of data between processors (see also Section 4.4): the processor reads straight through
its reordered smat matrix and packs the information it needs to send to one processor into a
buffer and then sends it using only one send call. It then moves on to the next processor and
repeats the process.

An important value generated after this initial sending and receiving is the number of
boundary nodes that a processor must receive from neighbors. This is not necessarily the same
number as the number of sends, although both of these numbers are based on bnode_count from
Figure 4. The receive number is found by finding and removing multiple cases of a single global
node being received by that processor in the initial send (this will happen if that global node is
adjacent to more than one of the processor’s nodes) and subtracting from the number of nodes
originally received. A similar process, based on finding and removing nodes sent to a single
processor more than once, is done to find the number of boundary nodes each processor must
send each time step. The count of nodes to receive is the number of unique adjacent nodes that
a processor needs but does not have locally. This number must be added to many of the loops
in the sequential code. For example, a processor must unpack latitude and longitude values
and have r,y, and z values for its local nodes as well as its non-local boundary nodes to find
initial conditions, calculate the stencil coefficients and do updates.

. 9.

loop i=1,send_count
x=smat(1,1i) %global index of node to send
p=smat(2,i) %proc. to send to
j=g21(x) %“local index of node to send

pack information into buffer

if(i=send_count)
send buffer
exit loop

endif

if(p not equal to send(2,i+1)) %all nodes to p packed
send buffer

endif

endloop

Figure 5: Send — data algorithm

count=0
while(count<recv_count)
receive buffer
unpack x nodes
count=count+x
endwhile

Figure 6: Receive — data algorithm

4.4. Overlap Updates

Sending boundary nodes to other processors is discussed above in section 4.2. Pseudo-code for
the send algorithm is given in Figure 5.

Receiving nodes is a bit more difficult since the processor does not have information about
which outside processor will send boundary updates. It is possible, however, to find the number
of incoming nodes in each buffer. The total number of nodes that will be received can then be
used to end the receive loop. Pseudo-code for a receive algorithm is shown in Figure 6.

5. PERFORMANCE RESULTS FOR A STEADY, ZONAL FLOW
TEST '

Test case 2 is a steady, non-linear zonal flow as proposed in [20]. It tests the ability of the
code to maintain a steady state solution independent of the grid orientation and gives a good
idea of the accuracy of the methods. The local spherical harmonic approximations for the
derivative operators are able to capture the steady state solution well. Figures 7 and 8 show
the error, as a function of time, in the velocity (using the relative RMS error with the exact
steady solution) and the RMS error in the height field, respectively. The ¢ = 2 icosahedral
mesh used an integration time step of 1200 seconds for the 5 day (120 hour) simulations while
the ¢ = 3,4 meshs used a 600 second timestep.

A contour plot of the absolute geopotential error is given in figure 9. The error is measured

relative RMS error (V)

realative RMS error (h)

- i -

1.0e-02 - -

1/\ ‘/\\

’ o~

) \ /\ T
1.0e-03 + o~ -

i /7

, :

P
//\\ //_\/
. //-\“ ; e
1.0e-04 - -
1.0e-05
0.0 50.0 100.0 150.0

Time (hours)

Figure 7: Relative RMS Error in Velocity. Test Case 2. g = 2.3.4.

1.0e-02

CEan

1.0e-03 : :
Toees 3[f\‘\'ﬂ/\ AWAVAVAYS :
.":/ VoS \’/\\/ :
[:
i
1.0e-05 b .
1.0e-06 :
1.0e-07 b
1.0e-08
0.0 50.0 100.0 150.0

Time (hours)

Figure 8: Relative RMS Error in Height. Test Case 2. ¢ = 2.3.4.

- 11 -

at 3 days. Clearly evident are the base points of the icosahedral grid where the difference stencii
involves 6 rather than 7 points.

phi at time 432000.000000000

Figure 9: Error in Geopotential at 5 days. Test Case 2. g = 4.

The five day integration is timed for several different mesh sizes and with different numbers
of processors involved in the computation. The time for a given time step may be divided into
computational time (¢.omp) and communication time (f,omm). The computation time is related
to the number of grid points assigned to a given processor. The communication time is related
to the number of messages sent and the size of the messages sent between processors for the
update of boundary points.

Times were measured on the Intel Paragon XPS35 at Qak Ridge National Laboratory in the
Center for Computational Sciences, a mesh connected massively parallel processor consisting
of 512 Intel 1860 nodes. The parallel performance is reported as speedup S, = %, ratio of
the total time to execute on one processor to total time using p processors. Since memory
constraints prevented running some of the test cases on small numbers of nodes, we designated
the lowest number of processors run on as T;. Also the parallel efficiency. E, = 2 s reported.
The total time on p processors, T, reflects both communication and computation time along
with other miscelaneous overhead. Time is measured using a synchronization point {barrier)
after the grids and stencil coefficients are initialized. It reflects the total time spent in time
stepping. The time spent in computation represents the accumulation of times for each call to
the time update routine. The time in communication is obtained similarly. by starting a timer
before calling the routine to update the boundary nodes. The system clock used on the Intel
Paragon was the gettimeofday utility. Times are reported in seconds.

Figure 11 contains information that affects the times in Figure 10. The number of nodes on
the local processor is given by nyscqi- N, is the average number of nodes sent per processor per
time step, and P,, is the maximum number of processors that any one processor was adjacent
to (the maximum number of sends that any processor must make).

The code was developed with the Parallel Virtual Machine (PVM) message passing con-
structs. This allowed code development on a network of workstations and only the performance

-12-
Processors toomp tcomm Total S E, ;;;—cf—‘;gh
Icosahedral Grid ¢ = 2
1 14.9 0.4 29.1 1 1.00 6.4e-5
2 7.6 224 383 0.76 0.38 6.6e-5
4 4.0 42.1 51.7 056 0.14 6.9e-5
8 2.1 429 494 059 0.07 7.2e-H
16 1.2 440 49.0 0.59 0.04 8.1e-5
32 0.7 340 38.1 0.76 0.02 9.3e-5
Icosahedral Grid ¢ = 3
1 1182 0.9 2120 1 1.00 6.4e-5
2 59.7 102.7 209.0 1.01 0.1 6.5e-5
4 30.1 1744 230.8 0.92 0.23 6.5e-5
8 154 168.1 199.7 1.06 0.13 6.7e-5
16 8.0 1649 1849 1.15 0.07 6.9e-5
32 4.3 168.3 1814 1.17 0.04 7.4e-5
64 24 148.0 1579 134 0.02 8.1e-5
Icosahedral Grid ¢ = 4
4 120.0 4689 6754 4 1.00 6.5e-5
8 60.5 397.7 5044 5.36 0.67 6.6e-5
16 30.4 3604 4172 648 041 6.6e-5
32 158 342.1 3742 7.22 0.23 6.8e-5
64 82 3355 3551 761 Q.12 7.1e-5
128 44 2679 2812 9.61 0.08 7.5e-5
Figure 10: Parallel Performance on the Intel Paragon
Processors njoear Ns Pp
Icosahedral Grid ¢ = 2
1 642 0 0
2 321 41 1
4 161 63 2
8 81 70 2
16 41 71 4
32 21 57 7
Icosahedral Grid ¢ =3
1 2562 0 0
2 1281 81 1
4 641 123 2
8 321 13 2
16 161 139 2
32 81 140 4
64 41 111 7
Icosahedral Grid ¢ = 4
4 2562 248 2
8 1281 265 2
16 641 274 2
32 321 218 2
64 161 278 4
128 81 213 7
Figure 11: Parallel Performance on the Intel Paragon

- 13-
Communication and Computation Times

1000 %—x g=4

{-- Comm.

] o©q=3
- Comp.

Wk Q=2

Time (sec.)

1 10 100
Processors

Figure 12: Computation and Communication Times on the Intel Paragon

runs were made on the Paragon. Because PVM is not highly optimized for the Paragon, the
communication times reported in Figure 10 are excessive. Nevertheless, they show the correct
trends: constant cost with increasing numbers of processors and increased cost with increased
resolution. The computational times scale very well as expected. Other partitioning strategies
and optimized message passing routines could improve the results presented. These improve-
ments are necessary before extending the model to a more realistic 3-D baroclinic model.

- 14 -

6. References

[1] Ross Heikes and David A. Randall. Numerical integration of the shallow-water equations
on a twisted icosahedral grid. part i. Mon. Wea. Rev., 123:1862-1880, 1995.

[2] Ross Heikes and David A. Randall. Numerical integration of the shallow-water equations
on a twisted icosahedral grid. part ii. Mon. Wea. Rev., 123:1881-1887, 1995.

[3] W. Gropp 1. Foster and R. Stevens. The parallel scalability of the spectral transform
method. Mon. Wea. Rev., 120:835-850, 1992.

[4] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall, Englewood
Cliffs, NJ, 1974. '

[5] Y. Masuda and H. Ohnishi. An integration scheme of the primitive equation model with
an icosahedral-hexagonal grid system and its application to the shallow water equations.
In Short- and Medium-Range Numerical Weather Prediction, pages 317-326, 1986.

[6] A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Mairiz Anal. Appl., 11:430-452, 1990.

[7] R. Sadourny, A. Arakawa, and Y. Mintz. Integration of the nondivergent barotropic vortic-
ity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev., 96:351-
356, 1968.

[8] H. Simon. Partitioning of unstructured problems for parallel processing. Computing Sys-
tems in Engineering, 2:135-148, 1991.

[9] I. A. Stegun. Legendre functions. In M. Abramowitz and 1. A. Stegun, editors, Hendbook
of Mathematical Functions, chapter 8, pages 332-353. Dover Publications, New York, 1972.

[10] P.N. Swarztrauber, D.L. Williamson, and J.B. Drake. Spectral transform methods for
solving the shallow-water equations on the sphere. Mon. Wea. Rev., 124(4):730-744, 1996.

[11] P.N. Swarztfauber, D.L. Williamson, and J.B. Drake. The cartesian method for solving of
PDE’s in spherical geometry. DAQ, to appear.

[12] Mark Taylor, Joseph Tribbia, and Mohamed Iskandarani. The spectral element method
for .the shallow water equations on the sphere. Mon. Wea. Rev., 1996.

[13] A.N. Tikhonov and A.A. Samarskii. Equations of Mathematical Physics. Dover Publica-
tions, New York, 1963.

[14] D. L. Williamson. Integration of the barotropic vorticity equation on a spherical geodesic
grid. Tellus, 20:642-653, 1968.

[15] D. L. Williamson. Integration of the primitive barotropic model over a spherical geodesic
grid. Mon. Wea. Rev., 98:512-520, 1969.

{16] D. L. Williamson. Numerical integration of fluid flow over triangular grids. Mon. Wea.
Rev., 97:885-895, 1969.

[17] D. L. Williamson. A comparison of first- and second-order difference approximations over
a spherical geodesic grid. J. Comp. Phys., 7:301-309, 1971.

{18] D. L. Williamson. Numerical Methods Used in Atmospheric Models, chapter 2, pages
51-120. GARP Pub. Ser. No. 17. JOC, WMO, Geneva, Switzerland, 1979.

- 15 -

[19] D. L. Williamson and G. L. Browning. Comparison of grids and difference approximations
for numerical weather prediction over a sphere. J. Appl. Meteor., 12:264-274, 1973.

[20] D. L. Williamson, J.B. Drake, J.J. Hack, Rudiger Jakob, and P.N. Swarztrauber. A
standard test set for numerical approximations to the shallow water equations on the
sphere. J. Comp. Phys., pages 211-224, 1992.

