-13030

ORNL/TM
t

icas
igan

Q7

Q
. Dun
. Hall

FER20 1
OSTI
Kara A

PVM and IP Mult
Thomas H

.
s
i

=

s

cEa

e
Saaie

.

HEnE e

5

o
=

o
S

S

.

L

i

e

-

e

- .
i .
i i ;

s
.

Sl

e

e
e

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O.Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department
of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

This report was prepared a an account of work sponsored by an agency of the United States Govemnment.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government or any agency -
thereof. The view and opinions of authors expressed herein do not necessarily state or reflect those of the
UnitedStatesGovernment or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

ORNL/TM-13030

Computer Science and Mathematics Division

Mathematical Sciences Section

PVM AND IP MULTICAST

Thomas H. Dunigan and Kara A. Hall

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367
thd@ornl.gov hall@cs.utk.edu

Date Published: December 1996

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Re-
search, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
' managed by
Lockheed Martin Energy Research Corp.
: for the
. U.S. DEPARTMENT OF ENERGY
‘ under Contract No. DE-AC05-960R22464

Contents

1 Introduction 1
2 Multicast e e 1
2.1 Multicast and Broadcast on LANs and Multiprocessors 2
2.2 Internet Protocol (IP) Multicast L. 2
2.3 ReliableMulticast 0. ... 4

3 Reliable IP multicastin PVM. 6
3.1 Multicast in PVM o o 7
3.1.1 PVM message-passing0..... 7

3.1.2 PVM’s pvm.mcast() protocol 9

3.1.3 PVM multicast address 9

3.1.4 Initiating multicast, 9

3.1.5 Sending multicast 11

3.1.6 PVM Multicast routing 11

3.2 Adding IP multicastto PVM 12
3.2.1 The pvm.pmcast() protocol 12

3.2.2 IP multicastsocket 12

3.2.3 Initiating IP multicast 12

. 3.2.4 Sending IP multicast [13
3.2.5 Acknowledging IP multicast 14

3.3 PVM IP multicast Performance 16
3.3.1 LAN Performance of pvm_ipmcast() 16

3.3.2 WAN Performance of pvm.ipmeast() 17

4 SUMMATY . . . v o ot e e e e e e e e e e e e e e e e e e e 20
4.1 Limitations 21
411 Control 21

4.1.2 Availability o o L. 22

4.1.3 Address and Port assignments 22

4.1.4 Bandwidth and Routing 23

42 Future Work L e 23

5 References e 24

- 1i} -

PVM AND IP MULTICAST

Thomas H. Dunigan and Kara A. Hall

Abstract

This report describes a 1994 demonstration implementation of PVM
that uses IP multicast. PVM’s one-to-many unicast implementation of its

pvm_mcast() function is replaced with reliable IP multicast. Performance of
PVM using IP multicast over local and wide-area networks is measured and
compared with the original unicast implementation. Current limitations
of IP multicast are noted.

1. Introduction

PVM, Parallel Virtual Machine [7], is a message-passing system that allows a col-
lection of heterogeneous computers on a network to function as a virtual parallel
computer. PVM supplies the functions to automatically start up tasks on the
logical distributed-memory computer and allows the tasks to communicate and
synchronize with each other. PVM is used by researchers to speed up computing
applications by harnessing the power of workstations and supercomputers con-
nected by a network. This report describes describes extensions made to PVM
to support IP multicast as part of PVM’s one-to-many communications protocol.

This report is a subset of a larger research effort by Hall [9] that looked
at many of the research issues in reliable multicast protocols. Research issues
studied in adding IP multicast support to PVM include:

e multicast reliability

e delivery and response semantics
e group structure

e reliable multicast methodologies

e performance implications

This report summarizes the choices made within these research issues. The fol-
lowing section describes multicast protocols. Section 3 describes the use of mul-
ticast in PVM, the extensions made to support IP multicast, and the effects on
performance. The final section summarizes the current (1994) limitations of IP
multicast in PVM and IP multicast on the Internet.

2. Multicast

Multicast communication is a mode of communication where one transmitter can
be heard by many receivers. It is common in radio or satellite-based commu-
nication, but is even supported in digital communication systems such as local
area networks (LANs). Though less common on wide area networks (WANs),
recent multicast extensions to the Internet’s protocol suite (IP) have spawned
many research efforts to examine potential uses for wide-area multicast services.

2.1. Multicast and Broadcast on LANs and Multiprocessors

Many LANs support some form of multicasting. The CSMA/CD, token-bus,
token-ring, FDDI and ATM LANs, and even ground and satellite radio systems
have multicast capabilities[1].

The IEEE 802.2 LAN addressing standards provide multicast protocol as well
as broadcast protocol for CSMA/CD, token-bus and token-ring LANs[1]. On a
CSMA/CD LAN (e.g., an Ethernet LAN), the sender of a multicast packet uses
the group address for the destination address. This address is determined by the
high-order bit of the destination address. If the high-order bit is a one, then the
address is a multicast address. The rest of the packet is filled with the multicast
address for the group. The broadcast address consists of all one bits. If the
high-order bit is a zero, the address is unicast and only the machine with that
address will accept the message.

Once the sender’s packet is placed on the network, all hosts in the same LAN
can see the packet. Each station will check the packet’s address against their own
and then against that of each multicast group to which it belongs. If there is a
match, the packet is accepted by the receiver and processed similarly to that of
a unicast message. The matching is usually done in hardware.

Multicast and broadcast are used in a variety of applications. Satyanarayanan,
et al.[17] have developed a file system, Coda, for large-scale distributed computing
systems using workstations. When measuring bytes transferred, they found that
the use of multicast reduced the network load. Ahamad and Belkeir[13] present
a multicast-based process for load balancing in an Ethernet-type LAN using
the multicast capabilities of the local network. Satyanarayanan and Siegel[16)
describe a parallel remote procedure call MultiRPC. MultiRPC does not use true
multicast; software filtering of broadcast packets simulates multicast.

2.2. Internet Protocol (IP) Multicast

Numerous works contributed to the development of IP multicast and the Internet
MBONE.! In the 1984 RFC?919(8], Mogul proposed broadcast protocols for best-
effort IP datagram broadcasting. Internet gateways were used to protect against
any unwanted broadcasts. His work includes information on how to broadcast IP
datagrams on local networks that support broadcast, how to address broadcasts,
‘and how gateways manage them.

In the 1985 RFC947[11], Lebowitz and Mankins presented a problem of multi-

IMBONE is the Multicast backBONE of the Internet.
2Request for Comments

-3

network broadcasting and the motivation for solving the problem. They stated
that a shortcoming of broadcasting was that broadcast packets are only received
by hosts on the physical network on which the packet was broadcast. Their
solution was to use a broadcast repeater transparently relaying broadcast packets
from one LAN to another and to forward broadcast packets to hosts on networks
which do not support broadcasting at the link-level. The forwarder and repeater
were implemented separately. Lebowitz and Mankins stated that a large amount
of overhead was involved.

Other works more recent and closely related to IP multicast are the 1988
RFC1075[6] Distance Vector Routing Protocol which provides a routing protocol
for IP multicast that most MBONE routers use and the 1989 RFC1112[22] Host
Eztensions for IP Multicasting which is the recommended standard for IP mul-
ticasting in the Internet. RFC 1112 provides protocols for addressing, sending
and receiving IP multicast packets. IP multicast provides unreliable (best-effort)
delivery using UDP datagrams. IP multicast addressing is a key to multicasting
in the Internet. IP multicast supports group communication in the Internet by
using class D IP addresses. To travel within a LAN, the multicast address must
be mapped to the local multicast address. Deering[22] details the procedure by
which an IP host group address is mapped to LAN multicast addresses in order
to send IP multicast datagrams into the LAN. In order to map an IP group ad-
dress to an Ethernet multicast address, the low-order 23-bits of the IP address
are placed into the low-order 23 bits of the Ethernet multicast address. Multi-
cast routers control the forwarding of IP multicast datagrams between any two
subnets supporting IP multicast.

Many IP multicast routing algorithms exist [24]. Currently DVMRP [6] is
used to route multicast datagrams through the MBONE. IP multicast routers
(mrouters) are necessary for routing packets through non-IP multicast routers;
this is termed tunneling. Unlike unicast datagrams which could pass through
any router in its path, an IP multicast packet must be encapsulated using the
address of another mrouting host as the destination. The IP multicast packet can
only travel from one subnet to another subnet if both subnets contain a working
mrouter where both are directly connected or are connected via the MBONE.
Being directly connected means that the packet is forwarded from the mrouter
of one subnet to the mrouter of another subnet. Being connected through the
MBONE means that there are one or more mrouters through which the packet
passes other than the mrouters in the sender’s and the receiver’s subnet. All IP

multicast routes are built manually.
IP multicasting often involves audio and video data which is bandwidth in-

-4 -

tense. The MBONE tools offer a non-traditional interactive teleconferencing me-
dia such as Network Video (nv/vic), Visual Audio Tool (vat) and a shared drawing
whiteboard (wh). Nv, vat, and sd use unreliable IP multicast; wb provides its own
reliable IP multicast protocol. As the number of IP multicast-capable machines
grows, the need for applications which take advantage of IP multicast will also
grow, and this can be a problem. According to Jacobson[5], “The MBONE has a
total of 500kb/s of bandwidth that has to be shared between 1200 networks and
10,000 hosts. To put that in perspective, 500kb/s is a total of 6 vat conversations
or 4 nv video sessions.”

2.3. Reliable Multicast

Deering[22] states, “A multicast datagram is delivered to all members of its des-
tination host group with the same best-efforts reliability as regular unicast IP
datagrams.” In building fault-tolerant software such as PVM, best-effort relia-
bility will not suffice, especially if one multicasts beyond the subnet where, the
frequency of packet loss increases. In this section, literature about reliable mul-
ticast is reviewed.

Pingali, et al.[23] compare three reliable multicast protocols. The first pro-
tocol is a non-optimized positive acknowledgment-based protocol. The second
protocol is a non-optimized negative acknowledgment-based protocol which uses
unicast NAKs. The third protocol is a NAK-style protocol which Ramakrishnan
and Jain developed for LANs and which Jacobson developed for WANs. This
third protocol uses a multicast (or broadcast) NAK to reduce the amount of
reverse-traffic. ‘

In the ACK algorithm, the sender initiates the retransmission by timing-out
while waiting for acknowledgments. As the number of receivers increases, the
number of ACKs increases. Not only does this cause contention in the network,
but the sender must take time to process each ACK. This protocol was found
to have a lower throughput than the two negative acknowledgment protocols.
However, it is much less complicated to implement.

In the NAK versions, the receiver initiates error control. As mentioned, the
NAK protocols differ in the manner in which a NAK is returned. In the non-
optimal unicast NAK protocol when a host receiving multicast packets detects
an error (e.g., a lost packet), a NAK is immediately sent to the transmitting host
for which the error was detected. Using a NAK decreases the reverse traffic since
a NAK is only sent when an error is detected.

In the multicast NAK protocol, a random time is set between discovering an

error and sending a NAK. Before sending a NAK, the receiver checks whether or

-5-

not the NAK has been multicast by another receiver. If so, it sets a timer and
waits for the retransmission, else it sends the NAK. The NAK is sent via multicast,
to all members of the group. This decreases the number of NAKs being sent by
receivers from as many as N down to at most one per multicast. According to
Pingali et al., Jacobson has tried using the multicast NAK-style algorithm in a
shared whiteboard. Of these three protocols, the multicast NAK protocol was
found to have the highest throughput;

Hall [9] summarizes a number of applications that include multicast services,
including VMTP [4], XTP [26], ISIS [12], MTP [20], MTP2 [2], RAMP (18],
and Ameoba [14]. Of particular relevance, Huang, et al.[3] developed a reliable
multicast transport service for an Asynchronous Transfer Mode (ATM) network.
This service sits atop the unreliable ATM Adaption Layer 5 (AAL5) and uses the
vendor supported Application Programming Interface (API)’s socket-like services,
not IP. ATM relies on fast packet switching for speed. ATM multicasting is
based on parallel transfers of N copies of the packet to be multicast. Since this
method is somewhat unreliable, Chang, et al.[21] investigate reliable message-
passing protocols; PVM was chosen for their tests. An ATM LAN with ATM
switches connecting workstations was used in their tests. One performance test
involved a normal implementation of PVM over an Ethernet network using BSD
sockets. A second test involved implementing PVM in an ATM network using
BSD sockets. The third and fourth tests involved implementing PVM in an
ATM network using different versions of the Fore Systems’ ATM API library
(FSAA) with the necessary changes to PVM. FSAA which provides the socket-
like interface for ATM messages is a lower-layer protocol than BSD sockets. FSAA
is a connection-oriented service in which the connection must be made before data
is exchanged. :

Although the multicast process was altered for the tests, PVM’s acknowledg-
ment protocol remained the same. In phase I of each test, a task ID list is sent
to each remote pvmd. The list contains the IDs for all tasks on the same host
as the remote pvmd which are to receive the multicast packet; this is normal for
PVM. In phase II, first normal PVM procedures were used to multicast the data;
N serial sends were sent to N remote pvmds. Then PVM was re-implemented
such that N simultaneous sends were made to N remote pvmds. In the serial
version of phase II, all ATM/PVM tests had a throughput of about 7Mbps; the
Ethernet/PVM test had a throughput of about 4Mbps. In the parallel versions of
phase II, the ATM/FSAA/PVM tests provided the highest throughput of about
27Mbps, which is about half the maximum throughput of the ATM/FSAA system
alone. The ATM/BSD/PVM test had a throughput of approximately 20Mbps.

-6 -
The Ethernet/PVM test had a throughput of about 8Mbps.

3. Reliable IP multicast in PVM.

The need to solve scientific problems quickly has led to the development of paral-
lel computing[10]. Many parallel computers use multiple processors connected by
very short communication links all within one frame. Parallel computers allow
parts of a problem (tasks) that can be executed independently of each other to
be distributed over many processors. Message-passing routines are used for com-
munication among the processors. In general, parallel computers are expensive.
Due to the demand for a less expensive parallel computer and the development
of efficient, inexpensive, high speed computers (e.g., workstations) and networks,
distributed operating systems were developed to run on LANs. Within a dis-
tributed operating system, hosts use message-passing routines to communicate.
A group of computers connected by a distributed operating system work together
to form a multiprocessor. In addition to workstations, a distributed operating
system may be used to connect mainframes and/or multiprocessors.

The Parallel Virtual Machine (PVM) is a message-passing system which works
like a distributed operating system, but usually it runs on top of the existing op-
erating systems (e.g. Unix}{19]. PVM does not provide a file system or memory
manager. Since PVM joins physically separate and architecturally different ma-
chines over a LAN or a WAN, it is called a virtual machine. The hosts in the
PVM do not have to be in the same LAN, but there does have to be some type
of internetwork between them in order to pass messages.

The PVM library (&ibpvm) allows user applications (tasks) written in C or
FORTRAN to communicate with the local PVM daemon (pvmd) or remote pvmds
and remote tasks easily. Most communication between tasks is relayed via pvmd-
to-pvmd communication. The libpvm provides an interface between the task and
the pvmd. In addition to routing and controlling messages, the pvmd provides
authentication, process control and fault detection[19]. The first pvmd that is
started manually by the user is the master. The master can add, delete, or
reconfigure slaves; other than these jobs, the slaves function like the master.

PVM version 8.2.6 provides a multicasting routine, pvm_mcast(). This routine
forwards the receivers’ task identifiers, TIDs, to the local pvmd and then receives
back the group identification, GID. The function then forwards the multicast
message with the GID to the local pvmd. This pvmd first sends the TIDs and the
GID to the appropriate pvmd, and then sends the message via unicast messages to
those pvmds (see section 4.2.2 for further details). Also, PVM provides a special

.7

library, libgpvm, for group communication. This allows the user to identify groups
by a number from 0 to (p— 1) where p is the number of tasks. To send to a group,
the user calls pvm_bcast() using the group identification, GID. The pvm_bcast()
relays the message to the local pvmd. This pvmd in turn processes the incoming
request in the same manner it would a pvm_mcast() request.

Several mechanisms for delivering multi-daemon-destination messages have
been considered by the PVM development group. Broadcast has been examined
as perhaps a more efficient method in sending a multi-destination PVM message
than a one-to-all unicast method. The results of the broadcast study were very
good especially for larger message and receiver set sizes [25]. However, with a
broadcast, all machines on the LAN, even those not using PVM, receive the
packet. Broadcast is also limited to hosts on a LAN and does not work over
a WAN. Some PVM version 2’s use a spanning-tree algorithm much like that
used by the hypercube in order to perform multicasting. However, later versions
(3.0-3.3) returned to the one-to-all fanout approach to perform more robustly. IP
multicast permits a single message to reach a subset of hosts on both a LAN or a
WAN. If the host is not a member of the multicast group, it ignores the message.
So, IP multicast should be a suitable delivery mechanism for PVM.

IP multicast was implemented reliably in PVM and was compared to the
unicast-based function pvm_mcast() which is currently used for multicasting in
PVM. The objective was to understand the issues involved in using reliable mul-
ticast protocol in a real application and to measure and analyze any performance
improvements in reliable IP multicast.

3.1. Multicast in PVM

3.1.1. PVM message-passing

At the application level, sending a PVM version 3.2.6 message consists of three
steps. The task must first initialize a send buffer by a call to pvm_nitsend() or
pvm_mkbuf(). Then, the task must pack the message into the buffer using one
or more PVM packing routines (i.e., pvm_pkx()). Finally, the buffered message
is sent to another task by either calling the pvm_send() routine for unicasting or

the pvm_mcast() routine for multicasting.
Receiving a PVM message consists of at least two steps. Optionally, one may

use pvm_bufinfo() to receive information about a particular message. To actually

receive the message, either pvm_recv() or pvm_nrecv() (a non-blocking receive) can

be called. Then, the received message must be unpacked by using pvm_upks().
Both the pvm.send() and pvm_mcast() routines communicate with remote

pvmds and tasks by first sending the message to the local pvmd via Unix domain

- 8-

datagram socket (see Figure 3.1). The message is then sent to the appropriate
receiving pvmd(s) via a UDP socket. The message is then sent to the remote
pvmd and finally to the appropriate task(s) on the same host. The sending pvmd
retransmits the message until it receives an ACK or until the number of retries
reaches the maximum. Upon receipt of the ACK the message is removed from
the output queue. If the message is not ACKed by the last re-try, the message
is dequeued, and the remote pvmd is assumed to be dead. The sending pvmd

informs all other pvmds of the problem, and the downed pvmd is deleted from
the PVM host tables.

Figure 3.1: A Partial Anatomy of PVM.

The receiving pvmd replaces the ACK number with the sequence number and
returns an ACK for the packet to the sending pvmd. The receiving pvmd will
then forward any messages destined for tasks on its host. A task may receive a
message by calling a receive routine and then unpacking each of the packed items.
The message may be received from a specific source with a specific message tag,
or from any source with a specific message tag, or from a specific source with any
message tag.

9.

3.1.2. PVM’s pvm_mcast() protocol

The function pvm_mcast(), a part of the libpvm, is used by a task for multicast-
ing a message. PVM version 3’s daemon uses multi-unicasts (a one-to-n fanout
multicasting algorithm) to reliably send a task-initiated message to multiple des-
tinations. Some earlier versions use a spanning-tree algorithm. In this section,
the following are discussed: forming a multicast address, initiating a multicast
message, and sending a multicast message in PVM. The decision for choosing the
one-to-n fanout algorithm is also discussed.

3.1.3. PVM multicast address

Within the PVM system, a task identifier (TID) is used to address tasks, groups
of tasks, and pvmds. With its G bit set to one, the TID represents a group
address or GID. The GID is formed by the pvmd. A new GID is formed for each
multicast message; any discarded GIDs may eventually be reused. The multicast
descriptor, struct mca, stores information about all active multicasts. As with
all TIDs, the H field is set to the value of the host index for the local host. The L
field is set to the value of a counter which is incremented for each multicast. The
main difference between a non-multicast task identifier and a GID is the setting

of the G bit.

3.1.4. Initiating multicast

The multicast message is initiated by a request with a code of TM_MCA sent
from the task via libpvm’s pvm_mcast() to the local pvmd. The request contains
a list of task identifiers, the multicast group, for all tasks (recipient-tasks) which
are to receive the multicast message. Thus, PVM uses a closed group scheme.
This list can change each time a new multicast message is sent making the groups
dynamic. However, once the TM_MCA message is formed, no other task may join
the group. The message is passed to the pvmd’s tm_mca() function which forms
the GID and a new mca. Also, the list is sorted according to the host index and
checked for duplicate or erroneous TIDs. The information is stored in the mca.
The pvmd replies with the GID to the requesting task, and then sends a message
with a code of DM_MCA to remote pvmds (recipient-pvmds) which have tasks
in the group. The DM_MCA message contains the GID and the TIDs of tasks
in the multicast group which are on the same host as the recipient-pvmd. The
receiving pvmd’s dm_mca() function processes the information and each forms a
local mca in order to know which tasks are to receive the multicast message (see
Step I of Figure 3.2).

- 10 -

-
Step I:
N
s N\
task
b
1 vand S pvmd
- N\ B task
L c
task "3)
A S
(1) Via pvm_mcast(), task a requests a new task
GID from pvmd A. d
(2,3.4) pvmd A sends the new GID to taska and
to all other pvmds who have tasks in the group. task
(5.6) Broken line indicates an ACK fora €

pvind-to-pvind message.

‘
Step IT:
4 N
/\) tagk
14 b
...... pvind
- 10 .
........ - A B task
. .9 L c
a
L) e
(7) Via pvm_mcast(), task a sends the task
mcast message containing the GID to pvind A. d
(8,9) pvmd A sends the message to all
pvimds who have tasks in the group. task
(12,13,14) Those pvmds forward the message to all e
tasks on their host which are in the group.

(10,11) Broken line indicates an ACK fora
pvmd-to-pvmd message.

Figure 3.2: Diagram of PVM’s pvin.mcast()} function.

- 11 -

3.1.5. Sending multicast

Upon receipt of the GID, pvm_mcast() then sends the multicast message to the
local pvmd, using the GID (see Step II of Figure 3.2). When the local pvmd
receives the message from the sending task, the routing layer of the pvmd prepares
a packet descriptor, struct pkt, one for each local recipient-task and one for
each remote recipient-pvmd. The pkt stores information, for use in timing out,
sequencing, and acknowledging the message as well as a copy of the message. Each
message is placed on a queue. PVM then unicasts each message to the proper
recipient. When a multicast packet arrives at a recipient-pvmd, it is ACKed
by the pvmd, and it is then duplicated and sent to each recipient-task on the
same host (see Step II of Figure 3.2). When these pvmds detect the packet with
the end-of-message (EOM) bit set, they remove the mca. Because of PVM’s
reliability measures, the multicast address and data packets will arrive in proper
order at each destination. |

3.1.6. PVM Multicast routing

A spanning-tree algorithm was used in some Version 2 packages to deliver multi-
cast messages because it decreases the contention on the Ethernet for a particular
host. The spanning-tree divides the sends among the hosts in the PVM. There-
fore, while one host may be waiting to send, another host can send. To implement
the spanning-tree algorithm, each pvmd is identified by a node number from 0 to
(n — 1), where n represents the number of nodes. A bit-wise operation on the
node number determines the children of each node as is done in the Hypercube.

The ACKs were sent directly to the root of the tree.
- There were several drawbacks to using a spanning-tree in PVM. For instance,

extra logic is required to handle the case when a machine on the interior of the
tree goes down. Extra work is involved in determining who did not receive the
multicast message. One must determine whether the node failed before or after
a multicast was sent. One must determine whether all, none, or part of the
children received the message. Also, a recovery process involving eliminating the
failed machine and eventually re-sending the message to those who lost it must
be completed. Due to its robustness, the one-to-n fanout was re-implemented in
PVM version 3. This ensures that the failure of one host will not cause the loss
of messages except for the ones to that host. Also, fault-tolerance is simplified.

- 12 -

P

3.2. Adding IP multicast to PVM

As noted in section 2, efficiently implementing reliable multicast is a matter of
open research. There are advantages and disadvantages to both NAK-based and
ACK-based reliablity models. Since a positive acknowledgement system already
exists in PVM’s pyvmd-to-pvmd communications, it was decided to use that system
to implement reliable IP multicast in PVM.

3.2.1. The pvm_ipmcast() protocol

Reliable IP multicast was added to PVM with pvm_ipmcast(). It was hoped that
using IP multicast would decrease out-going traffic and contention, and improve
PVM’s performance for multicasting. Just like pym_mcast(), pvm_ipmcast() is part
of libpvm, and works with the pvmd to send a single message to multiple desti-
nations. Only a slight difference between the two functions exists in the libpvm.
Most of the changes were made to the pvmd. In the following section, implemen-
tation issues are discussed, such as making the IP multicast socket, initiating an
IP multicast message, sending an IP multicast message, and acknowledging the
message.

3.2.2. IP multicast socket

In PVM’s mksocs() routine in startup.c, several sockets are made. The netsock
socket is used for pvmd-to-pvmd communication. The ppnetsock socket is used
for pvmd-to-pvmd communication where pvmd’ is a daemon process spawned by
the master pvmd in order to start slave pvmds. The loclsock socket is used for
task-to-pvmd communication. The mnetsock socket was added for pvmd-to-pvmd
IP multicast communication. Now, the pvmds not only have to listen to the usual
sockets, but also must listen to the IP multicast socket.

The IP multicast loop-back option was set to zero, which means the sender
will not receive its own multicast messages. The sender must know what address
and port number on which the receiver will be listening. In this study, the IP
multicast address and the port numbers were static. For testing purposes, this
was helpful, since one would always know what address and port number to watch
while using network debugging tools. However, for general use, this will cause
problems, especially if two users on the same network choose the same values.

3.2.3. Initiating IP multicast

Pvm_mcast() was not removed from the libpvm. Most of the changes were made to

- 13 -

the pvmd. The pvmd can distinguish between those packets to be sent via one-to-
n fanout from those to be sent via IP multicast. As for the libpvm, pvm_ipmcast()
is virtually the same as pvm_mcast(). However, instead of sending the TM_MCA
code to the local pvmd to request a GID, pvm_pmcast() sends the TM_IP_MCA
code. This allows the pvmd to differentiate between the two types of multicast
messages. The task identifiers contained in the request are sorted and checked
as before. Also, the GID is returned to the initiating task and the DM_MCA
message is sent to recipient-pvmds as before.

3.2.4. Sending IP multicast

In order to satisfy PVM’s design criteria, IP multicast was implemented reliably.
In this implementation, IP multicast was inserted in such a way that few changes
were made to PVM’s logic. Most of the changes were made to the PVM routines
loclinpkt(), netoutput() and netinput() found in pvmd.c. Instead of duplicating the
ACK process, the ACK protocol of PVM was changed slightly to be used for the
IP multicast acknowledgments needed by a reliable multicast protocol. This kept
the changes to PVM modest, which was preferable.

In the loclinpkt() function, in addition to the normal pkt descriptors for uni-
cast copies (subsequently denoted by pkt,), a pkt (subsequently denoted by pkt,,)
was formed whose packet GID H field was set to the local host index.. This pkt,,
was used as the IP multicast packet descriptor. The local pvmd controlled the
removal of the IP multicast packet from the queue by setting the appropriate
ACK information for this pkt,, when necessary.

While the other pkt,s were being formed, a descriptor (struct ip-info) stored
a pointer to the sequence number for each remote pvmd. As well, when the IP
multicast pkt,, was formed, information (e.g., the GID, an IP multicast counter,
and an ACK counter) was recorded in the ip-info. The pkt,s containing unicast
copies were formed as they would be in pvm_mcast() with a couple of changes. In
case more than one task was multicasting from a particular host, each of these
pkt,s contained an identifying number, pk_meca_num. This allowed the ip_info
to be updated correctly when a multicast packet was ACKed. As well, an IP
multicast marker, pk_ipmca, was set to one so that the netinput() function could
determine if the ACK was for an IP multicast packet.

These pkt,s were used not only to store the ACK information, but were also
used as back-up pkt,s to the IP multicast pkt,,. If the pkt,, packet was removed
from the queue before a back-up pkt, was ACKed, this back-up pkt, packet was
sent as it would be in pvm_mcast() via unicast to the intended receiver.

Presently, due to the way in which the unicast back-up pkt,s were allowed to

S14 -

collect the ACK data, the appropriate sequence number had to be sent to the
recipient-pvmd in order for the ACK to be formed properly.. This information
was sent in the multicast packet. In the netoutput() function of the pvmd, when
the IP multicast packet was encountered, the sequence numbers for the unicast
packets were copied from ip_info to the tail of the packet header. The header
size had to be increased for this, and this limited the number of receivers which
could be used. Then the packet was sent using the IP multicast address and port
numbers on the mnetsock socket (see Figure 3.3). If an ACK was received for a
multicast packet, then a zero was placed in the ip.info’s sequence number slot
for the ACK’s sequence number. The unicast copies held in the pkt,s were only
sent if the IP multicast packet timed out.

The recipient-pvmds listening for incoming packets would receive the IP mul-
ticast packet on their mnetsock. This was how the recipient was able to tell that
the incoming packet was an IP multicast packet. When the netinput() function
was called, the sequence numbers were first removed from the tail of the header
of the packet. The number belonging to the particular pvmd was stored as the
sequence number for the incoming packet. If the new sequence number was zero,
the function returned to its calling function decreasing the amount of reverse
traflic, else the packet was processed as it would be in the non-IP multicast
routine.

If the IP multicast message was still in the queue when netoutput() was called
again, the function first checked the ip_info to determine whether or not the
multicast packet had been successful; then it checked to see if the number of
multicast retries (M) was greater than the maximum number of retries (R). If
both were false, the IP multicast packet was re-sent. However, if either was
true, the descriptor’s information for that packet was flushed, and the packet was
ACKed by the local pvmd. Any remaining unACKed back-up packets were sent
via unicast at this point.

3.2.5. Acknowledging IP multicast

Upon receipt of an ACK, the pvmd checked to see if the ACK was for an un-
ACKed packet in the queue. If so, then the pkt, that was to receive that ACKs
information was checked to determine whether or not it was an IP multicast
packet. If it was, then the Aip_info ACK information for this particular IP multi-
cast packet was incremented in order to keep track of the ACKs. This was how
the IP multicast packet could detect how many ACKs had been received.

-
Step I:
{ Y
task
1 b
e 5 pnd
‘J task
~ <
task 3
ke (
\. _/
(1) Viapvm_ipmcast(), task a requests a new task
GID from pvmd A. d
(2,3.4) pvmd A sends the new GID to taska and
to all other pvmds who have tasks in the group. task
(5.6) Broken line indicates an ACK for a €
pvmd-to-pvmd message.
\.
-
Step I1:
(] 1 task
b
7
task
task [
a
~ .
(7) Viapvm_ipmcast(), task a sends the \ . 12 task
mcast message containing the GID to pvmd A. ~ o d
(8) pvmnd A uses IPMcast to send the message to all
pvmds who have tasks in the group indicated
by the large arrow and the large broken lines. 13 task
e
(11,12,13) Those pvmds forward the message to all

tasks on their host which are in the group.

(9,10) Small broken line indicates an ACK for the
multicast message.

Figure 3.3: Diagram of the pvm_ipmecast() function.

- 16 -

3.3. PVM IP multicast Performance

The goal for implementing reliable IP multicast in PVM was to determine whether
it would improve performance, particularly for larger message sizes and a larger
number of receivers. The ACK-based protocol was tested without PVM on both
local and wide-area networks [9], and a performance model was developed to
predict speedup of multicast communication over unicast. The testing illus-
trated that performance was sensitive to packet size, network load, and multicast-
routing hops (#tl) [9]. The tests of the reliable multicast protocol and the model
suggested that reliable IP multicast should provide better communication per-
formance than a unicast-based multicast. However, the performance of the IP
multicast, pvm_pmecast(), function that was developed as part of this study was
slightly worse on average for the LAN when compared to PVM’s multiple unicast
version, pvm_mcast(), and the IP multicast version for the WAN was much worse.
As the number of hops through the Internet increased, the performance of the
reliable IP multicast in PVM deteriorated greatly.

The performance problems mentioned above and several factors mentioned
below may have led to decreased performance of the reliable multicast protocol in
PVM. For instance, the DM_MCA message must be accepted by a receiver before
the IP multicast packet can be accepted. Therefore, the IP multicast packets
are hampered by these initial unicast control packets. Also, the IP multicast
process incurs overhead in addition to the normal PVM packet processing. For
instance, the ip_info IP multicast descriptor must be properly filled for each
multicast message, and the ACKs for multicast packets must be counted so that
necessary retransmissions occur properly. In addition, the process that was used
for determining a retransmission method may have caused unnecessary waiting.
As well, the receivers of a multicast packet must check the packet header for the
appropriate sequence number to determine whether to continue processing the
packet. Due to this, IP multicast in PVM does not conform to our model except
that as the number of receivers increases time increases at a slower rate for IP
multicast than for multiple unicasts.

3.3.1. LAN Performance of pvm_ipmcast()

On the LAN using 2, 4, 6 or 8 receivers each at UTK/CS and at ORNL and a
1024-byte message, the pvm_mcast() messages are faster than the pvm_ipmcast()
messages on average by 2 to 20 ms (see Figure 3.4). Also, comparing these re-
sults to the standalone reliable multicast protocol test [9], both IP multicast and
multiple unicast methods incur overhead due to PVM. The additional IP multi-
cast overhead and restrictions appear to decrease the IP multicast performance

further.

0.085 -

O~ < pvm_ipmeast()
©—@ pvm_mcast()

0.055 Pre 4

?
X

g
~
\

[
g
T
~
~
\\
1

Total_time/rep. (sec.)
~

VA '
0.035 / / 4

b
o.mr 1 : 1
2 4 6 8
Number_of_Receivers

Figure 3.4: pvm_ipmcast() vs pvm_mcast() LAN Performance
Total Time/rep (sec.) vs Number of Receivers for 1024-byte packets.

3.3.2. WAN Performance of pvm_ipmcast()

On the directly-connected WAN using 1, 2, 3 or 4 receivers each at UTK/CS
and at ORNL and a 1024-byte message, PVM’s pvm_mcast() outperformed the
pvm_ipmcast() by 5 to 10 ms for a ¢t/ of 18 (see Figure 3.5) and by about 400
ms for a ttl of 76 (see Figure 3.6), except in the case of eight receivers where
they perform about the same. For the IP multicast version the increase in time
as the number of receivers increases is a slower rate than that of the non-IP
multicast version. In these PVM WAN studies, IP multicast began much worse
than multiple unicast, but as the number of clients increased, the difference in
their performance decreased. For the WAN, not only do the problems mentioned
in the subsection above exist, but also the numerous hops through the MBONE

- 18 -

and it’s mrouters add to the latency for large ttls. Due to this, comparisons
between IP multicast via the MBONE and multiple unicast in a WAN may not
always be fair at the present time.

Since PVM is to be used as a parallel machine, speed is a major factor. The
implementation of the reliable IP multicast protocol in PVM does not provide
the speed-up which was desired because only the multiple unicasts were replaced
with IP multicast and not much else was altered. Some of the reasons for limited
IP multicast performance are examined in the next section.

0.100 . .

Total_time/rep. (sec.)

0.030 +

0.020 L L
2 4 6 8
Number_of_Receivers

Figure 3.5: pvm_ipmcast() vs pvm_mcast() WAN Performance (til =

18)
Total Time/rep (sec.) vs Number of Receivers for 1024-byte packets.

- 19 -

0.670

O ~© pvm_ipmeast()
0.620 &-—@ pvm_mcast()

0570 | PRl

0520 : -~ /’ g

————
——
——

0470
0.420 / -

0.370 | .

Total_time/rep. (sec.)

oz70 |- Ji 4

0170 | Ji 4
]
oz b / i

0.070 &

0.020 L L
2 6

Number_of_Receivers

Figure 3.6: pvm.ipmcast() vs pvm_mcast() WAN Performance(ttl =
76)
Total Time/rep (sec.) vs Number of Receivers for 1024-byte packets.

4. Summary

Although many view the MBONE as a production model, there are still many
problems to be solved and new uses to be found. In this research, several questions
about reliable IP multicast were addressed. Those findings are reviewed below,
as well as limitations and future work in IP multicast.

The machines used in the test environment had to be IP multicast-capable.
Since none of the machines in the test configuration came with kernel support
in place, each machine had to have its kernel rebuilt using the IP multicast
software. The use of the IP multicast socket options were described for setting
the maximum hop count ¢! and for joining the multicast group. In addition,
each subnet had to have an mrouter for forwarding packets. Multiple mrouters
on the same LAN caused long periods of packet loss. Currently, the routes are
implemented manually via the /etc/mrouted.conf file.

Problems relating to the WAN used in the performance tests were discov-
ered during these experiments. Part of the problem is believed to be caused by
DVMRP multicast routers located on hosts at UTK/UTCC and UTK/CS that
are connected by a bridge. Also, since IP multicast is fairly new, bugs still exist
in some of the software. Another problem had to do with the number of hops
through the MBONE, which decreased performance. Currently, the IP multicast
performance over a WAN is limited by the number of hops. For each hop, there
is an increased probability that a packet may be lost. An IP multicast packet
traveling from one subnet to another may have to travel many times further than
a unicast packet would between the same subnets. As the number of mrouters
increases and the IP multicast path is shortened, this should not be as much of
a problem.

Many reliable multicast protocols exist. However, most protocols have been
developed for LANs where the kernels of the machines were altered or for specific
multicast programs, such as Jacobson’s whiteboard program. Therefore, the reli-
able multicast protocol in this study was written keeping in mind that it would
be implemented in PVM. Several items that exist in PVM were not duplicated
during the implementation of the reliable multicast protocol, such as special
addressing for multicast packets, ordering of packets, and task protocol. Also,
PVM’s positive acknowledgment protocol was used as the basis of the ACKs for

the reliable multicast protocol.

Finally, the performance of reliable IP multicast was examined. Reliable IP
multicast worked well in the LAN used in this study. For larger packet and
receiver set sizes, IP multicast was much better than multiple unicasts. However,
as the number of multicast-router hops increased on the WAN, IP multicast

- 91 -

performance deteriorated. The performance of IP multicast in PVM was also
disappointing. In order to implement the reliable multicast protocol in PVM and
to obtain an improvement over what already exists, major changes to PVM’s logic
would need to be made, such as providing an IP multicast sequence number that
would allow only the IP multicast packet’s pkt to receive all the multicast ACK
information. When the IP multicast pkt is dequeued, only the unicast back-up
pkts that are needed for unicast retransmissions would need to be formed. In
PVM, there also needs to be a process for discovering mrouter problems. In the
case where an mrouter is down, all pvm_ipmcast() requests could automatically be
processed as pvm_mcast() requests. In addition, when the number of IP multicasts
to a virtually static group is large, providing a less dynamic multicast group would
decrease the number of DM_MCA messages and could decrease any delays due
to a receiver discarding an IP multicast packet which could arrive before the
DM_MCA message. As the single echo tests showed [9], IP multicast improves
over multiple unicasts as the number of receivers increase. It is possible PVM
pvm_ipmecast() performance would have surpassed pvm_mcast() with more than
eight receivers, but the resources to conduct such tests were not available.

4.1. Limitations

There are several drawbacks to using IP multicast. Many of the problems are
related to management, privacy, and reliability. Another issue is that IP multi-
cast is not widely available. Also, no easy manner exists in which IP multicast
addresses and port numbers can be generated through the application. In ad-
dition, there are major steps yet to be made in the routing of IP multicast and
in increasing its bandwidth. These issues are discussed further in the following
sections.

4.1.1. Control

IP multicast is very new, and there are many problems that have not yet been
solved. Since there is a lack of vendor support, most problems are being solved
through a collective effort. Usually problems, concerns, questions, etc. are posted
to mailing lists (e.g., mbone@ISI.EDU) where other MBONE users may help.
Such lists are a source of information on conference scheduling or the latest tools.
One problem is the lack of control on the MBONE. Other than peer pressure,
nothing automatically manages the operation of the MBONE. The use of low
ttl values at the application level does help in keeping local multicast traffic
from flooding the Internet. An additional problem is that IP multicast does not

currently provide privacy; this is left for the user to provide. Plus, IP multicast
sockets are UDP-based, which means that the MBONE only provides a best-effort
service. Presently, most MBONE tools are best-effort. The user is responsible for
any necessary reliability, privacy and control measures, as well as scheduling an
event.

4.1.2. Availability

Currently, there are very few machines that are IP multicast capable. Mosedale[5]
lists locations for obtaining software for reconfiguring some machines, informa-
tion on connecting to the MBONE, and information about obtaining and using
MBONE tools. According to Mosedale, the following come with kernel support
in place: Solaris (2.1+), BSD/386 (1.14+), DEC OSF/1 (2.0+), and IRIX (4.0+).
For some systems that do not support IP multicast, software for reconfiguring
the kernel exists. All of the machines used in this research had to be reconfig-
ured. Also, one IP multicast-capable machine per subnet had to run the mrouted
program to route multicast packets since routers in general are not capable of
routing IP multicast packets.

4.1.3. Address and Port assignments

In this work, the address and port number were static. For testing purposes
this was helpful because one would always know what address and port number
to watch while using network debugging tools. For general use, this will cause
problems especially if two users on the same network choose the same values.

A better way to choose these numbers is through random selection, but there
will be clashes all too soon according to the birthday effect. To use McCanne
and Jacobson’s sd[15] program, which greatly reduces the occurrence of an ad-
dress/port clash, would be a better way of selecting these numbers. Sd randomly
generates the numbers, and it avoids selecting those numbers that it hears in
advertisements from other sites. However, sd does not currently have an applica-
tion interface. To use sd with an application, one would need to enter the data
as command line arguments, or the application would have to prompt the user
for the information. According to Stephen Casner®, the authors of sd plan to
make a program interface. This would mean that a program would not have to
generate its own address and port number or input the data manually. Also,
although there may be no clashes between the host from which sd was run, there
possibly could be clashes for other hosts in the multicast group if those hosts are

3CASNER@ISL.EDU via email Wed., Sept. 14, 1994

-93 -

not within the same subnet. In this case, one may wish to test the address/port
numbers for all hosts in a particular multicast group when using a WAN.

4.1.4. Bandwidth and Routing

Currently, the MBONE’s bandwidth is only about 500kbps. As IP multicast and
the multimedia applications that use it becomes more widely used, the need for
more bandwidth will increase. Smarter multicast routing algorithms can prune
back multicast traffic associated with inactive sessions and thus make better use
of existing bandwidth. Researchers are already looking into making IP multicast
routers more widely available which should decrease the number of hops and
increase the available bandwidth.

If speed-up is the objective, reliable IP multicast over a WAN is not ready for
production. Since IP multicast relies on specialized routers that are few in number
compared to ordinary routers, an IP multicast packet incurs a large amount of
overhead on a WAN. For instance, encapsulating a packet to be forwarded from
one mrouter to another adds a small cost that unicast packets do not have.
In addition, this cost is increased for each hop through the MBONE. In many
cases, the IP multicast packet may have to travel hundreds of miles through the
MBONE while a unicast packet with the same source and destination may travel
only tens of miles. As well, for each hop, the probability of a packet being lost
may increase. : '

4.2. Future Work

The MBONE'’s use is increasing rapidly. Internet users are discovering the uses
or new uses for the MBONE. However, for it to grow, problems need to be
solved and limitations overcome. To provide reliable IP multicast to the entire
MBONE community, several things need to happen. An RFC for a reliable
IP multicast protocol is needed such that reliability can be easily provided to
MBONE applications and in order to standardize the method. More reliable
IP multicast software and tools are needed before the MBONE can move into
commercial use. A dynamic address and port server with which applications can
interface is also needed. More IP multicast routers are needed in order to increase
the bandwidth and decrease the number of hops through the MBONE making
reliable IP multicast more competitive. Changes such as these would prepare IP

multicast for production use.
For the current status and availability of IP multicast in PVM, the reader is
invited to visit Attp://www.epm.ornl.gov/pvm.

5. References

[1] A. S. Tanenbaum. Computer Networks Second Edition, chapter 1. Prentice
Hall, 1989.

[2] C. Bormann, J. Ott, H.-C. Gehrcke, T. Kershat, and N. Seifert. MTP-
2: Towards Achieving the S.E.R.O Properties for Multicast Transport. In
Presented at the ICCCN ‘94, San Francisco, September 1994.

[3] C. Huang, E. P. Kasten, and P. K. McKinley. Design and Implementation
of Multicast Operations for ATM-Based High Performance Computing. In
Proc. Supercomputing 94, Washington D.C., November 1994.

[4) D. Cheriton. VMTP: Versatile Message Transaction Protocol. Request for
Comments 1045, Stanford University, 1988.

[5] D. Mosedale. Dan’s Quick and Dirty Guide to Getting Connected to
the MBONE. 1994. file://genome-ftp.stanford.edu/pub/mbone/mbone-
connect.

[6] D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast
Routing Protocol. Request for Comments 1075, BBN STC, and Stanford
University, 1988.

[7] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM: Parallel Virtual Machine a User’s Guide and Tutorial for
Networked Parallel Computing. The MIT Press, 1994.

[8] J. Mogul. Broadcasting Internet Datagrams. Request for Comments 919,
Stanford University, 1984.

[9] K. Hall. The Implementation and Evaluation of Reliable IP Multicast. Mas-
ter’s thesis, University of Tennessee, Knoxville, 1994.

10] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
g
grammability, chapter 7. MIT Press and McGraw-Hill, Inc., 1993.

[11] K. Lebowitz and D. Mankins. Multi-network Broadcasting within the Inter-
net. Request for Comments 947, BBN Laboratories, 1985.

[12] K. P. Birman and T. A. Joseph. On Communication Support for Fault
Tolerant Process Groups. Request for Comments 992, Cornell University,
1986.

[13] M. Ahamad and N. E. Belkeir. Using Multicast Communication for Dynamic
Load Balancing in Local Area Networks. by personal communication.

[14] M. Kaashoek and A. S. Tanenbaum. Efficient Reliable Group Communica- -
tion for Distributed Systems. (Submitted for publication 1994).

[15] M. Macedonia and D. Brutzman. MBONE, the Multicast BackbONE. IEEF
Computer, January 1994. (draft article accepted for publication).

[16] M. Satyanarayanan, E. H. Siegel. Parallel Communication in a Large Dis-
tributed Environment. IEFE Transactions on Communications, 39(3):328-
348, March 1990.

[17) M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, D.
C. Steere. Coda: A Highly Available File System for a Distributed Worksta-
tion Environment. IEEE Transactions on Communications, 39(4):447-458,
April 1990.

[18] R. Braudes and S. Zabele. Requirements for Multicast Protocols. Request
for Comments 1458, TASC, May 1993.

[19] R. Manchek. Design and Implementation of PVM Version 3. Master’s thesis,
University of Tennessee, Knoxville, 1994.

[20] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport Protocol.
Request for Comments 1301, Xerox, Apple, and Cornell University, 1992.

[21] S. Chang, D. Du, J. Hsieh, M. Lin, R. Tsang. Parallel Computing Over a
Cluster of Workstations Interconnected via a Local ATM Network. Technical
report, University of Minnesota Twin Cities, September 1994.

[22] S. Deering. Host Extensions for IP Multicasting. Request for Comments
1112, Stanford University, 1989.

[23] S. Pingali, D. Towsley, and J. Kurose. A Comparison of Sender-Initiated
and Receiver-Initiated Reliable Multicast Protocols. ACM, SIGMETRICS

94, May 1994.

[24] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT) An
Architecture for Scalable Inter-Domain Multicast Routing. SIGCOMM ’93,
San Francisco, September 1993.

-9 -

[25] V.S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM Con-
current Computing System: Evolution, Experiences, and Trends. Parallel
Computing, 1992.

[26] W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer
Protocol, chapter 8. Addison-Wesley Publishing Company, Inc, 1992.

35.

36.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

ORNL/TM-13030

INTERNAL DISTRIBUTION

T. S. Darland 22-26. R. F. Sincovec

J. J. Dongarra 27. P. H. Worley

T. H. Dunigan 28. Central Research Library

G. A. Geist _ 29. ORNL Patent Office

K. L. Kliewer 30. K-25 Appl Tech Library

C. E. Oliver 31. Y-12 Technical Library

R. T. Primm 32. Laboratory Records - RC

S. A. Raby 33-34. Laboratory Records Department
M. R. Leuze - .

EXTERNAL DISTRIBUTION
Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-

der, CO 80309

Jesse L. Barlow, Department of Computer Science, 220 Pond Laboratory, Penn-
sylvania State University, University Park, PA 16802-6106

Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

Roger W. Brockett, Wang Professor EE and CS, Div. of Applied Sciences, 29
Oxford St., Harvard University, Cambridge, MA 02138

James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

Bill L. Buzbee, Scientific Computing Division, National Center for Atmosphefic
Research, P.O. Box 3000, Boulder, CO 80307

Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

Thomas A. Callcott, Director Science Alliance, 53 Turner House, University of

. Tennessee, Knoxville, TN 37996

Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

65.
66.

67.

68.

- 98 -

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Siddhartha Chatterjee, RIACS, MAIL STOP T045-1, NASA Ames Research Cen-
ter, Moffett Field, CA 94035-1000

Eleanor Chu, Department of Mathematics and Statistics, University. of Guelph,
Guelph, Ontario, Canada N1G 2W1

Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 32611-2024

Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
TN 37235

Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260 :

Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, P.O. Box 24346, M/S TL-20, Seattle, WA 98124-0346

Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

69.

70.

71.

72.
73.

74.

75.

76.

77.

78.

79.

80.

81.

. 82.

83.

84.

85.

86.

87.

88.

89.

- 99 .

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

John Gustafson, Ames Laboratory, lowa State University, Ames, IA 50011

Michael T. Heath, 2304 Digital Computer Laboratory, University of Illinois, 1304
West Springfield Avenue, Urbana, IL 61801-2987

Don E. Heller, Scalable Computing Laboratory, Ames Laboratory, US Dept. of
Energy, Iowa State University, 327 Wilhelm Hall, Ames, Iowa 50011-3020

Dr. Dan Hitchock ER-31, MICS, Office of Energy Research, U. S. Department of
Energy, Washington DC 20585

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Lennart Johnsson, 592 Philip G. Hoffman Hall, Dept. of Computer Science, The
University of Houston, 4800 Calhoun Rd., Houston, TX 77204-3475

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematicé and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Kenneth Kennedy, Department of Comp‘uter Science, Rice University, P.O. Box
1892, Houston, TX 77001

Dr. Tom Kitchens ER-31, MICS, Office of Energy Research, U. S. Department of
Energy, Washington DC 20585

Richard Lau, Office of Naval Research, Code 1111MA, 800 Quincy Street, Boston,
Tower 1, Arlington, VA 22217-5000

Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Professor Peter Lax, Courant Institute for Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346 :

Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

90.

91.

92.

93.

94.

95.

96.
97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

- 30 -

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125 A

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Dr. David Nelson, Director of Scientific Computing ER-30, Applied Mathematical
Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585

Professor V. E. Oberacker, Department of Physics, Vanderbilt University, Box
1807 Station B, Nashville, TN 37235

Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University, Winston-Salem, NC 27109

James Pool, Caltech Concurrent Supercomputing Facility, California Institute of
Technology, MS 158-79, Pasadena, CA 91125

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Professor Daniel A. Reed, Computer Science Department, University of Illinois,
Urbana, IL 61801

John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Joel Saltz, Dept. of Computer Science and Institute for Aannced Computer
Studies, 4143 A. V. Williams Bldg., University of Maryland, College Park, MD
20742-3255

Martin H. Schultz, Department of Computer Science, Yale Untversity, P.O. Box
2158 Yale Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville, ¥
FL 32611

-31-

110. Horst Simon, NERSC Division, Lawrence Berkeley National Laboratory, Mail Stop
50A /5104, University of California, Berkeley, CA 94720

111. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

112. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742 .

113. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

114. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, TX 77084

115. Robert Ward, Department of Computer Science, 107 Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

116. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663 MS-265, Los Alamos, NM 87545

117. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

118. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-6269

119-120. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

