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Abstract

Large data series with more than several million multivariate observations, rep-
resenting tens of megabytes or even gigabytes of data, are difficult or impossible to
analyze with traditional software. The shear amount of data quickly overwhelmes
both the available computing resources and the ability of the investigator to confi-
dently identify meaningful patterns and trends which may be present. The purpose
of this research is, first, to give a meaningful definition to “large data set analy-
sis” and, second, to described and illustrate a technique for identifying unusual
events in large data series. The technique presented here is based on the theory of
nonlinear dynamical systems.







1. Introduction

In this paper we consider the problem of identifying unusual segments of data contained
in large data series, where “unusual” is also intended to mean the fraction of usual
to unusual events is small. For example, suppose we are observing a process that
resides in a relatively quiescent mode for significant periods of time, but occasionally
becomes excited for short periods before relaxing to the background state. We describe
a methodology for detecting such transients and present results for two example data
series.

The methods discussed in this article are based on the theory of nonlinear dynam-
ical systems. Due to fundamental theoretical work of Takens[13] and Maiié[10], that
theory can be exploited using scalar time series data to develop nonlinear statistical
methods for analysing nonlinear processes. The methods described here are examples
of applications based on Takens’ and Maiié’s theoretical work.

We referred above to “large data series” and stated that the problem considered in
this paper is related to such datasets. As a consequence of size, we assume the dataset
can not be analysed at one time as a whole, but rather has to be analysed in segments.
The strategy adopted here is to partition the large data series into a series of pieces
and then to analyse one piece of the partition at a time for unusal segments.

The research presented here is part of a project to develop new algorithms and
software for identifying meaningful events in large datasets[3, 4]. In generic terms, the
goal of the analysis is to identify unusual events for the immediate purpose of saving
those segments of the data series, making the assumption that the resulting collection
of unusual events is ammenable to classical statistical analysis methods. As we only
want to be confident unusual events are identified, it is not important that the method
is accurate in the sense it is either an accurate model of the background process or the
transients, but rather only that it can accurately distinguish between the two. Further,
because of the large dataset assumption, it is important that the method is “fast.”

We want to give a qualitative description of the technique developed here to identify
unusual events. Suppose the process being observed is represented by a time dependent
trajectory in state space. Further, suppose most of the time that trajectory is confined
to a limited region in state space, which is referred to here as an attractor. We shall
say the attractor represents the “background” process. Now, suppose occasionally the
trajectory leaves that attractor and moves about in an extended region of state space
before falling back to the attractor. Such a trajectory segment is called a “perturbation”
and is associated with an unusual event. In addition, we shall say that backgound
process is nonstationary if that attractor is moving or changing with time. Following
this description, the development of the time series analysis methodology presented
here can be organized into three components. The first component is: Assuming the
background process is stationary, how can we identify the attractor in state space
associated with it? The second is: How do we define a perturbation? And the third is:
How do we define and quantitatively measure a slow change in the background process?

The methodology developed in this article is demonstated using two example time
series, one representing an atmospheric process and the other a neurophysiological
process. The atmospheric process is represented by a time series collected under the
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auspices of the Atmospheric Radiation Measurement (ARM) project [5]. Fig. la dis-
plays a segment of 20,000 observations selected at random from that record. The time
series used here is measurement of the liquid water content of the atmosphere. The
background process in this case corresponds to a relatively clear day with dry condi-
tions. Perturbations include cloud, rain, and fog events as well as some instrument
malfunction events. The record covers a period of approximately 230 days, with ob-
servations at 20 second intervals, or 4320 observations per day, but there are gaps of
varying length scattered across that period where there is no data because, for whatever
reason, the instrument was turned off. There are also a lot of single point instrument
malfunctions, which is manifest in Fig. 1a by a series of points along y ~ —2.5.

The second time series is taken from one channel of a sixteen channel electroen-
cephalogram (EEG) record for an epileptic patient [8]. Fig. 1b displays a segment
of 5,000 observations. The record covers a continuous period of 23 minutes, with 512
observations per second. EEG records typically include a great deal of “artifact,”
representing head movement, eye movement, muscle tension, grinding teeth, etc., in
addition to unmasked neurophysiological activity. If we associate neurophysiological
activity with the background process, then artifact is a perturbation relative to that
background process.

The remained of this article is organized as follows. In Section 2 we describe an
analysis that is part of the methodology used to model nonlinear dynamical systems.
This analysis is applied to the example ARM and EEG time series. In Section 3 we
describe that part of the theory of nonlinear dynamical processes that provides the
foundation for using time series measurements to model such systems, and we outline
the process for constructing models. In Section 4 we describe the technique addressed
in this article for analysing large data series for unusual segments and demonstrate the
technique using the ARM and EEG datasets. Finally, in Section 5 we summarize the
results.

2. Data Conditioning and Preliminary Analysis

In this section we carry out 2 preliminary analysis that is part of the methodology that
has been developed for constructing models of nonlinear dynamical processes. The
analysis is applied to training sets of data that have been extracted from the ARM and
EEG records using the condition that the data appears to be relatively perturbation
free. Fig. 2 displays a random pair of segments from those training sets. We note that
both as-measured datasets are translated so that the average value is zero and scaled
so that the average squared value is one.

2.1. Low-Pass Filters

Low-pass filtering plays an important role in conditioning time series data. The sig-
nificance of such conditioning for constructing empirical nonlinear dynamical models
is discussed later. Here we describe the specific low-pass filter used for the analyses
presented in this article.
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Figure 1: Example segments from the ARM and EEG datasets: (a) scaled ARM data;
(b) scaled EEG data.
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Consider the first-order, linear low-pass filter

ldy ty=z
wdt TV
where z is input, y is output, w = 27 f;, and f. is the cutoff frequency. Integrating this

equation over the interval [¢;,; + ¢5] produces

Yier = yiexp(—wit,)+ [l — exp(—wis)],
= ay; + b, ‘ (1)

where z;,1 = 0,1,2,... is a time series obtained from z(Z) using the sampling time 2.
Eq. (1) is referred to in control theory as a first-order lag, or first-order infinite impulse
response, low-pass filter and is frequently used to simulate the behavior of measurement
instruments{11]. We use the forth-order filter that results by applying the first-order
filter Eq. (1) in series four times, which is to say output from the first stage is input to
the second, output from the second stage is input to the third, and so forth.

Figure 3 displays the same segments of ARM and EEG data as shown in Fig. 2,
but after applying the low-pass filter. The filter cutoff values displayed in Fig. 3 are
normalized by the respective sampling frequencies. The normalized filter cutoff value
shown in both frames of Fig. 2 is f. = .5, which is half the sampling frequency. That
value for the cutoff frequency is commonly known as the ‘Nyquist’ frequency and is
used in measurement instrumentation to prevent ‘aliasing.’ The sampling time and
sampling frequency for each of those time series, together with the dimensional value
of f, shown in Fig. 3, are:

ARM: t,=20s fs=t;'=.05Hz f.=.0025H= @)
EEG: t,=35s f;=512Hz fo=50Hz

2.2. Power Spectra and Autocovariance

Power spectra analysis of discrete time series is well established and we refer to Black-
man and Tukey [1] for detailed information on that topic. Here, we want to briefly
review the relationship between the power spectrum and autocovariance function of a
time series y = {¢;}I;. The autocovariance estimate for lag k is

1=k _
ck=NZ(yi—y)(yi+k—y)7 k=0717"-,N—1’ (3)

i=1

where 7 is the mean value of y. Suppose N is odd. Then we can write N = 2¢ + 1.
The time series ¥ can be decomposed into Fourier modes according to the equations

g
1 =09+ Z(a,- cos(2x f;2) + B; sin(27 f;8)) , i = 1,..., NV, 4)
j=1
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Figure 3: Example segments from the ARM and EEG training datasets: (2) scaled and
filtered ARM data (f. = .05); (b) scaled and filtered EEG data (f. = .098).

where f; = j/N and

G = Y,
2 N
a; = WZy, cos(2x f;i) ,
=1
2 ¥ .
B = W—'Zyi sin(27 f5) . ()
=1

The power spectrum for the time series y is

P(j) = 3@+ B0, 5= 1,2t (6)

Finally, the sample spectrum P(f) can be calculated from the sample autocovariance
by the cosine transformation

N-1

P(j) =2eo+2 Y encos(r )], fi= % . ()
k=1

In general, most of the variation in the autocovariance function occurs for relatively

small values of lag %, so that it follows most of the energy in the power spectrum P(f)

for high frequencies derives from the autocovariance function for small values of &.
Figure 4 displays power spectra for the ARM and EEG data sets, both for the
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as-measured data and for the conditioned time series obtained using the low-pass filter
described in the previous section. The choice of low-pass filter cutoff value for either
example time series is guided by the desire to preserve the power in the dominant low
frequency band and to minimize power above that band. The magnified frames in
Fig. 4 support the view that those conditions are achieved by the respective choice of
filter cutoff value. The time series segments shown in Fig. 2 and Fig. 3 illustrate the
effect of data conditioning that results from reducing power in the spectrum above the
dominant band.

2.3. Mutual Information

Mutual information is a nonlinear measure of the extent to which one random variable
is a function of another[12]. Let (z,y) be an IR*-valued random variable. Further, let
p(z,y) be the joint probability demsity of (z,y), and let p(z), p(y) be the probability
densities of z,y, respectively. Then, the mutual information of the random variables
z,y is, by definition,

M(z,y) = /IR,2 m(z,y)dzdy, (8)
where (2,9)
= p(z, y)in222Y)

m(z,y) = p(z,y)! (@) 9)

We note several properties of mutual information M. First, by definition, mutual
information is symmetric in its arguments. Second, M(z,y) > 0 and M(z,y) = 0
if and only if z,y are independent. Third, if y is a function of =, then M (z,9) is
unbounded.

Consider now the time-series {3;}¥;, and suppose ¥ is a measurement from a sta-
tionary stochastic process. For an arbitrarily fixed value of the time delay k, we define
the bivariate IR2-valued random variable (¥;, ¥i+x) and the mutual information function
associated with that time series by

M(k) = M(yi, Yirk)- (10)

The function M (k) is a nonlinear measure of the dependence of two observations from
the time series y separated by the time delay k. In general, mutual information is
regarded as a more appropriate measure of independence versus dependence for a non-
linear process than the autocovariance function Eq. (3) [6, 7]. Like the autocovariance
function, M(k) in general varies most rapidly for small values of delay k, and, referring
to the relationship between the autocovariance and power spectrum, the time scales
associated with the most rapidly varying segment of mutual information translate to
relatively high frequencies that are not resolved in the nonlinear process reconstruction
described below.

Figure 5 displays mutual information for the ARM and EEG data, both for the as-
measured and conditioned data sets. Correlation in the ARM as-measured data appears
to be masked by white noise, but correlated structure is revealed in the conditioned
data. There is some difference in the observed correlated structure between the as-
measured and conditioned EEG data sets, but that difference is small compared to the
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Figure 5: Mutual information for the ARM and EEG training datasets: (a) ARM data;
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ARM data. For both cases, the dominant contibution to high frequency content in the
power spectra appears to be restricted to Lag values k < 20.

3. Nonlinear Processes and Time Series

In this section we review the definition of a nonlinear dynamical process and describe
the theory that provides for constructing an approximate representation of such a
process using time series. In addition, we review the methodology then used for deter-
mining a reconstruction.

3.1. Nonlinear Dynamical Processes

Using E™ to denote 7i-dimensjonal Euclidean space, let
f:E* > E"

be a diffeomorphism. Suppose M C E® is a compact, 7i-dimensional differentiable
manifold and that f restricted to M is a diffeomorphism of M. Let A be a compact
subset of M such that f maps A onto A. Further, let U D A be an open subset of M
such that

lim f(U) = 4.

1—r00
Finally, let p be an ergodic probability measure on A with respect to the transformation
f, which is to say that, if V C A is measurable with respect to p, then p(f(V)) = p(V).
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We refer to E® as “state space” and to A as an “attractor.” The point of view taken
here is that nonlinear dynamical processes, including chaotic systems, are represented
by triples of the form (A4, f,p), that is, an attractor in state space, a diffeomorphic
mapping of that attractor onto itself, and an ergodic probability measure with respect
to that attractor and diffeomorphic mapping.

Suppose @ € A is the state of the experimental system at the instant we begin to
observe it. Then, {f*(a)}ieo is a time series of states visited by the process. Now,
suppose ¥ : A — IR is a real-valued function, or observable, on A. Then,

Yi = y(ai) = y(fi(a))a 1=0,1,2,...,

is a real-valued time series of the experimental system.

The following is a theorem due to Takens[13] that constitutes the foundation for the
time series analysis methods described here. As used in the statement of the theorem,
“smooth” means at least C2.

Theorem 1. (Takens) Let M C E® be a compact, differentiable manifold of dimension
% Further, let f : M — M be a smooth diffeomorphism of M and let y : M — IR be
a smooth, real-valued function on M. It is a generic property that the map

&: M — E*H1
defined by
8(a) = (3(a), y(f1(@)s - - -, 4(f7 (), @€ M,

where T is matrix transpose, is a smooth embedding.

For some choice of values for the positive integers (n, k), consider the object fiy C
E7, where

Ay = {y:i}2 (11)
and y; is defined by
i = (U Yirks Bit2ks - o Uik (ne1)k)" - (12)
Provided n > 27 + 1, Takens’ reconstruction theorem implies the mapping
®:A- 4,
defined by _
@(a;)=y: t=0,1,2,...,
produces a smooth embedding & : 4 — E7. Define
f~y = dofod!
ﬁy = po é—l.

Then, the triple (A, f,,5y) constitutes a faithful representation of the dynamical sys-
tem (4, f,p)-
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The pair of integers (n,k) used to define the vector y; Eq. (12) are referred to as
the embedding dimension and time lag, respectively. Choosing appropriate values for
(m, k) is a primary objective for an analysis leading to a model (4, fy, Py) of a nonlinear
dynamical process.

3.2. Nonlinear Dynamical Process Model

Here we review a procedure introduced by Broomhead and King[2]| as a mechanism
for implementing the reconstruction process in an optimal manner. The application
of that procedure, augmented by the use of low-pass filters, is described in detail by
Lawkins, Daw, Downing, and Clapp [9].

Recall that the primary task is to determine appropriate values for the reconstruc-
tion parameters (n,k), where n is the embedding dimension and % is the time delay.
Given values for those parameters, we set

Ay ={y:}iL Cc B}, (13)
where y = {y;}l, is the measured time series and
yi= (yh Yi—ksYi—2ks ey yi—(n—l)k)T7 1=0,1,2,...,N. (14)

Before continuing, we define the following notation.

ts = sampling time
= time between y; and y;41 (15)
ty, = window time scale
(n—-1)xkxts (16)
fw = window frequency
= 1} 7

Let the matrix ¥ be defined by ¥; = y;, that is, the i-th column of Y is y;. Then,
define the matrix

K= —YYT = —Zyzy,

=1
The matrix K is symmetric, nonnegative. We denote the eigenvalue, eigenvector pairs
of K by {(Aa, ¢a)}z=17 where

AM>A>. A >0, (18)

Define the matrix ¥ by
U= ('l)bla ¢2’°-°:¢n)a (19)

meaning that the j-th column of ¥ is the eigenvector ;. Then the equation

6="u(y)= Ty (20)
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defines an orthonormal transformation
U:El— E} (21)

that transforms

v
fiy = {Yi}?il - AB = {ai}zlil .

We want to make two observations regarding the transformation Eq. (21). The first
is that, in general, the principal mode %; is expected to have a total of j relative maxima
and minima. Thus, we expect the j-th mode to have approximately 7/2 waves over the
time span of a point y; , which is the window time scale %,, Eq. (16). Consequently, the
Jj-th coordinate in E7, which is the inner product of y; with 4; according to Eq. (20),
corresponds approximately to information in the time series resolved by the frequency

Jw 11

ife
7 X .i.
] 2tw ?

= X3 (22)

i

Il

The second observation is that the eigenvalues Eq. (18) are estimates of the second
moments of each coordinate value in the set Ay and, as such, determine length scales
in phase space E} for Ag. Those length scales are

VAisi=1. . (23)

We select values for the reconstruction parameters (n,k) based primarily on the
following two conditions. First, referring to Eq. (22), we want the lowest order fre-
quencies f;, j = 1,...,m, where m < n, to resolve information in the time series, as
represented by the power spectrum, considered to be significant. Second, we want the
corresponding distribution of eigenvalues, A;, j = 1,...,m, to resolve the state-space
range of length scales associated with the frequencies f;, = 1,...,m. Lawkinps, et al.
[9] examined those conditions using the correlation integral in addition to the power
spectrum and distribution of eigenvalues to judged the quality of a reconstruction based
on a pair of values (n,k). The two conditions cited above are evaluated through the
correlation integral, first, by convergence of the correlation dimension and, second, by
the range of state-space length scales over which fractal structure is observed.

Recall the ordering Eq. (18). If \/Ar 41 is sufficiently small, the projection

P™:E} — EJ, (24)

where
Ef = L{'ij };'n=1

is the linear subspace of E} spanned by to the first m eigenvectors Eq. (19), will result
only in eliminating small scale, noisy detail in the highest order coordinates. Referring
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Figure 6: Eigenvalues for the ARM and EEG training datasets: (a) ARM data; (b)
EEG data.

again to Lawkins, et al. [9], the effect of that projection on the correlation integral
is on state-space length scales less than the lower bound of observed fractal structure,
and consequently, there is no lose in observed dimensionality of the process. We refer
to the resulting reconstruction by the ordered triple of parameters (n,k,m).

In general, the low-pass filter described in Section 2.1 is used to reduce the frequency
content of the time series for frequencies greater than the upper bound of the frequency
band in the power spectrum considered to include significant information about the
process of interest. Recall from Section 2.2 that the extent of the most rapidly varying
segment of mutual information also provides an estimate of the upper bound of that
frequency band. The impact of such low pass filtering is to reduce the potential noise-
like effect of high frequencies on the reconstruction and, hence, on the analyses that
depend on the reconstruction.

4. Perturbation Analysis Technique

In this section we present the methods developed to analyse perturbations and non-
stationarity. We begin by determining approximate models to represent the ARM and
EEG datasets. Then, we describe the technique used to analyse perturbations, and
finally, we consider stationarity.

4.1. Approximate Models for the ARM and EEG Datasets

We repeat the qualitative description given in the Introduction for identifying signif-
icant transients in time series. We suppose the process being observed is represented
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Figure 7: Coordinate frequencies corresponding to Fig. 6: (a) ARM; (b) EEG.

by a trajectory in state space. Further, we suppose most of the time that trajectory
is confined to a limited region in state space, which is referred to as an attractor. We
suppose that occasionally the trajectory leaves that attractor and moves about in an
extended region of state space before falling back to the attractor. Such a trajectory
segment is a “perturbation ” and is associated with an unusal segment of the time
series.

In this section we want to determine models for the ARM and EEG datasets that
serve to define the so-called attractors associated with the two background processes.
The method for determining these models is like that for determining a model for a non-
linear dynamical process as described in Section 3.2. However, the method described
here is different because we only need a model sufficiently accurate to distinguish per-
turbations from the background process.

In Section 2 we presented results of preliminary analyses of training datasets as-
sumed to be representative of the background processes corresponding to the ARM and
EEG time series. Fig. 6 displays the eigenvalues Eq. (18) that result using an array of
values for the modeling parameters (%, k) for each of the training datasets, and Fig. 7
displays the coordinate frequencies Eq. (22) corresponding to those modeling parame-
ter values. The training datasets used here are the conditioned datasets corresponding
to the preliminary analysis results presented in Figs. 3,4,5.

Referring to Fig. 6a, which corresponds to the ARM case, note that the first three
eigenvalues are relatively stable over the selection of parameter values (n,k). From
Fig. Ta, we observe that the first three coordinate frequencies associated with those
parameter values fall in the low frequency band highlighted in the power spectrum
Fig. 4b. As an aside, note that as f,,, which is defined by Eq. (17), decreases, the
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eigenvalues of the higher order coordinates, say j = 4 for example, increase. This is
consistent with the decrease in the coordinate frequency f;(n,k), j = 4, observed in
Fig. 7b.

The discussion just given relative to the ARM dataset also holds for the EEG
case, although not quite as strongly. Referring to Fig. 6b and Fig. 7b, the first three
transformed coordinates, 8;, 7 = 1,2,3, Eq. (19), appear to capture the dominant
structure in the EEG dataset, particularly for the latter two selected values for the
parameter pair (n, k).

We want to summarize our results to this point. For each case, we have a “train-
ing” set of data, {y; Y}, representative of the background process, and we have gone
through a partial procedure of constructing a representation (/ig, s, Dg) of the process
corresponding to that training set. Recall that in constructing that representation we
select values for the parameter pair (n,k), then define the trajectory

{Yi}?—i-l - Eg ’
where
s = (. U . T
yi= (?]za Yitks Yig2ks o+ - yi+(n—1)k) ’
and then carry out the transformation Eq. (20)
¥ : Ey — Eg,
thus producing the trajectory
{u(y)¥L, = {635 c B

The transformation ¥ is equivalent to the regression model

n
yi= Z OV -

a=1

For appropriately chosen values of the parameter triplet (=, &, m), that regression model
can be replaced by the approximate model

m
Yi= Z OiaPe + €, (25)
a=1
where m < 7 is the range of significant eigenvalues and ¢; is a random noise term used

to model the insignificant eigenvalue components. For the two cases examined here, we
find the background process can be approximately modeled as follows.

ARM : (m,k,m)
EEG: (n,k,m)

(8,3,3)

(9,3.3) (26)
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4.2. Identifying Perturbations

We are interested in developing techniques to analyse large datasets. One consequence
of the “large” condition is that the dataset can not be analysed at one time as a whole.
The general strategy is to partition the large dataset into pieces that are manageable
and to separate the unusual from the usual over one piece at a time. In this section we
describe how a piece is analysed.

The problem at hand is to identify perturbations relative to some background pro-
cess. To accomplish that end, we propose to do what is equivalent to using a weak
regression model of the process. Referring to Eq. (25), we propose to use the regression
model

m
yi= Y biata (27)
a=1
with the parameter values (n,k,m) displayed in Eq. (26) for the ARM and EEG
datasets.

The next task is to formalize the meaning of “perturbation.” First, we generalize

the definition of the projection P™ Eq. (24) by defining the projection

Pémhmz . Eél - Eénz“‘ml'l'l
by
Pm;[,mz(e) = (0m17 mz)T € L{¢] J-—ml’ (28)

where L{%;}72,, is the linear subspace of E} spanned by the eigenvectors {1;}7

Then, define

J"ml J"m1

B = PP ({83,). (29)
Thus, B is the projection into the (mg — m; 4 1)-dimensional subspace L{;} 72, of

j=ms
the trajectory {8;}}¥; in E} constructed from the training set {y;}}Y,. We assume that
the background process projects to a relatively small, dense region B for a small value
of mg — my + 1.

The assumptions described above concerning the background process versus per-
turbations implies that the region B is a concentrated region in state space associated
with usual data segments and tha.t unusual segments of the time series will produce
trajectory segments in L{1;}7= jem, that move outside B. Let T, be a characteristic
time scale associated with the background process. We define a background event, or
usual segment of the observed time series by conditions on the reconstructed trajectory

segment in EF. Define
T; = {635 (30)

=5

so that /; is the length in time steps of T';. If

’P0m1 i (oij—l) ¢ B,
Pyv™(T;) C B

=2 31
Péml sm2 (0ij+lj) ¢ B, ( )
I;xts > T,
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where t; Eq. (16) is the sample time for the time series, then the trajectory segment
T'; is a usual event and the time series segment corresponding to I'; is a usual segment.
In turn, we define the trajectory segment

—

A; = {61 (32)
separating I'; and T'j41 to be the j-th perturbed segment. The length in time steps of
Ajis

pi = (G421 = 1) = (G + 1) + 1 =541 = (G + 1)
Note that this definition allows a perturbed trajectory segment to pass through the
region B so long as the time it takes is less than the time scale T,. The time series
segment corresponding to A; is, by definition, a perturbation, or unusual segment.

Define
~_J1, 6;el; , somej,
I(Z) - { 0 ’ 9{ ¢ rj 2 a.nyj ’ (33)

and define the function that accounts for the cumulative observation of usual segments

L() = E I(k). (34)

k=1

Referring to Eq. (24), we determined that the ARM and EEG background processes
can be weakly approximated using the regression model Eq. (27) with the parameter
values Eq. (26). For both cases, m = 3. If there is a long term trend in the background
process, we expect that to be reflected primarily in the first coefficient, 6;, of the
regression model. Consequently, we use the coefficients (62, 03), which is equivalent to
setting

(m1,m2) = (2,3) (35)

in the projection P, "™ Eq. (28). Thus, B is the projection into the two dimensional
subspace L{t;}3., of the trajectory {6:}}, in EF constructed from the training set
{y;},. Finally, we find that appropriate time scales for defining usual events are

ARM: T, = 180Xt = 1hr,

EEG: T; 100 X £, & .25. (36)

To illustrate the perturbation detection technique, we have selected example seg-
ments from the ARM and EEG datasets, each example segment including the training
segment that has been used to this point. The length in number of observations and
time of those example segments is

ARM : §i=150,000 &t~ 11.6days, (37)
EEG: 6i=46,080 6t=90.0s.

The training set for the ARM example dataset is the initial set of §2 = 10,000 ob-
servations, which is approximately 2 days. For the EEG case, the training set covers
approximately a 20 s period over the final phase of the example dataset.
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Fig. 8 displays the result of the projection P™:™2, where (my,m3) = (2,3), for
the ARM example dataset, and Fig. 9 displays the corresponding results for the EEG
example segment. We note two points about those figures. Ordinarily, in making
state-space plots of trajectories we connect successive points, usually by straight line
segments, so that the trajectories can be observed. We have not done that here, so those
figures simply display the locus of projected points from the respective reconstructed
state-space trajectories. The second point is that those figures include only every 10-th
point from the projection, which is done so that the plots are not too cluttered. Figures
like Fig. 8 and Fig. 9 are sometimes referred to as scatter plots.

Consider the ARM case. Fig. 8a displays the scatter plot for only the training
dataset, and Figs. 8b,c display the scatter plot for the example segment. Note that the
axes in Fig. 8b are the same as those in Fig. 8a. Fig. 8c is a telescopic view of example
segment scatterplot that includes all the points in the locus. Note the difference in
scales used for the axes in Fig. 8c compared to those in Fig. 8a,b. The high density
region observed in Figs. 8a,b is little more than point size in Fig. 8c.

We consider further the ARM case. In the next section we describe how the region
B used above to define usual trajectory segments is quantitatively estimated. For now,
we state that the analysis produces the result

(38)

ARM : B:{ —12E-01<6; < +.12E-01 } .

—-13E-01<03<+.25E—02

Note that this prescription for B roughly approximates the rectangular region used
for the scatter plots Figs. 8a,b, although it appears to be quite conservative relative
to the observed high density areas in those figures. Referring to the difference in axes
scales for Fig. 8c compared to Figs. 8a,b, perturbations in the ARM case include length
scales that range over several orders of magnitude. Fig. 10a displays the cumulative
time of usual trajectory segments for the example segment Eq. (34). Referring to the
definition of usual segments, the slope of the curve in Fig. 10a is slope = 1 during
periods of minimum duration T that the projected trajectory is inside B, while the
slope is slope = 0 during periods when the projected trajectory moves about outside
B. The total number of usual segments is nineteen, which means the total number of
perturbations is approximately nineteen, also. Fig. 10a displays three clearly defined
plateaus, the second one occurring at approximately 4.0 days actually being made up
of two pieces, but several other relatively short segments of zero slope can also be
observed. The total fraction of usual events, according to this analysis, is F' = 66 %.

Consider now the EEG dataset results. Note in Fig. 9 that the same rectangular
region is used for both frames. The EEG example segment is significantly different
than the ARM dataset in that perturbations of greatly different length scales than the
background process, as observed in the (62,03) linear subspace, do not occur. Our
analysis yields the prescription

(39)

g —12E+01<8 <t 12E 01
EEG: B—{ ~5TE+00 < 05 < +.57E + 00 } .
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Figure 8: Trajectory projection into (62, 03) linear subspace for ARM data: (a) training
dataset; (b) 11.5 day datasegment; (c) telescopic view of frame (b).
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In the case of the EEG dataset, the perceived high density region from Fig. 9 corre-
sponds closely to the analysed region B. Fig. 10b displays the cumulative time of usual
segments Eq. (34). We note from the analysis that the total number of usual segments
is ninety-four. From Fig. 10b, we estimate that the total fraction of usual segments for
the EEG example dataset is F' = 66 %, but that the majority of perturbations occur in
the first 40s segment. In fact, the training dataset covers approximately the last 20s
piece of the example segment. )

To complete this section, we present a rudimantary form of cluster analysis for
the two example analyses. Figs. 11,12, display the ARM and EEG example segments,
where perturbations are colored coded according to duration. For both cases there are
six bins, or time intervals, and a perturbation is colored according to which bin its
duration belongs. The background, which determines usual segments, is colored black.
Table 1 describes the color code used for those figures. We note that for the ARM case,
the absolute maximum value of amplitude for perturbations increases with duration,
so that for the scales used in Fig. 11 short duration perturbations may not appear to
have structure. However, in a magnified view, they are clearly distinguishable from the
background.

ARM EEG

0 black

1 red 0.0hr < p; £ 40k 0.0s < p; < 0.1s
2 gold 40hr £ p; < 80hr 0l1ls £ p; < 02s
3  yellow 80hr £ p; £ 120hr 02s < p; < 03s
4 green 120hr < p; < 160hr 03s < p; £ 04s
5 purple 16.0hr < p; < 200hr 04s < p; < 05s
6 seagreen 200hr < p; 055 < p;

Table 1: Color codes for unusual segments in ARM and EEG example datasets dis-
played in Figs. 11,12,

4.3. Analysing Nonstationarity

As described in the introductory remarks to the previous section, we are looking for
techniques to analyse datasets that are too large to be computationally manageable as
a whole at one time. The strategy is to partition the dataset into manageable pieces
and analyse one piece of the partition at a time. In the previous section we looked at
a method for analysing one piece. In this section we complete the description of the
technique discussed in this article for analysing large datasets by describing how the
analysis moves from one piece to the next.

At issue is the prescription of the region B Eq. (29) used to define usual segments
Egs. (30),(31). In the previous section we tacitly assumed the procedure for identifying
B depends on having a training set of data. Because of the large dataset condition,
which also implies there are many pieces in the partition of that dataset, it is practical
to assume the analysis of the large dataset can be preceded by a preliminary analy-
sis to initialize it. The initialization procedure may reasonably include identifying a
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training set to model the background process. However, in moving from one piece of
the partition to the next, it is not practical for the analyst to interrupt the analysis in
order to identify a new training set.

We are going to describe a method for objectively specifying B Eq. (29) for an
arbitrarily fixed member of the large dataset partition. If B is a constant function of
the partition index, then we say the process is “stationary;” otherwise, the process is
“nonstationary.” '

We are gonig to assume the background process does not experience a fundamental,
qualitative change during the time of observation. Thus, we are assuming the initial
reconstruction analysis for the background process that resulted in values for the recon-
struction parameters (n,k,m) given in Eq. (26) remains valid and that the subsequent
analysis which lead to values for the projection parameters (m;,mz) given in Eq. (35)
used to determine B also remains valid.

The method we use for determining B depends on estimating distributions for the
relavent 8 vector components. We want to use the first and second moments of the
estimated distributions to define B. The difficulty stems from the fact that the tails
of the global distributions of the relavent § components can produce values for those
moments that are poor estimates of the high density region we want to associate with
B. A two step procedure is introduced, first, to locate the high density region and,
second, to measure its extent.

We are going to describe the method for estimating B using the ARM example
dataset introduced in the preceding section. Consider Fig. 8. Recall that Figs. 8a,b
display the high density region in the (6;,63) linear subspace for the example ARM
dataset. For both 0, and 3, the interval [—.1,+.1] is larger by an order of magnitude
than the interval used for either variable in those figures. Fig. 13a displays densities
for 62,03 restricted to the interval [—.1,+.1], and Fig. 13b shows the cumulative dis-
tribution functions for those densities. Fig. 13c displays approximations of the second
derivative of those cumulative distribution functions. Letting F' represent either cu-
mulative distribution function, a limited region [fmin,Omaz)] for @ is determined by the
conditions

d’F

W(emin) = +a,

d’F

W(Bmaz) = -, (40)

where 0,,,;, and 6., are the minimum and maximum values of 8, respectively, satisfying
these equations. Next, using the resulting intervals for the two variables, we construct
the density functions limited to those intervals. Setting

o =.05 (41)

in Eq. (40) leads to the densities displayed in Fig. 13d.
Given the real random variable z with density p(z), the mean and squared variance
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are defined, respectively, by

Bz = /mp(z)dm, (42)
2 = [(o=pYole)is. (43)

The means and variances corresponding to the densities displayed in Figs. 13a,d are
summarized in Table 2. Referring to the dense region in Fig. 8, note that the means
and variances estimated from the densities displayed in Fig. 13d serve to quantify that
region very well.

As a result of numerical experimentation, we find that the rule

0=pgt2xoy (44)

for defining the extent of B in each coordinate direction works well. The prescription
of B for the ARM example dataset given by Eq. (38) follows from the values for mean
and variance given in Table 2 using this rule.

Exactly the same method used to analyse B for the ARM dataset is used for the
EEG dataset. The initial density estimates for ;,03 are made using the intervals
[~4.0, +4.0], [~2.0, +2.0], respectively, which appear to be reasonable choices according
to Fig. 9. The same value for o Eq. (41) used in Eq. (40) for the ARM dataset is used
for the EEG dataset. The resulting densities are displayed in Fig. 14 and the resulting
means and variances are given in Table 3. As for the ARM case, the means and
variances in Table 3 describe the high density region for the EEG example dataset,
which is illustrated in Fig. 9, very well. The prescription for B given by Eq. (39)
corresponds to the formula Eq. (44) used with the means and variances in Table 3.

The estimate of B for an arbitrary piece of the partition of the large data series is
made using the methodology described above. This methodology requires knowledge of
an interval on which to make an initial estimate of a density. For the first piece, we can
do a preliminary analysis that provides intervals like those found above for the example
ARM and EEG datasets, which led to the densities displayed in Figs. 13a,14a. Beyond
the first piece, we use the results from the preceding piece to provide those intervals
for making initial estimates of the densities. Using [fmin,Omes] defined by Eq. (40), we
define an initial interval for each @ by magnifying that interval by a factor about its
center. That is, setting

ec = b5X (gmin + omaa:) ’
od = (0maz - gc) ’
we use
0=0.%+8x0a (45)

to define the initial interval for estimating the density of 8. For the results displayed
below, we use the magnification factor value 8 = 4.0.

Fig. 15 displays the cumulative time of usual segments for excerpts from the ARM
and EEG records, each sufficiently long to illustrate the large data series analysis
technique. The initial 15 pieces of the partition of each record are used for this purpose,
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where each piece corresponds in length to the example datasets used earlier Eq. (37).
For convenience, we repeat that prescription here.

ARM : 6i=50,000 6t~ 11.6days
EEG: 6i=46,080 6t=90.0s

Each frame of Fig. 15 has two curves, one corresponding to making a new estimate
of B for each piece, referred to in the figure as “dynamic attractor”, and the other
corresponding to using the estimate of B made on the initial piece for all pieces, which
is labeled “fixed attrator.” For both cases, the dynamic specification of B leads to
a cumulative function that is approximately linear. The difference in results between
the dynamic and fixed specifications of B is evident in both cases, but is particularly
dramatic for the EEG case. We note, however, that for a case of sufficiently long
duration, which is not given here, the ARM results display the same character with
respect to fixed versus dynamic specification of B as the EEG results shown in Fig. 15b.

Fig. 13a Fig. 13d

6, 0s 6, 03

4| +.27E-03 -.32E-02 -.11E-04 -.51E-02
o | +27E-01 +.17E-01 +.59E-02 +.38E—02

Table 2: Mean and variance for densities displayed in Figs. 13a,d for ARM example
dataset.

Fig. 14a Fig. 14d

0, 03 0, 0

© | +40E-02 -.17E-03 +.79E-02 -—-.19E-02
g | +.70E4+00 +.30E400 +.59E400 +.29E+00

Table 3: Mean and variance for densities displayed in Figs. 14a,d for EEG example
dataset.

5. Summary and Conclusions

This article outlines a technique for finding unusual segments in large data series. Fur-
ther, the technique is demonstrated using two examples of such data sets. The essence
of the technique is, first, to partition the large data series into a series of manageable
pieces, and second, to construct a simple model that can distinguish between the usual
and unusual, where “simple” is intended to imply “fast”. That model is applied to one
piece of the partition at a time.

The technique is based on the qualitative idea that most of the measured data
corresponds to observing some background process, but that occasionally, due either
to external forces or internal conditions, perturbations take place. We refer to data
corresponding to the background process as “usual” and to that corresponding to per-
turbations as “unusual.”
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In Section 2 we discuss preliminary analyses used, first, to identify the information
content of the data series in frequency space and, second, to condition the the data
series by minimizing energy outside the meaningful band. This band determines the
range of time scales we want to model.

In Section 3 we outline that part of the theory of nonlinear dynamical processes that
provides the foundation for modeling nonlinear systems using time series measurements.
Further, we outline the methodology used to construct models. That methodology
depends on the information gained about the time series doing the analyses described
in Section 2, especially the information about relavent time scales.

In Section 4 the technique for analysing large data series is described and illus-
trated using the two example time series. In particular, we describe how to construct
a “simple” model using the more general ideas for modeling described in Section 3.
Further, we define the meaning of “usual” and, in turn, we define “unusual” to be the
complement of all that is usual.

We want to make some observations concerning the assumptions on which the
technique is based.

1. It is assumed the large data set can be partitioned serially so that each member,
or piece, of the partition is manageable and so that each of the longest time-
scale unusual events of interest is expected to be contained in a member of the
partition. By “manageable,” we mean that data can be accomodated on a work-
station generally available to researchers. As the large dataset may be something
observed over a long period of time, some knowledge of the process, other than
purely empirical, is needed to determine a time scale for the pieces of the parti-
tion. Futher, each piece is assumed to contain sufficient information about the




-99-

background process to model it.

2. Referring to power spectra, we assume both the background process and the
perturbations of interest correspond to the same frequency band. Part of the
methodolgy includes isolating a frequency band of information from above by
low-pass filtering. In effect, the length of a piece isolates the band from below. If
the measurement instrumentation includes a high-pass filtering component, that
value together with physical information about the process should be taken into
consideration in choosing the length scale for a piece.

In the examples used to illustrate the technique we have not tried to use meaningful
time scales for the pieces of the two partitions. Further, referring to what is described
as a “characteristic time scale”, T Eq (31), we did not discuss how to select a value
for it, and the values we used for the two examples Eq. (36) are not the result of some
analysis of the two background processes associated with the examples. However, the
choice of a characteristic time scale can be expected, in general, to reflect the dominant
frequency in the frequency band of information for the background process.

We did not discuss the results of the analyses of the ARM and EEG time series from
the standpoint of scientific value. That is not the purpose of this article. However, on
the basis of discussions with Dr. Jim Liljegren, Pacific Nothwest Laboratory, Richland,
WA, an atmospheric instrumentation scientist who is knowledgeable about the ARM
data used in this article, we can say tentatively that virtually all instrumentation
malfunctions as well as observed atmospheric liquid water events, like cloud, rain,
and fog, are identified by the technique. Futher, on the basis of discussions with Dr.
Michael Eisenstadt, Neurologist, Knoxville Neurology Clinic, Knoxville, TN, we can
say that virtually every instance of clinically defined artifact, like muscle tension, head
movement, and eye movement, is identified as a perturbation.
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