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Abstract

We present nonlinear analyses of non-seizure electroencephalogram (EEG) time
series data from four epileptic patients. A non-seizure state is a period that is
free of any part of an epileptic seizure, including the transition to a fully devel-
oped episode. EEG measurements are typically contaminated with a large amount
of non-neurophysiological source information, generally called “artifact,” which
arises, for example, from eye movement, muscle tension, and physical motion.
This study reflects three underlying objectives. The first objective is to gain some
insight into how much variability in analysis results to expect from patients having
similar clinical characteristics. The second objective is to investigate the impact of
one specific type artifact, namely, eye movement, on the analysis results. A special
feature of the research presented here is the introduction and testing of a filter
for eye-movement artifact. Finally, the third objective is to determine if neuro-
physiological activity as viewed from two adjacent channels appears dynamically
to be the same or different. Regarding the last objective, we also want to study
the impact of artifact on observed coupling between channels.






1. Introduction

Two of the greatest challenges of neurological medicine are the accurate diagnosis
and the effective treatment of epileptic seizures. Epilepsy remains one of the most
prevelant, and yet poorly understood problems of medical science. The cost to the
individual experiencing epilepsy and to society is truly enormous. The sine qua non
for the evaluation of epileptic seizures is the electroencephalogram (EEG). The analog
version has been a tool for many decades, and more recently, quantitative EEG using
analyses of digitized data has become available.” Despite the obvious advantages of
quantitative EEG, it has offered relatively little to clinical epileptology. For instance,
artifact confounds spike detection algorithms currently used in quantitative EEG and
there are few quantitative markers of epileptic seizures. For this and a variety of
other theoretical and practical reasons, there is cause for developing more sensitive and
discriminating quantitative EEG methods than presently exist.

The purpose of this article is to present results of modeling and analyzing non-
seizure EEG time series data from four patients with epilepsy. There is substantial
evidence in the literature to support making the assumption that neurophysiological
activity is a chaotic nonlinear dynamical process [12, 2, 15, 21, 3, 17], and the methods
used to do the modeling and analyses presented here are based on that theory. Imple-
mentation of the methods we use depends on the fundamental reconstruction theorem
due to Takens [20], which provides a means to represent such a system using time
series data. Articles that review the theory and describe various measures of chaotic
structure, as well as methods for calculating those measures, are Ruelle [18], Eckmann
and Ruelle [7], Abarbanel et al.[1], and Grassberger et al.[11].

EEG measurements are typically contaminated with large amounts of artifact,
which are data due to, for example, eye-movement, muscle tension, and physical mo-
tion. Because there is concern that artifact obscures the underlying brain dynamics,
the usual procedure in a clinical setting is to eliminate the sections with artifact and
analyze only the remaining artifact free data. However, typically 50% of a record is
contaminated by artifact signals, and thus this procedure normally results in producing
a relatively small file consisting of a number of short, distinct segments.

The primary purpose of this study is to gain some insight into how discriminating
nonlinear techniques are compared to linear ones when applied to EEG data for epileptic
patients. Beyond that, we also want to gain some insight on whether neurophysiological
activity as observed by distinct channels appears to be the same or different and whether
artifact interferes with that observed activity. If the modeling and analysis methods
considered here are ultimately shown to be transparent to the presence of artifact,
the current clinical practice of explicitly removing those segments may prove to be
unnecessary. Another potential means for coping with artifact may be to filter it. A
band-pass filter is introduced that can be tuned to different types of artifact, and we
make a preliminary assessment of its effectiveness.

The analysis is organized into three parts to reflect the primary and secondary ob-
jectives described above. The first part considers variability in analysis results between
patients having similar clinical characteristics. Here, we mimic the clinical setting by
first removing artifact contaminated segments from the record. The second part consid-




-9.

ers whether neurophysiological activity as viewed from two adjacent channels appears
dynamically to be the same or different and, in addition, considers the impact of one
specific type artifact, namely, eye movement, on that appearance. The performance
of the artifact filter is considered here, too. Finally, the third part considers coupling
between adjacent channels. Again, we consider the impact of artifact and the artifact
filter on that observed coupling.

As described above, the motivation for the research presented here is the goal to
develop better methods for analyzing EEG data. The methods we use consist, first,
of a technique for constructing a model of a nonlinear dynamical process from time
series data and, second, of methods for estimating quantitative measures of the ergodic
structure of the resulting model. In order to make clear what is meant by a model, how
to construct a model, and how to analyze a model, before presenting the three part
results described above we go through the procedure step by step, illustrating each step
using one of the EEG files.

We described the EEG records above as being non-seizure data. To be more exact,
each record covers a tranquil period that does not contain a seizure, the transition
period leading to a seizure, and the recovery period following a seizure. One EEG record
from each of four patients is used for this study. Each of those records consists of sixteen
channels arranged according to the longitudinal bipolar montage EEG protocol, which
is illustrated in Fig. 1. Further, each record covers a single continuous measurement
period of 600 seconds. The data was obtained using instrumentation with parameter
values

fs = sampling rate
= 512Hz,

fo = low-pass filter cutoff (1)
= 100Hz,

fn = high-pass filter cutoff
= 15Hz.

We want to describe in a generic way how an EEG record is used to generate data
files used in this study. Selecting a channel from the EEG record, a file is created from
the given record that consists of time series segments that are artifact free. A second
file is created that contains time series segments with eye movement artifact such that
those segments do not overlap in time any part of the segments in the first file. The
first file is used to analyze the normal, artifact free process as observed by the given
channel and is intended to mimic how analysis is done in the clinical setting. The
second file concatenated with the first is used to represent the normal process with the
addition of eye movement artifact.

Referring to Fig. 1, note that Channel 13 is one of two channels closest to an
eye, and that Channel 14 is once removed from Channel 13 along the hemispheric
boundary. We expect Channel 13 to be at least as affected by eye-movement artifact as
any channel. Further, if the analysis techniques used here can detect coupling between
channels, we expect to observe that between Channels 13 and 14. Also, if there is decay
in the influence of eye-mevement artifact with distance from an eye, we expect to see
that using those two chanmnels. For those reasons, we use data from Channels 13 and
14 in this study.
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Table 1 is a list of the files constructed from the four EEG records used here. Again,
the files contain artifact-free segments and segments with only eye-movement artifact.
The extensions 13 and 14 refer to Channels 13 and 14, respectively. The letters “em”
are used to designate eye-movement artifact data files. Note that there are two such
files, both for Patient 1. Further, note that there is one artifact-free file for each patient,
all derived from Channel 13. We note two additional facts regarding the arrangement
of segments within a file. First, within a given file, the ordering of segments reflects
increasing time relative to the EEG record. Second, in those cases where there are pairs
of files for Channels 13 and 14, like felchl3 and felchl4, the corresponding segments
are aligned in time, namely, the first segment from felchl3 is aligned in time with the
first segment from felchl14, and so forth.

Patient File Name Channel File Description No. Segments
1 felch13 13 artifact-free 4
1 felchl4 14 artifact-free 4
1 felem13 13 eye-movement artifact 4
1 felem14 14 eye-movement artifact 4
2 25402c13 13 artifact-free 4
3 28049c13 13 artifact-free 5
4 28158¢13 13 artifact-free 4

Table 1: A list of the files constructed from the four EEG records.

The remainder of this paper is presented in four sections. Section 2 reviews mathe-
matical tools used for time series analysis and for constructing an approximation of the
nonlinear dynamical process represented by the EEG data. Further, measures of the
ergodic structure of chaotic processes that we estimate and present in this paper are
defined. At each step an example is given using one of the files listed in Table 1. Section
3 describes a quadratic filter designed to remove low-frequency artifact corresponding
to eye movement. Section 4 reports the results of the nonlinear analyses organized ac-
cording to the three parts outlined above. First, we examine the nonlinear variability
among all four patients for one channel of artifact-free data. Second, using data from
Channels 13 and 14 for Patient 1, we apply the artifact filter described in Section 3
to the with-artifact data to generate artifact filtered data. We then compare nonlinear
models and analyses using artifact-free, with-artifact, and artifact-filtered data from
the two channels. Third, we calculate a nonlinear measure of coupling between Chan-
nels 13 and 14 for Patient 1 using artifact-free, with-artifact, and artifact-filtered data
and assess the differences. Finally, Section 5 presents our conclusions.

2. Nonlinear Processes and Time Series

We begin this section by reviewing the definition of a nonlinear dynamical process and
describing the theory that provides for constructing an approximate model of such a
process using time series. Next, we review some mathematical tools used to determine
fundamental information about the process from the time series which is needed to
construct the model of the nonlinear process. We then describe the technique used



Figure 1: Bipolar montage used to obtain EEG measurements.

for determining the model. Finally, we define and describe the quantitative ergodic
measures of the reconstructed nonlinear process presented in this paper. We illustrate
each step using the file felch13 from Table 1, which is artifact-free data from Channel
13 for Patient 1.

2.1. Nonlinear Dynamical Processes

Using E™ to denote #-dimensional Euclidean space, let
f:E* ~ E®

be a diffeomorphism. Suppose M C E" is a compact, 7i-dimensional differentiable
manifold and that f restricted to M is a diffeomorphism of M. Let A be a compact
subset of M such that f maps A onto A. Further, let U D A be an open subset of M
such that _
m f}(U) = A.
1—00
Finally, let p be an ergodic probability measure on A with respect to the transformation
f, which is to say that, if V' C A is measurable with respect to p, then p(f(V)) = (V).
We refer to E® as “state space” and to A as an “attractor.” The point of view taken
here is that nonlinear dynamical processes, including chaotic systems, are represented
by triples of the form (4, f,p), that is, an attractor in state space, a diffeomorphic
mapping of that attractor onto itself, and an ergodic probability measure with respect
to that attractor and diffeomorphic mapping,.
Suppose a € A is the state of the experimental system at the instant we begin to
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observe it. Then, {fi(a)}ic, is a time series of states visited by the process. Now,
suppose ¥ : A — R is a real-valued function, or observable, on A. Then,

Y= y(ai) = y(fi(a))a 1= 07 1, 27 ceoey

is a real-valued time series of the experimental system.

The following is a theorem due to Takens[20] that constitutes the foundation for the
time series analysis methods described here. As used in the statement of the theorem,
“smooth” means at least C?.

Theorem 1. (Takens)Let M C E™ be a compact, differentiable manifold of dimension
7. Further, let f : M — M be a smooth diffeomorphism of M and let y : M — IR be
a smooth, real-valued function on M. It is a generic property that the map

®: M — E2HL
defined by )
&(a) = (y(a), y(f1(a)), - - -, 9(fF(@)), a€ M,

where T denotes matrix transpose, is a smooth embedding.

For some choice of values for the positive integers (n, k), consider the object jiy C
E7, where

Ay = {yi}20 ()
and y; is defined by
Vi = (is Yicts Yik2hs - - o2 Yirb(n1)b) » 3)

Provided n > 27 + 1, Takens’ reconstruction theorem implies the mapping
$:4- fiy
defined by _
o(a;)=y;, ©=0,1,2,...,
produces a smooth embedding & : 4 — E}. Define
fy = ofod?!
Dy = po &1

Then, the triple (.Aiy, fy, Dy) constitutes a faithful representation of the dynamical sys-

tem (4, f,p).

The pair of integers (n,k) used to define the vector y; Eq. (3) are referred to as
the embedding dimension and time lag, respectively. Choosing appropriate values for
(n, k) is a primary objective for an analysis leading to a model (Ay, fy, Py) of 2 nonlinear
dynamical process.



2.2. Low-Pass Filters

Low-pass filtering plays an important role in conditioning time series data. The sig-
nificance of such conditioning for constructing empirical nonlinear dynamical models
is discussed later. Here we describe the specific low-pass filter used for the analyses
presented in this article.

Consider the first-order, linear low-pass filter

where z is input, y is output, w = 27 f,, and f, is the cutoff frequency. Integrating this
equation over the interval [¢;,1; + ts] produces

yigr = Yiexp(—wis)+ z:[l — exp(—wis)],
= ay; + bzia (4)

where z;,7 = 0,1,2,... is a time series obtained from z(¢) using the sampling time %,.
Eq. (4) is referred to in control theory as a first-order lag, or first-order infinite impulse
response, low-pass filter and is frequently used to simulate the behavior of measurement
instuments[16]. We use the fourth-order filter that results by applying the first-order
filter Eq. (4) in series four times, which is to say output from the first stage is input to
the second, output from the second stage is input to the third, and so forth.

Figure 2 displays a segment of the EEG data before and after applying the low-
pass filter. The filter cutoff values displayed in Fig. 2 are normalized by the sampling
frequency. The normalized filter cutoff value for Fig. 2a is f; = .5, which is half
the sampling frequency. That value for the cutoff frequency is commonly known as the
“Nyquist” frequency and is used in measurement instrumentation to prevent “aliasing.”
The sampling time, sampling frequency, and the dimensional value of f, shown in
Fig. 2b are, respectively,

ts =138, fs=0512Hz, f.=50Hz. (5)

2.3. Power Spectra and Autocovariance

Power specta analysis of discrete time series is well established and we refer to Blackman
and Tukey [5] for detailed information on that topic. Here, we want to briefly review
the relationship between the power spectrum and autocovariance function of a time
series ¥ = {9;}}¥,. The autocovariance estimate for lag k is

N-k
1 _ _
Ckz-]—V_Z(y‘i—'y)(yi+k_y)ak=071a-"aN—'1, (6)

i=1
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Figure 2: Example segments for the EEG data, y, as a function of observation index,
i: (a) as-measured data (f. = .5); (b) conditioned EEG data (f. = .098).

where 7 is the mean value of y. Suppose N is odd. Then we can write N = 2¢ + 1.
The time series y can be decomposed into Fourier modes according to the equations

g
y; = ao + Y _ (e cos(2r fji) + B; sin(2x fji)) , i = 1,..., N, (7)
j=1

where f; = j/N and

¢ = Y,
9 N
a; = WZy, cos(27 fji) ,
=1
9 N
B; = WZ% sin(27 f;) . (8)
i=1

The power spectrum for the time series y is

P(f)= M(a2 +£0), = 1,200t ©)
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Figure 3: Power spectra, Logio(Power), as a function of normalized frequency, f/fs, for
EEG data: (2) EEG data; (b) magnified view of (a).

Finally, the sample spectrum P(f) can be calculated from the sample autocovariance
by the cosine transformation

N-1 -
P(f)=2leo+2 Y ercos(2mfik)], fi = - (10)
k=1

In general, most of the variation in the autocovariance function occurs for relatively
small values of lag k, so that it follows most of the energy in the power spectrum P(f)
for high frequencies derives from the autocovariance function for small values of k. We
reference this observation below.

Figure 3 displays power spectra for the EEG data, both for the as-measured data
and for the conditioned time series obtained using the low-pass filter described in the
previous section. The choice of a low-pass filter cutoff value is guided by the desire
to preserve power in the dominant low frequency band and to minimize power above
that band. The magnified frame in Fig. 3 supports the view that those conditions are
achieved by the choice made for the filter cutoff value.

2.4, Mutual Information

Mutual information is a nonlinear measure of the extent to which one random variable
is a function of another [19]. Let (z,y) be an R2-valued random variable. Further, let
p(z,y) be the joint probability density of (z,y), and let p(z), p(y) be the probability
densities of z,y, respectively. Then, the mutual information of the random variables




z,Y is, by definition,
M(z,y)= ./]R2 m(z,y)dzdy, (11)

where

— e p(z,9)
) = P ol

We note several properties of mutual information M. First, by definition, mutual
information is symmetric in its arguments. Second, M(z,y) > 0 and M(z,y) = 0
if and only if z,y are independent. Third, if y is a function of z, then M(=z,y) is
unbounded.

Consider now the time-series {y;},, and suppose y is 2 measurement from a sta-
tionary stochastic process. For an arbitrarily fixed value of the time delay &, we define
the bivariate IR?-valued random variable (%;, ¥;4+%) and the mutual information function
associated with that time series by

M(k) = M(y;, Yitr)- (12)

The function M(k) is a nonlinear measure of the dependence of two observations from
the time series y separated by the time delay k. In general, mutual information is
regarded as a more appropriate measure of independence versus dependence for a non-
linear process than the autocovariance function Eq. (6) [8, 9]. Like the autocovariance
function, M (k) in general varies most rapidly for small values of delay k, and, refer-
ring to the equation expressing the relationship between the autocovariance and power
spectrum Eq. (10) and the observation made following that equation, the time scales
associated with the most rapidly varying segment of mutual information translate to
relatively high frequencies that are not resolved in the nonlinear process reconstruction
described below.

Figure 4 displays mutual information for the EEG data, both for the as-measured
and conditioned data sets. Note the difference in the two curves. Mutual information
for the as-measured data, which has more noise than the conditioned data, falls off
more rapidly than that for the conditioned file. For both data sets, the variation in
mutual information is small for lag values £ > 20, which corresponds to a normalized

frequency
f=1/20=.05.

Referring to the power spectra for the as-measured and conditioned data Fig. 3, note
that the conditioned data loses power rapidly for normalized frequencies f > .05, thus
magnifying the relative power for frequencies f < .05. The low-pass filter cutoff value
used to condition the data, f, = .098, isolates the dominant frequency content of the
data, which is reflected in Fig. 3.

2.5. Process Model

We review a technique, which is based on a procedure introduced by Broomhead and
King [6], for constructing a model of a nonlinear process. The technique described
here is a refinement of that given by Lawkins et al. [13]. The refinement concerns
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Figure 4: Mutual information, M, as agfunction of lag, k, for the EEG data.

the combined use of time domain information represented by mutual information with
frequency domain information represented by power spectra to comstruct a model.
While the use of mutual information for constructing models was introduced by Fraser
and Swinney [8], the way that information is used here is different than that described
by those researchers and practiced, for example, by Abarbanel et al. [1].

Recall that the primary task is to determine appropriate values for the reconstruc-
tion parameters (n,k), where n is the embedding dimension and k is the time delay.
Given values for those parameters, we have

Ay={y}l; c B}, (13)

where
yi = (yi: Yitks Yit-2ks -« yi—l-(n—l)k)T . (]_4)
Given the parameter values (7, k) and the sampling time 5, we define

t‘w = (n —_ 1) X kX 15
= tl_ula window time scale , (15)
fo = 1,

= the window frequency .
Next, we describe an orthonormal transformation

Y: Ey — Ep
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based on singular-value analysis. Define the correlation matrix

=% Zyzy,

t=0

The eigenvalue/eigenvector pairs of the matrix M are the singular values and principal
modes associated with the trajectory, or multivariate time series, {y;},. We denote
the singular values and principal modes in pairs by

{290}y (16)
where ordering is determined by
oi>e2>..>02 @17

Define the n X » matrix ¥ by

U = (P1,%2, 5 %n)
so that the principal mode %; is the j-th column of ¥. Then
6="uTy (18)
defines an orthonormal transformation ¥ : Ejf — Ef that transforms

¥
fiy = {Yi}iN=1 - “19 = {oi}g:.l .

We want to make two observations regarding the transformation Eq. (18). The first
is that, in general, the principal mode %; is expected to have a total of j relative maxima
and minima. Thus we expect the j-th mode to have approximately j/2 waves over the
time span of a point y; , which is the window time scale t,, Eq. (15). Consequently,
the j-th coordinate in EF, which is the inner product of y; with %;, corresponds
approximately to information in the time series resolved by the frequency

St =% (19)
where f,, is the window frequency Eq. (15). The second observation is that the singular
values Eq. (16) are estimates of the second moments of each coordinate value in the
set Ay and, as such, determine length scales in phase space E7 for Aq.

We select candidate values for the reconstruction parameters (7, k) based primar-
ily on the following two conditions. First, referring to Eq. (19), we want the lowest
order, principal component frequencies f;, j = 1,...,m, where m < n, to resolve in-
formation in the time series, as represented by the power spectrum, considered to be
most important. Second, we want the corresponding distribution of singular values,
af, j=1,...,m, Eq. (16), to resolve the state-space range of length scales associated

fi=1
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with the frequencies f;, j = 1,...,m. Recall the ordering of singular values Eq. @an.
If oy is sufficiently small, the projection

P™:Ef — By, (20)

where EJ" is the linear subspace of Ef spanned by to the first m principal components,
will result only in eliminating small scale, noisy detail in the highest order coordinates.
We refer to the resulting reconstruction by the ordered triple of parameters (z, &, m).

Figure 5 displays singular values and normalized coordinate frequencies for the three
pairs of candidate model parameter values

(n,k) = (6,3),(9,3), (12,3) . (21)

The normalized window time scales and frequencies Eq. (15) for those parameter values
are, respectively,

(n-1)xk = 15, 24, 33,

fuw X ts = 67(-1), .42(-1), .30(-1). (22)

Referring to mutual information Fig. 4, the lag value k = 3 accounts for the most
rapidly varying segment of the mutual information curve and the last two normalized
window time scales cover the range of exponential variation. Referring to the power
spectrum Fig. 3, note that the last two normalized window frequencies are within the
low frequency band isolated by the low-pass filter. We delay until the following section
making a judgement as to the adequacy of the three candidate models.

In general, the low-pass filter described in Section 2.2 is used to reduce the frequency
content of the time series for frequencies greater than the upper bound of the frequency
band in the power spectrum considered to include significant information about the
process of interest. Recall from Section 2.4 that the extent of the most rapidly varying
segment of mutual information also provides an estimate of the upper bound of that
frequency band. The impact of such low-pass filtering is to reduce the potential noise-
like effect of high frequencies on the coordinate frequencies Eq. (19) associated with a
model and, hence, on the analyses that depend on that model.

2.6. Correlation Dimension

We review the definition of correlation dimension. Let Q@ = {w;} be a partition of the
attractor A. For an arbitrarily fixed real number g > 0, we define

Co(@) = {3 p(w)p* (@)}

and the corresponding ¢-th order information associated with Q by

1,(Q) = —In(Cy(2))-
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Figure 5: Singular values, Ln(o), and normalized coordinate frequenc1es, f;/fs, for the
EEG data: (a) singular values; (b) coordinate frequencies.

If Q is a partition of length-scale ¢, we also use the notation

Co(e) = Co(9)

and
Iy(€) = ~In(Cy(e)). (23)
I
Cy(€) x €1 (24)

over some range of length-scale ¢, then the process has ¢-th order “fractal structure” of
dimension v, over that range of . The “correlation” dimension results if ¢ = 2, which
corresponds to the analysis results presented in this paper. Viewed as a function of ¢,
Iy(¢) is referred to as the “correlation integral.” Henceforth, we use the notation

v = U2,
c = 027
I = L.

Suppose  is a partition of length scale e. Then I(€) is a measure of the expected
number of base-e digits two points drawn from the same member of Q2 are expected to
have in agreement in each coordinate.

The method used to calculate the correlation integral, and hence the correlation
dimension, is due to Grassberger and Procaccia [10]. Fig. 6 displays correlation integrals
corresponding to the (n, k) parameter values used in Fig. 5. According to Eq. (24), the
correlation dimension is the slope of the curve —I(In(¢)), which appears to be converged
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Figure 6: Correlation integrals, Ln(C(e)), as a function of the partition, Ln(e), for EEG
data using (n,k) parameter values displayed in Figure 5.

for the candidate models Eq. (21)

(na k, m) = (93 3a 9) ’ (25)
(n,k,m) = (12,8,9), (26)

yielding the value
v=4.1. (27)

Note the difference in state-space length scales for which fractal structure is resolved
by the two models. Referring to the normalized window frequencies Eq. (22) and
singular values Fig. 16, the effect of moving the window frequency from f,, = .42(—1)
to f, = .30(—1) is to translate resolved state-space structure to larger length scales.

We use the correlation integral results to judge the adequacy of a candidate model,
and in this instance we make the judgement that the models Egs. (25), (26) are both
adequate. Because fractal structure is realized over a greater range of information for
the model (n, k,m) = (9,3,9), for subsequent analyses we use that model.

2.7. Correlation Entropy

We refer to Ben-Mizrachi et al.[4]. for the definition of entropy and for the idea used
to calculate it. We note that a modified version of the method presented by those
researchers is used to make calculations given in this article.

We review the definition of correlation entropy. First, suppose Q°, Q! are partitions
of A. We say Q! is a refinement of Q0 if every member of QO can be represented as a
union of members from Q1. For example, let Q0,Q be partitions of A and define the
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refinement Q! of Q0 using Q by

Q8 = Qv
= {wonw:woeﬂ",weﬂ}. (28)

Given Q°, a partition of A, we are going to define a sequence {Qi}.of refinements of Q°
using the nonlinear dynamical process f. Define the partition Q7* by

Q% = {f~}(wo) : wo € Q°}. (29)

We recursively define _ . .
Qi+l — i v Q-(+1) (30)

The important point to note regarding the definition of the partition QF is that, if
two points, u, v, belong to the same member of ¢, then the i-th iterates fi(u), fi(v)
belong to the same member of the initial partition Q0.

Suppose 2° is of length-scale €. Then, for € sufficiently small and i sufficiently large,
the ¢-th order entropy of the system is

N
K, = SI(9) = 31 (31)

It is the asymptotic rate at which information increases with time step for ¢ sufficiently
small. In the case ¢ = 2, K> is called the correlation entropy. From this point we use

the notation
K=K,.

Entropy is an integral measure of expected temporal predictability. For a chaotic
process, trajectories initiated from two nearby points on the attractor A are expected
to diverge exponentially. Recall the observation made following Eq. (30). For a given
error in predictability, €, entropy is the asymptotic rate of increase in the number of
base-e digits two initial points on A are expected to have in agreement if we observe
that the trajectories initiated from those points continue to remain within ¢ of one
another as time increases.

Consider Fig. 7. We note that the correlation integral for the reconstruction pa-
rameter values (n,k,m) = (9,3,9), which is illustrated in Fig. 6, corresponds to the
initial member of the family of integrals displayed in Fig. 7a. For a fixed value of In(e),
Fig. 7a illustrates how information I° is increasing with time step, ¢, and that there is
a range of In(€) over which the slope of I is invariant with i. Further, using the fixed
value I = 4.0, Fig. 7b displays how In(€) is increasing with ¢ and that there is a scale for
1 where the rate of increase is constant. The correlation entropy, K, is approximated
as a linear rate of increase of I*. To estimate K, first, we determine an appropriate
time scale, 7. Using that time scale, next we estimate the constant slope of the family
I, denoted s, which is referred to as the “entropy dimension,” and then we estimate
the linear rate of increase of In(¢), denoted w, which is called the “characteristic wave
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Figure 7: Entropy analysis for EEG data: (a) estimation of the entropy dimension, s,

as the slope of —I°*(Ln(¢)); (b) estimation of the characteristic wave speed, (w), as the
constant rate of change of Ln(¢) with i using the relation 4.0 = F(Ln(¢)).

speed.” Entropy is estimated as K = s X w. Referring to Fig. 7, we have

s = 45 R
w = .67(-2)(e)/? , (32)
K = 31(-1)(e)/ ,

where the the time scale is
i=1721.
The rationale used to analyze 7 is described in the following section.

Consider the question of variability in estimates of K. Referring to Fig. 7, note
that the integrals I* appear to be linear and uniformly spaced for information values
3 < I < 7 and time steps 80 < ¢ < 130. In fact, using the representation K = s X w,
the variation in estimates of K is relatively small over that range of I.

Concerning units, if

lu; — vi| x €M, i=0,1,2,...,

where u;, v; are trajectories in state space, we say the trajectories are diverging at the
exponential rate A and refer to the units as units (\)=(e)/i. Note that those are also
the units of w and K Eq. (32).

2.8. Poincaré Return Map Analysis

We use a Poincaré return map approximation to estimate the dominant cyclic time-
scale of the process and to estimate a Lyapunov exponent[7]. The description here is
algorithmic.
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We work with the initial embedding, that is, with the reconstruction in E} Eq. (13).
The Poincaré section used here is the (n-1)-dimensional plane defined by fixing the first
coordinate

%:(1) = 0.

Let {gj_,}ﬁ__l denote the collection of (n-1)-dimensional points on the Poincaré section
obtained from the reconstructed trajectory {y;}L, with the additional condition that
(1) is increasing, and define the integer function i(5) by

P:yiy— 4>
where P is the Poincaré projection. We define the expected return time by

N-1

- 1 .. P
i = —]\7—1;(2(].*-1)—2(]))
1 e
= () - i(1). (33)

Like entropy, a Lyapunov exponent is a measure of predictibility, the major dif-
ference being that Lyapunov exponents are differential measures rather than integral.
Next, we describe how a Lyapunov exponent is estimated. Let

(T8 i) Homa

be the collection of distinct pairs from the reconstructed Poincaré section such that
(k) is the closest point to §j (x) on the section. Define

%, = Linglatisr — Taal

i 19w — Ga
and the expected value
- 1 R _
A== A . (34)
K k=1

For the example file used in this section, namely, felchl3 listed in Table 1, we
obtain

K = 608,
i o= 724, (35)
A = 22(-1)(e)/i.

We note that as a result of conditioning the data Eq. (4), values for these parameters are
not unduely affected by noisy, high frequency intersections with the Poincaré section.
Referring to the entropy illustration Eq. (32), the time scale used for estimating entropy
is 7 as defined by Eq. (33).

Note that the units of X are the same as those of entropy, K. Both entropy and
the Lyapunov exponents give a measure of exponential rate-of-loss of predictability. To
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Figure 8: An example of eye-movement artifact from file felem13: EEG data, y, as a

function of time.

repeat from earlier, if
|u; — v;] < ¥, =10,1,2,...,

where u;,v; are trajectories in state space, we say the trajectories are diverging at the
exponential rate A and refer to the units as units(A)=(e)/i.

3. An Eye-Movement Artifact Filter

In this section we introduce a filter for removing eye-movement artifact from EEG time
series. Eye movement causes low frequency activity in the time series data, as shown
in Fig. 8. Referring to Table 1, this figure shows eight seconds of time series data with
eye movement artifact from the first segment of file felem13.

The approach adopted here to remove low frequency artifact is to develop a low
frequency, zero phase shift filter which follows the behavior of the artifact. This value
is subtracted from the original signal and the result is an artifact free signal. The
zeto phase shift filter is generated using a least-squares estimation criterion to fit a
quadratic polynomial to a moving time window of the time series data. Let the time
series be denoted

{o:}lo -

We define the window centered at index value j by
{j -n+ k}%:ZO ]

where the parameter n is used to select a frequency band for the filter. Data in the
window centered at index j, that is, {yj—n+k 2%, i approximated by the quadratic
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expression
Fr=ay(k—n)’+ay(k—n)+a3, k=0,1,...,2n.

Define the quadratic functional

2n

L(a1,a9,a3) = ) [Fk — Yi-ntk]’ -
k=0

The optimal values for the coefficients a;,/ = 1,2, 3 are obtained by minimizing L, and
those values correspond to the solution of the linear syatem of equations

0L

— =0,1=12,3.

a al 07 2“3 3
The optimal polynomial eva:luated at the center point k¥ = n, which corresponds to the
data value y;, is denoted F. We denote the filter transformation by

Fiy—oz, (36)

where
e j
zi=y; —F2.

The sample time is t; = 1/f;, where f; = 512 Hz is the sample frequency. Then,
the time window parameter » = 128 determines the filter frequency

fa=1/(2nxt;)Hz=20Hz, (37)

which is tuned to the dominant frequency of eye-movement. Fig. 9 exhibits the result
of applying the artifact filter to a segment of data containing eye-movement artifact.
As for Fig. 8, the data we use is file felemcl3 listed in Table 1. Fig. 9 displays power
spectra of a segment of data with eye-movement and of the artifact filtered product
of that segment. Also included in that figure is the power spectrum of an artifact-free
segment from the file felch13.

The frequency range for EEG signals presently considered to be neurophysiologically
meaningfull is, approximately, 1Hz < f < 30H z, which is divided into the four energy

bands
é: f < 4Hz,

6: 4Hz < f < 8H=z,
a: 8Hz < f < 13H=z,
B: 13Hz < f

Eye-movement artifact falls in the é-band. The main problem to be considered in
assessing the effectiveness of the eye-movement artifact filter described here is that
some of the energy in the §-band that is not eye-movement related is also removed.
However, referring to Fig. 9, the effect on signal strength in the 0, ¢, and S-bands is
negligible.

(38)
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Figure 9: Power spectra, Logio(Power), as a function of frequency for data with eye

movement (y), eye movement filtered data (z), and the residual data (w).

4. Modeling and Analysis Results

In this section we present the results of the nonlinear analyses of EEG data. Three
questions are considered. First, we look at the variability in results using artifact-
free data observed by Channel 13. Second, we consider whether there is a difference
between the dynamics observed at Channels 13 and 14 and whether the presence of
artifact effects the results. As part of that study, we also look at the effect of the artifact
filter presented in Section 3. Finally, we consider if there is coupling of information
between Channels 13 and 14 and how that is effected by the presence of artifact and
application of the artifact filter.

Before proceeding to address the three questions outlined above, we make 2 brief
survey of the files listed in Table 1. Recall that each file is made up of several segments
of time series data extracted from an EEG record. A data segment is denoted {y;}Y;,
so that IV is the number of observations in a segment. The minimum segment value is

Ymin = Inf {4} ; (39)
the maximum segment value is
Ymaz = lzlgN{yi} ; (40)
the mean value is N
py =D /(N +1); (41)

=0
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the absolute average deviation is
N
&= lvi—pml/(N+1); (42)
=0
and the standard deviation is
N
oy = [D (i — my)? /N2 (43)
=0
Values for these parameters, including the length N, for each segment from the files
listed in Table 1 are recorded in Table 2.

4.1. Variation in Non-Seizure, Artifact-Free Cases

We begin by examining non-seizure, artifact-free data observed by Channel 13 for
Patients 1-4. Referring to Table 1, the data files we use are

Filel = felchl3,
File2 = 25402c13,
File3 = 28049¢13, (44)
Filed = 98158¢13.

File 1 is the one used in Section 2 for illustration.

Figure 10 displays power spectra for the four data sets. Note that for each case
the as-measured data is conditioned using the low-pass filter Eq. (4), where the filter
cutoff value f, = 50Hz is used for File 1 and the value f, = 60Hz is used for Files
2-4. Comparing power spectra for Files 1-4, note there is significantly more energy in
the frequency range 20-30 Hz relative to the range 0-10H z for Files 2,3 than for Files
1,4. The filter cutoff frequency f. = 60 Hz preserves the energy content of Files 2,3
in a neighborhood of 20 Hz while at the same time isolating the band 1-30 Hz from
frequencies greater than 30 Hz. Clearly, the dominant low frequency band is isolated
in the conditioned data for Files 1,4. The reason for using the cutoff value f. = 60H =2
rather than f, = 50H z for File 4 is the rate of power loss with frequency over the high
frequency face of the low frequency power band is not quite as sharp as that for File 1.
For the remainder of this section we use the conditioned data.

Figure 11 shows results for the mutual information analyses of Files 1-4. The
curves corresponding to Files 2,3 display more high frequency structure than those
for Files 1,4, which is consistent with the observed power spectra structure of Files
2,3 in the neighborhood of 20 Hz compared to that of Files 1,4. Power spectra and
mutual information appear to discriminate between Files 1-4 by grouping Files 1,4 and
Files 2,3.

The power spectra and mutual information results determine consistent estimates
for relevant time scales in each case. Based on those estimates, we choose the candidate
parameter values (n,k) = (9,3) for File 1 and (n,k) = (8,3) for Files 2-4, which
determine the window frequencies f, = 21Hz, 25H z Eq. (15), respectively. Fig. 12
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Dataset | Segment

Name Index N Ymin  Ymaz  Hy & Oy
felch13 1 4096 | -45 | 69 | -0.6 | 11.3 | 14.0
2 5120 | -45 | 36 | -0.2 | 9.5 | 11.9
3 10496 | -38 | 40 | -0.7 | 8.3 | 10.5
4 30208 | -54 | 47 | -06 | 9.0 | 114

felchl4 1 4096 | -68 | 29 | -2.7 | 6.6 | 8.4
2 5120 | -39 | 24 | -28 | 6.2 | 7.9

3 10496 | -37 | 30 | -2.7 | 6.0 | 7.7

4 30208 | -37 | 27 | -28 | 6.1 | 7.8
25402c13 1 17920 | -80 | 61 | 0.77 | 14.8 | 18.6
2 9728 | -69 | 60 | 0.71 | 13.6 [ 17.0
3 13824 | -77 | 248 | 0.64 | 134 | 17.0
4 12800 | -45 | 38 | 0.78 | 8.6 | 10.9

28049c13 1 7680 | -29 | 29 | 020 | 5.7 | 7.2
2 5120 | -26 | 26 | 0.14 | 54 | 6.8

3 5120 | -28 | 29 | 0.29 | 54 | 6.9

4 6656 | -26 | 37 | 020 | 6.1 | 7.8

5 15360 | -32 | 35 | 0.08 | 6.4 | 8.2

28158c13 1 10752 | -15 | 53 | 14.6 | 6.6 | 8.3
2 6656 | -11 | 46 | 145 | 6.5 | 8.1
3 7168 | -23 | 109 | 14.8 | 7.5 | 10.7

4 9728 | -23 | 50 | 145 | 7.1 | 9.0
felemcl3 1 3895 | -42 | 40 | 0.12 | 8.7 | 11.1
2 3805 | -440 | 63 | 0.01 | 8.1 | 14.8
3 3805 | -45 | 44 | 0.08 | 8.1 | 10.6

4 10039 | -66 | 81 |[-0.02] 74 | 9.9

felemcl4 1 3805 | -3¢ | 38 |-0.05| 5.6 | 7.5
2 3895 | -57 | 440 | 0.07 | 5.7 | 12.9

3 3805 | -31 | 24 |-001] 55 | 7.2

4 10039 | -72 | 44 | 0.00 | 6.0 | 8.0

Table 2: Segment statistics for files listed in Table 1.
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displays the singular value analyses results. The distributions of singular values for
Files 1-4 are not significantly different, although the slope of the distribution for File 1
is greater than the slopes for Files 2-4, which are on the whole very similar. We expect
the difference to be revealed in the correlation integrals by a difference in state-space
length scales where structure is resolved, as illustrated by Figs. 5,6.

Based on power spectra, mutual information, and singular values, and using the
modeling technique described in Section 2.5, the candidate models we choose to repre-

sent Files 1-4 are
File1 (n,k,m) (9,3,9),
File2,3,4 (n,k,m) = (8,3,8).

From a modeling standpoint, the candidate models for Files 1-4 are very similar.

Correlation integrals for the four reconstructions are displayed in Fig. 13, and re-
sults for the estimated correlation dimensions are summarized in Table 3. First, note
that low-dimensional information appears to be resolved by the candidate models. Sec-
ond, note that the structure for Files 2-3 is over a range of state-space length scales
translated in the positive direction relative to that for File 1, which is consistent with
the distributions of singular values Fig. 12. The correlation dimension for File 1 is
v = 4.1, which is significantly less than the range of values 4.8 < v < 5.2 corresponding
to Files 2-4.

Recall that we use the correlation integral to judge the completeness of a candi-
date model. Combining the correlation integral results with those for power spectra,
mutual information, and singular values, we conclude the candidate models Eq. (45)
are sufficiently complete to proceed with further analyses. While the correlation di-
mension of File 1 is distinguished from those values for Files 2-4, still the number of
degrees-of-freedom in each process as represented by the models is approximately in-
variant, namely, five. We conclude that from a modeling standpoint, without additional
information gained from analysing the models, Files 1-4 are very similaz.

Recall that we use the time scale 7, defined by Eq. (33) as the average time between
intersections of a trajectory with a Poincaré section, to analyze the entropy of a non-
linear dynamical process. For File 1, that expected return time is 7 ~ 72i, whereas for
Files 2,3,4 the expected return time varies as 23:, 29¢, 381, respectively. Those values
are summarized in Table 4. Note that the return times reflect the power spectra Fig. 10,
the two longest periods corresponding to Files 1,4, where power is concentrated in the
0-10 Hz band, and the two shortest periods to Files 2,3, where there is significant
power in a neighborhood of 20 H z relative to that in the 0-10 Hz band.

Figure 14 displays the entropy dimension analysis results for Files 1-4, and Fig. 15
illustrates the corresponding characteristic wave speed calculations. A value for en-
tropy is estimated from the values for entropy dimension and characteristic wave speed
observed at time scale 7. The results are summarized in Table 3. The entropy val-
ues appear to separate the files into three ordered classes, where order corresponds to
decreasing entropy. Those classes are

(45)

File2 K =~ .66(=1)(e)/i,
File3,4 K =~ .52(-1)(e)/i, (46)
Filel K=~ .31(-1)(e)/i.
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Table 4 summarizes results of the Poincaré return map analysis for the four cases. In
each case, in addition to the expected return time, 1 Eq. (33), we estimate the Lyapunov
exponent, A Eq. (34). and the product % X ). Note the trend that, as 7 increases, A
decreases. Sequencing the files by decreasing value of ) produces an ordering consistent
with that produced by entropy, but three classes are not distinguished as by entropy.
The product 7 X A does appear, however, to separate the files into the same three
classes determined by entropy, but not with the same sense of order. The change in
order appears to be due to the relatively large value of 7 for File 1. Ordering the classes
according to decreasing value of that product results in

Filel ixXA=1.58(e),
File2 ixA=120(e), 47
File3,4 ix A=~ 1.15(e)

To judge overall variation, first consider the models that resulted for Files 1-4.
Power spectra and mutual information, which provide consistent estimates of relavent
time scales for each of the four cases, lead to the candidate modeling parameters
Eq. (45). The singular value analysis results together with the correlation integral
results imply the models based on those parameter values are complete. Also, the
number of degrees-of-freedom revealed by the correlation integral analysis is approxi-
mately invariant across the four cases. From strictly a modeling standpoint, because
the low-pass filter values used to condition the data and the parameters used to model
the processes are approximately the same, we conclude the the processes represented
by Files 1-4 are alike.

Next, consider the model analysis results. The correlation dimension for File 1
clearly distinguishes it from Files 2-4. Using Tables 3, 4, Fig. 16 dJspla.ys the discrete
values of entropy, K, the Lyapunov exponent, A, and the product ¢ X ) plotted against
the average return time, 3. Also included in that figure are three continuous curves.
Consider the regression forms

= @ag-+ aﬁ + 0222 s (48)
= %+a1 +a22. (49)
The curve corresponding to 7 X X is the result of modeling those values using the
quadratic regression form Eq. (48). The curve corresponding to ) is the model Eq. (49)
using the coefficients obtained from modeling ¢ X A Finally, the curve corresponding
to K is the translation of the curve corresponding to A determined by minimizing the

mean-square error on K values. The coefficients resulting from the regression of z X b\
on 7 using Eq. (48) are

o= 1593, a; = —0.2517 x 1071, ap = 0.3472x 1073 (50)
The coefficient of multiple determination [14] of that regression is

R? =0.99974,
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meaning that variability in the calculated values is virtually all accounted for. Note
the relatively small value of the quadratic coefficient, a;. Thus, the models reveal a
variation in A and K over the range of return time values [23 < 7 < 72] that is
dominated by 7-1.

Patient
1 2 3 4
v 4.1 5.2 4.8 5.2
s 4.5 6.0 5.5 5.0
w  67(-2) .11(-1) .93(-2) .11(-1)
K 31(-1) .66(-1) .52(-1) .53(-1)

Table 3: Summary of correlation dimension and entropy analyses for normal, artifact-
free data observed by Channel 13.

Patient
1 2 3 4
7 72 23 29 38
X 22(-1) .52(-1) .39(-1) .30(-1)
ixA 1.58 1.20 1.15 1.14

Table 4: Summary of Poincaré return-map analyses for normal, artifact-free observed
by Channel 13.

4.2. The Dynamics Viewed from Distinct Channels

Next, we consider the process as observed from two distinct channels. The analyses
presented here include consideration of the presence of eye-movement artifact and of
the artifact filter. In the Introduction we described how two files are created from a
given channel of the EEG record, one consisting of time segments free of all artifact
and a second made up of time segments having only eye-movement artifact, where
the segments in the latter file are strictly nonoverlapping in time with those in the
former one. To analyse the eye-movement contaminated process, we create a third file
by concatinating the first two. Finally, to examine the effect of the artifact filter we
produce a fourth file by applying the filter F’ Eq. (36) to the third. In the present study,
we use the eye-movement artifact files obtained from Channels 13 and 14 for Patient
1(see Table 1). We refer below to three data types, namely, artifact-free, with-artifact,
and artifact-filtered. The three files that we analyse corresponding to Channel 13 can

be summarized as
Filel = felchl3,

File2 = felchl3+ feleml3, (51)
File3 = F(felchl3+ feleml13),

with a similar description for Channel 14.
Figures 17,18,19 display power spectra, mutual information, and singular values
for the six cases described above. Note that Fig. 17 includes power spectra for the
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conditioned datasets obtained using the low-pass filter cutoff value f. = 50Hz, which
is the same value used in the previous section for artifact-free data from Patient 1.
The effect is, as before, to isolate the low frequency band of dominant power from the
higher, noise-like frequencies. The mutual information results displayed in Fig. 18, as
well as the singular values displayed in Fig. 19, are obtained using the conditioned data.
For the remainder of this section, for each case we use the conditioned data.

Comparing results between Channels 13 and 14 for alike files, the power spectra,
mutual information, and singular values are each very similar. Note that the addition
of eye-movement results in a low frequency peak in the power spectra at approximately
f = 2Hz that does not appear in the artifact-free power spectra. An effect resulting
from the addition of eye-movement is also visible in the mutual information curves,
but it is more pronounced in the Channel 13 case. That effect is to magnify the low
frequency structure in mutual information, which is evidenced by the slightly lower rate
of information loss with lag value. Conversely, the structure in mutual information for
the artifact filtered data is more noise-like compared to the other two dataset types
due to the reduced power in the low frequency band.

From the standpoint of constructing a representation of the dynamical processes,
the power spectra, mutual information, and singular value analyses for each of the
three data types, and for both channels, give results consistent with those found in
Section 4.1 for the artifact-free data from Channel 13. Thus, the candidate modeling
parameter values

(n,k,m)=(9,3,9) (52)

used there Eq. (45) are used here for modeling all six cases.
Correlation integrals for the six cases are displayed in Fig. 20, and the resulting es-
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timates for the correlation dimension are summarized in Table 5. First, the correlation
dimension is resolved for all six cases, and therefore, we conclude the model Eq. (52)
is adequate for each case. Referring to Table 5, the artifact-free, with-artifact, and
artifact-filtered results are consistent both from the standpoint of an individual chan-
nel and between channels. For both channels, the correlation dimension estimates vary
over the range of values v =4.1-4.3. Note that the linear structure of the correlation
integrals for the artifact filtered data, for both channels, is shifted toward larger values
of Ln(€) relative to the linear structure for the artifact-free and with-artifact cases.
This is consistent with the singular value results displayed in Fig. 19.

Figures 21,22 illustrate the entropy dimension and characteristic wave speed results,
respectively, for all six cases. The results are summarized in Table 5. Consider first
Channel 13. The addition of eye-movement artifact increases the predictibility of the
process, with entropy decreasing from K = .31(—1)(e)/i to K = .26(—1)(e)/i. There
is a smaller decrease in entropy going from the with-artifact case to the artifact-filtered
case, where entropy for the artifact-filtered case is estimated to be K = .24(—1)(e)/i.
Turning to the Channel 14 results, note that the estimates of entropy are relatively
consistent across cases, the result being K = .28(—1)(e)/i for both the artifact-free and
with-artifact cases and K = .26(—1)(e)/: for the artifact filtered case. The artifact-
free process viewed from Channel 13 appears to be marginally more chaotic than that
viewed from Channel 14. The presence of eye-movement artifact for Channel 13 has
the effect of making the process appear marginally more stable, but not for Channel
14. There is a relative decrease in entropy of 7 — 8 % going from the with-artifact to
the artifact filtered case for both channels.

The Poincaré return map estimates for the expected return time, %, and Lyapunov
exponent, X, for artifact-free, with-artifact, and artifact-filtered data are summarized
in Table 6. The product z X X is also shown in that table. The Poincaré return map
estimates for each channel are consistent for artifact-free versus with-artifact data, but
significantly different in comparison to artifact-filtered data. For each channel, going
from artifact-free, or with-artifact, to artifact-filtered data there is a decrease in % of
approximately 50 % and a decrease in the product 7 X X of approximately 25 %. Com-
paring channels, for artifact-free and with-artifact data there is a significant decrease
in 7 going from Channel 13 to Channel 14, but the product 7 X}, is virtually invariant.
The same relationships hold for the artifact filtered data going from Channel 13 to
Channel 14.

Consider again power spectra and mutual information. Power spectra for corre-
sponding data types are very similar across channels, but there are significant differ-
ences across types. The addition of artifact adds power to the low frequency peak of
the artifact-free power spectra, and the artifact filter removes all the power above the
noise floor in that peak. Concerning mutual information, the addition of artifact is
marginally more pronounced for Channel 13 than for Channel 14, the effect being to
decrease the rate of decay of information. The artifact filter causes an increase in that
rate of decay, the effect again being more pronounced for Channel 13 than for Channel
14. From a linear point-of-view, the affect on mutual information of adding artifact
implies an enhancment of predictability, while the result of applying the artifact filter
implies a decrease in predictabilty.
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We continue our consideration of the predictability results. The addition of artifact
to artifact-free data for Channel 13 has the effect of maginally decreasing entropy, K,
which is consistent with the linear interpretation of the effect on mutual information,
namely, an enhancement in predictabilty. A change in entropy with the addition of
artifact is not observed at Channel 14. On the other hand, the effect of the artifact
filter on entropy, which is to decrease the value, is opposite to the linear interpretation
of the effect of the artifact filter on mutual information.

The effect on predictabilty caused by the addition of artifact implies, for the single
case studied here, that eye-movement artifact has a marginally linear impact on the
process model. Aside from implications about effectiveness of the artifact filter vis-a-vis
clinical diagnosis of EEG data, the artifact filtered case reveals something about the
structure of the process being observed. First, removing frequency content in a band,
in this case the é-band, f < 4.0Hz Eq. (38), does not affect the dimension. This is
consistent with an observation by Lawkins et al. [13] that dimensional information is not
necessarily lost by low-pass filtering, that the effect is only on the range of state-space
length scales where structure is resolved, even though frequencies judged to be relevant
to the process being observed may be affected. In turn, that is consistent with the
view that the process is nonlinear. Further, consider the affect on predictability. Both
entropy and the product of return time with the estimated Lyapunov exponent decrease,
meaning predictabilty increases, as a result of removing low frequency content. This
is consistent with the interpretation that the process is a chaotic nonlinear dynamical
system.

Patient 1
Channel 13 Channel 14

Artifact With  Artifact Artifact With  Artifact
Free  Artifact Filtered Free Artifact Filtered

v 4.1 4.3 4.3 4.2 4.3 4.3

s 4.5 4.7 4.8 4.8 5.2 4.8
w .67(-2) .55(-2) .50(-2) .58(-2) .55(-2)  .46(-2)
K 31(-1) .26(-1) .24(-1) .28(-1) .28(-1) .26(-1)

Table 5: Correlation dimension and entropy results using artifact free, eye movement
artifact, and artifact filtered data observed by Channels 13 and 14

4.3. Coupling Between Channels

Next, we consider the question of coupling between channels, which is to ask to what
degree distinct channels are observing the same brain dynamics. To some extent we
can address that question using the results concerning artifact found in Section 4.2 by
simply comparing analyses for the two channels. A more objective and quantitative
approach is to use mutual information. For this purpose, three pairs of files are used,
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Patient 1
Channel 13 Channel 14
Artifact  With  Artifact Artifact With  Artifact
Free Artifact Filtered Free Artifact Filtered

i 72 72 37 58 60 31
X 22(-1)  21(-1) .82(-1) .28(-1) .26(-1) .39(-1)
ixA 16 1.5 1.18 1.6 1.6 1.21

Table 6: Poincaré return map results using artifact-free, eye-movement artifact, and
artifact filtered data observed by Channels 13 and 14

which are described as

Filel = (felchl3, felchl4)
File2 = (feleml3, feleml4) (53)
File3 = (F(feleml3),F(feleml4)),
where F° denotes the artifact filter Eq. (36). Referring to Table 1, recall that the file
pairs File 1,2 consist of several distinct segments of data, but that those segments are
alined in time.

Let = denote data from Channel 13 and y denote data from Channel 14. Referring
to the definition of mutual information Eq. (11), for a fixed value of lag &, we estimate

M(k) = M(z:, %itx) (54)

and refer to it as “bivariate” mutual information. This statistic is estimated for both
positive and negative time lag values. A relative maximum value of M for lag value
k = 0 implies a source of activity is being observed simultaneously by Channels 13
and 14. A relative maximum for a negative value of lag implies a signal observed by
Channel 14 is observed at Channel 13 after a delay corresponding to the absolute value
of that lag, whereas a relative maximum for a positive lag value implies an observation
at Channel 13 is related to an observation at Channel 14 at a later time corresponding
to that positive lag value. The difference between the positive lag value for a relative
maximum and the negative lag value of a relative maximum provides another a time
scale for which we expect to see correlation between observations at each of the two
channels.

The meaning of “coupling between channels” needs to be clarified. In order to
heuristically describe the bivariate mutual information results presented here, we can
think in terms of relatively large length-scale neurophysiological activity and relatively
small length-scale activity. The relatively large length-scale activity is something we
expect to observe simultaneously at two distinct channels, whereas small length-scale
activity is local and is something we expect to observe directly only by a channel posi-
tioned at that location. However, local activity can be transmitted neurophysiologically
across the extent of the brain, and consequently, with a time delay we may expect to
observe the occurrence of local activity proximate to the location of one channel at an-
other channel. There is also the possibility of a non-neurophysiological mechanism for
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transmission, which is relavent here because of eye-movement artifact. While there is
certainly neorophysiological activity associated with eye-movement, there is also mus-
cular activity that is mechanicaaly transmitted through the skin covering the scalp.
Recall from Fig. 1 that Channel 13 is located adjacent to the right eye and that Chan-
nel 14 is located one position further away along the hemispheric boundary.

Figure 23a shows the bivariate mutual information function between Channels 13
and 14 for artifact-free data. There are clearly defined relative maxima at lag values
k=0 and %k = —38, and another relative maximum, albeit weakly defined, at k£ = 40.
The band centered at ¥ = 0, which is relatively symmetric, extends approximately over
the range of lag values —16 < k < 20. While the relative maxima of the side bands
are symmetrically located, the structures of those bands are significantly different,
suggesting a greater sense of signal transmission from Channel 14 to 13 than from
Channel 13 to 14.

Bivariate mutual information for the with-artifact data type is displayed in Fig. 23b.
The central band for the with-artifact case is much broader than that for the artifact-
free case, almost covering the range of lag values corresponding to both side-bands for
the artifact-free case, and no side-bands are visible. Also, the magnitude of bivariate
mutual information in this case is an order-of-magnitude greater than that for the
artifact-free case. Further, note the difference in decay rate of mutual information
for positive and negative lag values. This difference in decay rate suggests there is a
difference in the dominant mode of transmission of eye-movement information between
the two channels.

The bivariate mutual information for the eye-movement artifact filtered data is
shown in Fig. 23c. In addition to the band centered at lag value £ = 0, there are
also side-bands for both positive and negative lag values. The central band displays a
degree of nonsymmetry, the variation for negative lag values being greater than that
for positive lags. The central band extends approximately over the range of lag values
—16 < k < 30. The left side-band is split into two peaks, the relative maxima occuring
at approximately the lag values £ = —36, —50, and the relative maximum of the right
side-band is approximately at the lag value £ = 52.

We want to focus on comparing the artifact-free result with that for the artifact
filtered case. Consider the central bands for those cases. The range of lag values for
the two central bands, together with the frequencies associated with those values, are

artifact-free: -16<k<20 , 142HzL f, (55)
artifact filtered: —-16 < £ <30 , 11.1Hz< f.
Now, consider the side-bands. We estimate the range of lag values for the side-bands

to be
artifact-free: —60 <k<-16 , 28< k <52,

artifact filtered: —-62 <k < -26 , 34 < k < 58. (56)

The range of lag values between side-bands for the two cases, and the frequencies
corresponding to those lag values, are

artifact-free: 4 < k<112 , 46H=z

< f<L1l16H=z,
artifact filtered: 60 < k£ <120 , 43H=z< f

85Hz. (57)

<
<
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If the processes being observed were linear and linearly correlated, than we would
expect a time scale of transmission to be associated with the frequency in the power
spectra corresponding to that time scale. If, on the other hand, the processes are
nonlinear, suggesting noncoherence of a frequency component oberved at either channel,
or nonlinearly correlated, meaning there is a nonlinear relationship between time scales
in the processes and time scales of transmission, then we would not expect to be able
to compare a time scale of transmission with the corresponding frequency component
of the process. We shall assume that the nonlinear structures are are not so strong to
completely eliminate the underlying linear structures, so that we can learn something
by comparing time scales from bivariate mutual information to time scales in the power
spectra of the two channels.

We suppose that the central band corresponds to signals that simultaneously reach
the two channel locations and that the band width is a time scale describing how long
that signal is observed. Further, we suppose the side-bands represent time scales asso-
ciated with the transmission of information from one channel to the other and back.
Consider the power spectra for artifact-free and artifact filtered data from Channels
13 and 14 displayed in Fig. 17. Note in both cases the upper bound of the low fre-
quency band in the power spectra isolated by the low-pass filter corresponds to the
low frequency bound of the central band in bivariate mutual informatiion Eq. (55). It
follows, given our supposition concerning the central band, that the time scales over
which a signal simulataneously reaching the two channels continue to effect both chan-
nels correspond to “noise” in that signal, that is, to frequencies higher than the low
frequency band of significant power in the power spectra. Further, note that for both
cases the frequency range associated with the side-band Eq. (57) corresponds well with
the primary power band displayed in the power spectrum, the only exception being for
the lowest frequencies in the artifact-free case.

The artifact filtered data differs from the artifact-free data in two ways. First, the
artifact filtered data inculdes some artifact information, and second, as it results from
processing by the artifact filter, the artifact filtered data includes an effect due to that
filter. For example, the central band of the artifact filtered case Fig. 23c displays a
residual effect due to artifact resulting from the nonsymmetry in that band for the
with-artifact data Fig. 23b. The artifact filter is a linear process, and we expect the
artifact filtered data to display linear structure not evidenced in the artifact-free data.
Consider the side-bands in the artifact-free Fig. 23a and artifact filtered cases. The
pair of symmetric peaks for lag values k = %50 in the artifact filtered case, which do
not appear in the artifact-free case, is an example of the filter effect.

5. Conclusions

Consider the results from Section 4.1 for modeling and analyzing artifact-free data for
Patients 1-4. Again, distinguishing between a model and the analysis results obtained
using that model, a significant result is that there is very little variation in the models
over the four cases. Also, it is significant that in each case we found low dimensional
structure and that the number of degrees-of-freedom in each process accounting for
that structure is approximately invariant. This result has the important implication
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that only a few models may be needed to represent a relatively large number of cases.
Concerning the analysis results obtained from the models, a significant finding is that
nonlinear predictabilty parameters appear to regress with the average Poincaré return
time and that over the range of return times represented by the four cases that regres-
sion is dominated by inverse return-time structure.

Consider now the results from Section 4.2 concerning artifact-free, with-artifact,
and artifact filtered data from Channels 13 and 14 for Patient 1. First, we found that
the models, and the degrees-of-freedom of each process resolved by those models, are
approximately invariant over all six cases. Second, we found that for like data types, the
differences between Channel 13 and 14 model analysis results are relatively small, the
only major exception being the Poincaré return time. We focus on changes that occur
in going from artifact-free data to with-artifact data and changes that occur in going
from artifact-free data to artifact filtered data. Consider going from artifact-free to
with-artifact data. In Channel 13 data we found that predictability increases with the
addtion of artifact and that the effect of artifact appears to be linear. Further, we found
there is virtually no change in predictability in the Channel 14 data. This result for the
two channels is significant because it suggests that eye-movement artifact has a weak,
linear effect on the models. In going from the artifact-free data to the artifact filtered
data predictability increases significantly for both channels. The primary effect of eye-
movement in frequency space is the low frequency 6-band, and the artifact filter severly
reduces power in that band relative to the artifact-free data. This result implies the
§-band contributes significant nonlinear structure to the neurophysiological processes
observed at Channels 13 and 14.

Consider finally the results from Section 4.3 concerning bivariate mutual informa-
tion between Channels 13 and 14 for Patient 1 for the three data types. Concerning the
artifact-free case, a significant result is that, while the level of mutual information is
small, there is a quantitatve difference in transmission from Channel 14 to 13 compared
to transmission from Channel 13 to 14. With the addition of artifact and application of
the artifact filter, that difference appears to be lost, suggesting that Channel 13 and 14
dynamics may appear more alike for the artifact filtered case than for the artifact-free
case. The addition of artifact alone to the artifact-free data has a strong linear effect,
so strong that the bivariate mutual information structure observed in the artifact-free
case is completely masked. Again, the results suggest that the dynamics for with-
artifact data may appear more alike at the two channels than for the artifact-free case.
Another significant result is that the time scales determined from the bivariate mutual
information curves for the artifact-free and artifact filtered cases correlate well with
the corresponding frequencies in the power spectra for like data types. This result
implies that while the processes at the two channels may be nonlinear and transmis-
sion between channels may also be nonlinear, those nonlinearities are not so strong as
to eliminate a linear relationship between the local time scales represented by power
spectra and transmission time scales represented by bivariate mutual information.
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