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Abstract

The main objective of the paper is to describe and develop model ori-
ented methods and algorithms for the design of spatial experiments. Unlike
many other publications in this area, the approach proposed here is essen-

tially based on the ideas of convex design theory.

1. Introduction

Since the earliest days of the experimental design theory, a number of concepts like
split plots, strips, blocks, Latin squares, etc. (see Fisher (1947)), were strongly
related to experiments with spatially distributed or allocated treatments and ob-
servations. In this survey we confine ourself to what can be considered as an
intersection of ideas developed in the areas of response surface design of experi-
ments and spatial statistics.

The results which we are going to consider are also related to the results de-
veloped by Cambanis (1985), Cambanis and Su (1993), Matern (1986), Micchelli
and Wahba (1981), Sacks and Ylvisaker (1966, 1968, 1970) and Ylvisaker (1975,
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1987). What differs in the approach of this paper from those cited? We intend
to use the techniques which are based on the concept of regression models while
the cited studies are based on the ideas developed in the theory of stochastic
processes and the theory of integral approximation.

If this survey were to be written for a very applied audience, the title “optimal
allocations of sensors” or “optimal allocation of observing stations” could be
more appropriate. Environmental monitoring, meteorology, surveillance, some
industrial experiments and seismology are the most typical areas in which the
" considered results may be applied. What are the most common features of the

experiments to be discussed?

1. There are variables x € X C R*, which can be controlled. Usually £k =2,
and in the observing station problem, z; and z, are coordinates of stations

and X is a region where those stations may be allocated.

2. There exists a model describing the observed response(s) or dependent vari-
able(s) y. More specifically y and z are linked together by a model, which

may contain some stochastic components.

3. An experimenter or a practitioner can formulate the quantitative objective

function.

4. Once a station or a sensor is allocated a response y can be observed either
continuously or according to any given time schedule without any additional

significant expense.

5. Observations made at different sites may be correlated.

Assumptions 1 - 5 are very loosely formulated and they will be justified when
needed. In the subsequent sections the term “sensor” stands for what could be
an observing station, meteorological station, radiosonde or well in the particular

applied problem.
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2. Standard design problem

In what follows we will mostly refer to experiments which are typical in environ-
’mental monitoring setting as a background for the exposition of the main results.
We hope that the reader will be able to apply the ideas and techniques to other
types of experiments.

When assumptions 4 and 5 are not considered we have what will be be
called, the “standard design problem”. The problem was extensively discussed
(see for instance, Atkinson and Donev (1992), Fedorov (1972), Pazman (1986),
Pukelsheim (1994) and Silvey (1980)), and it is difficult to add anything new in
this area of experimental design theory. Theorem 1 which follows, 1s a gener-
alized version of the Kiefer-Wolfowitz equivalence theorem, (see Kiefer (1959))
and stated here for the reader’s convenience. It also serves as an opportunity
to introduce the notation, which is sometimes different from that used in other
articles of this volume.

Let

yi; = (i, 0) + &35, (2.1)

1= 1,...,n, j=l,...,7‘2' ZT5=N,
n(z,0) = 67 f(z),

where § € R™ are unknown parameters, fX(z) = (fi(z)..., fm(z)) are given
functions, supporting points z; are chosen from some set X, and the ¢;; are
uncorrelated random errors with zero means and variances equal to one. We
do not make distinctions in notation for random variables and their realizations
when it is not confusing.

For the best linear unbiased estimator of unknown parameters the accumu-

lated “precision” is described by the information matrix:

M(¢) = Zpif(mi)fT(wi), pi = r;i/N, (2-2)

which is completely defined by the design £ = {z;,p;}?. In the context of the
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standard design theory

M(§) = [ f(2)f7(2)é(de) = [ m(z)g(da), (2:3)

where £(dz) is a probability measure with the supporting set belonging to X :
suppé C X, and

m(z) = f(2)7(2)

is the information matrix of an observation made at point z.

Regression model (2.1) and the subsequent comments do satisfy assumptions
1 and 2 from the previous section. To be consistent with assumption 3 let us
introduce a function W(M), which is called the “criterion of optimality” in ex-

perimental design literature. A design

¢ = ergmin ¥ [M(©)], [ £(de) =1, (2.4

is called (¥—) optimal.
Minimization must be over the set of all possible probability measures = with
supporting sets belonging to X. Now let us assume that:
(a) X is compact;
(b) f(z) are continuous functions in X, f € R™;
(c) ¥(M) is a convex function and ¥(M) < ¥(M + A),M >0,A >0,
i.e. matrices M and A are nonnegative definite.

(d) there exists a real number ¢ such that

(e) for any £ € =(q) and £ € =(q):

¥ [(1 - )M(E) +aME)] = U [M(E)] + o [ (e, O)F(dz) + (a6, ),
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where m(a, ¢,€) = o().
Here and in what follows we use ¥(¢) for ¥[M(£)], ¥* for ¥(£*) and min,, ming, f,
and so on, instead of min..x, ming.z, [y, respectively, if it does not lead to am-

biguity.
Theorem 1. . If (a)~(e) hold, then

1. For any optimal design there exists a design with the same information

matrix which contains no more than n = m(m + 1)/2 supporting points.

2. A necessary and sufficient condition for a design £* to be optimal is fulfill-
ment of the inequality:

min(z,£") > 0.
3. The set of optimal designs is convex.

4. (z,£*) achieves zero almost everywhere in supp¢”,

where suppf, stands for supporting set of the design (measure) €.

Here and

Functions ¥ (z, £) for the most popular criteria of optimality may be found, for
instance, in Atkinson and Fedorov (1984). Theorem 1 provides a starting point for
analytical exercises with various relatively simple regression problems and makes
possible the development of a number of simple numerical procedures for the
optimal design construction in more complicated and more realistic situations.

Most of these procedures are based on the following iterative scheme:

o (a) There is a design & € =(¢). Find

Ts = arg min {¢(w+,€s)’ 1/7(37—755)} 3 (25)
ot = argmin¥(z, &), @~ = argmax (s, &),

where X, = suppé;.
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e (b) Choose 0 < ;s <1 and construct

€s+1 = (]- - :Bs)fs + ﬁ55($8)7 (26)

where £(z) is a measure atomized at z,.

The choice of a sequence B; defines a variety of the algorithms; specific examples
are given by Atkinson and Donev (1992), Cook and Nachtsheim (1989), Fedorov
(1972, 1975) and Silvey (1980). The following sequences are most popular:

o B, =qa;, ifz,=2z", and
Bs = min{a,, E(z7) /(1 = &(z™ )}, if e, =27,

where lima, =0, > 325a; = o0;

e z = arg min, 9 [M(&s41(2))],
where {s41(z) = (1 — B)Es + Bé(zs);

o o) P HPIME(Se))] < $IM(6n))
’ Bs—1/7, 7 >1 otherwise.

Theorem 1 together with iterative procedure (2.5), (2.6) provides quite power-
ful tools for constructing optimal design. The existing software products, see, for
instance, Mitchell (1974), Nguen and Miller (1992), Nachtsheim (1987), SAS/QC
Software (1995), Wheeler (1994), confirm this statement. Unfortunately, there
are a few hurdles, which do not allow the direct use of the results reported above.
The first one is that optimal designs defined by (2.4) may have unequal weights.
What does this mean in the context of observing stations allocation? If we have
N available stations or sensors, then r} = [p}/N] stations must be allocated at
z¥, where [p?N] is some reasonable integer approximation of pf N. It is obvious
that in many cases (but not always) two or more stations sited in the immediate
vicinity of each other will not give essentially more information than a single
station. There are some arguments in favor of this statement, which can be

expressed economically in colloquial statistical terminology: observations from

these stations are strongly correlated. However, frequently weights p} may be
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considered as the desirable precision of measurements taken at the i-th station.
The corresponding precision can be achieved through the proper technical steps
or through controlling the longevity of the observational process.

Probably, Gribik et al (1976), were the first to use the optimal experimen-
tal design methods for environmental monitoring. They analyzed the problem
of allocating measuring resources to aid in accurately estimating ground level
pollution concentrations throughout a region X. The regression model was the
linearized version of the diffusion model for four pollution sources and unknown
background source. Since the diffusion model used in the study was a large scale
model, measurements separated by distances smaller than a threshold value dis-
tance appeared to be correlated in the corresponding parameter estimation prob-
lem. At the same time the design method was a particular case of the method
discussed in this section, where the independence of observational errors is essen-
tial. To avoid a contradiction the authors imposed the additional constraint: the
distance between any two observing sites must be greater than the characteristic
distance:

(z; — z;)7 (z; — z;) > d°

Imposing constraints of that type is one of the simplest way to handle possible
correlation between the observed values at neighboring stations. Obviously the
approach does not work for long-range correlation, when the widely separated
observations are correlated.

It was assumed that the ground level pollution is of the prime interest. The
authors proposed to use the weighted average variance of the best linear unbiased

estimator of the ground level pollution:

M) = [ w(@f (@M (2)d

as the criterion of optimality. The weight function w(z) was selected proportional

to the population density in the considered region.

A rather detailed discussion of applicability of the standard design technique




for spatial experiments may be found in Fedorov et al(1988).

3. Optimal designs with bounded density

Gribik et al (1976), used a very simple and transparent idea to avoid clustering
of sensors at particular points. This idea can be exploited in a more general and
formal setting. Let the number of sensors NV be sufficiently large and the density
of stations per square unit be introduced into consideration:

N(AX)

f(de) = lim —5— (3.1)

Introduction of (3.1) is very reasonable when the sensor allocation is considered
in technological experiments. In the network allocation problem it is probably
less realistic. Nevertheless, the results considered in this section help to explain
why some intuitive approaches, similar to what was done by Gribik et al (1976),
do work well in most cases.

If X is not uniform (as might be appropriate say, with different topography
for different parts of X)), then it is natural to assume that the sensor density has
to be constrained:

®,(dz) < é(dz) < ®o(dz).

With obvious redefining of the design measure {(dz) and the upper bound ®,(dz)

the latter may be reduced to a simpler statement:
0 < ¢(dz) < ®(dz).

Thus, the following optimization problem must be considered, (we skip the evi-

dent left hand side constraint):

¢ = argmin ¥ [M(£)], (3.2)

[é(dz) =1, ¢(dz) < o(de) (3.3)
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This optimization problem was discussed by Wynn (1982), and Fedorov (1989).
To avoid unnecessary technical complications let us assume additionally to (a)-

(e) from section 2 that

(f) ®(dz) is atomless, i.e.

lim [ ®(dz) =0
Az—0 JAz

The following theorem sumimarizes the most important properties of designs

with bounded density.

Theorem 2. . Let = be a set of design £ such that {(dz) = ®(dz), when
&(dz) > 0, and ¢(dz) = 0 otherwise, and let assumptions (a) - (f) hold. Then:

e There exists an optimal designs £* € =,.

e A necessary and sufficient condition for this design to be optimal is that

Y(z,£*) separates the two sets X* = suppf* and its complement.

In the above formulation “separate” means that there is a constant C such
that ¢(z,£*) < C on X* and 9¥(z,£x) > C on its complement.

Theorem 1 tells us that supporting sets of optimal designs must coincide with
the points where (z,{*) achieves its minimum. Therefore, in most cases the
supporting set for the standard optimal design consists of a finite number of
supporting points.

Theorem 2 forces suppl* to occupy the subsets of X. How is £*(dz) to be
realized by a practitioner? One of the possibilities is to replace £*(AX) for
relatively small areas AX by N*(AX) = [£*(AX)N]. When N*(AX) is defined
then the corresponding number of sensors have to be allocated in AX. For
instance, they can be sited at the nodes of some uniform grid. Generally, that

allocation has to guarantee a reasonable approximation of the integral

L., ¥ £¢ o)




xil
by the sum

3 (2, AKX, 1€ AXL|JAX: = AXCAX(AX; =0,1 # 5.
z;€AX i
The properties described by Theorem 2 allow us to formulate a simple numer-

ical algorithm to construct optimal designs (see Fedorov (1989)). Let ®(dr) =
é(z)dz and

8 §

. - - _ . 2

slir& as =0, sl_l}go Z:las/ =oc and sllglo :Z:l ol < oo.
s'= Si=

(a) There is a design & € Zo. Let Xj, = suppé; and X5, = X \ Xj,. Two sets
D, C X;; and E; C X5 with equal measure,

/D, H(z)dz = /E, é(z)dz = as,

and, correspondingly, including the points

21, = arg max ¥(z,€) and zg, = arg xrg)i(gstﬁ(m,és),

(b) The design &;+1 with the supporting set

Supp§s+1 = Xl(s+1) - (Xls \ Ds) U Es

is constructed.

Usually ¢(z) is assumed to be constant. All other cases may be converted to
this one with the proper coordinate transformation. In the computerized version
of the algorithm integrals in (a) are replaced with sums over some grid elements.
If these elements and subsequently «, are fixed and elements of both D, and E,
coincide with the grid elements, then (a), (b) becomes an exchange type algorithm
(see, for instance, Mitchell (1974)) with the simple constraint: every grid element
cannot contain more than one supporting point and the weights of all supporting

points are the same, i.e. N~1. In practice it is sometimes convenient to consider
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grids of varying density, which has to be proportional to ¢(z). While it can be
shown that the exchange algorithm (a), (b) converges to an optimal design for
properly diminishing o, , it is not generally true for finite a, and, in particular,
when a; = N~!. The accuracy of the limit designs is defined by the accuracy of

the approximation (see assumption (e) from Section 2):
W[(L - @) M(&) + o M(E) = W [M(E)] + o [ ¥(z,€)¢(de)

Axi w(x,fs)ﬁ(dx) ~ d)(xi’fs)AXi.

When these approximations are reliable enough then we can hope that the
limit designs do not deviate too much from the optimal ones. The term “limit
design” must be used with some reservation when a; = N~!: instead of conver-
gence some minor oscillations of ¥ [M(¢,)] may be observed. Practical aspects of
the iterative procedure (a),(b) were discussed by Fedorov and Miiller(1989b) in

the air pollution network design setting.

4. Correlated observational errors

Let us assume now that the random errors in model (2.1) are correlated and
that the covariance structure is known, i.e. either the covariance matrix V or the
covariance function V{(z, ') is given. There is no need to use the second subscript

indicating the repeated observations and we consider
yi = n(z:,0) + &, (4.1)
where ¢t = 1,..., N, E(¢;) =0 and

V(En) = {Eee), 1y = {V(znz) g -

For the obvious reason, in this section we will use the simplified notation:
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€N={$la"’a$N}-

In the case of correlated observations the best linear unbiased estimator is defined

as ( see, for instance, Rao (1973)):

§ = M7 (en)F(En)VHENY, (4.2)

and its dispersion matrix equals
Var(6) = M~ (éx), (4.3)

where

YT = (yl,...,yN), F(éN) = (f(xl)7'-"f(xN))’

M(én) = F(En)VH(En)FT(En) = NM(én). (4.4)

The best linear unbiased predictor at a point z is
§(z) = f1(@)8 + VT (2, )V HEm)(Y ~ FT(em)8), (45)

E [(y(a:) - Z:I(:E))2] = 52(1’, éN) + ¢T($7 fN)_M._l(fN)(b(.’r, §N)7 (46)
where
52($’ éN’ ) = V("I:? .’22) - VT($7 éN)V—l('fN)V(xv é-N)a
#(z,¢n) = f(z) = FENV NV (2, ¢n),
Unlike (2.2), the information matrix (4.4) is not a sum of information matrices

of single observations. Therefore we cannot use directly the results of the convex

design theory, which is essentially based on the additivity of information matrices.
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Actually, we have to consider the optimization problem
& = argmin ¥ [M()], (47)

which does not have too much in common with (5) besides notation. For instance,
the convexity of ¥ is not very helpful anymore.

In most studies authors try to imitate the iterative methods of optimal design
construction considered in two previous sections. For instance, computations
become similar to the standard (uncorrelated) case, if the following recursion

formula is used (Brimkulov et al (1986)):
M(éns1) = M(Ew) + w(z, En)(z, Ev)¢7 (2, €n), (48)

where
En1 = {én, 2} and w7l (2, En) = 5%(z, n).

We can easily derive, for instance, that
M (Ens1)| = [M(EN)] [1 + (=, &n)¢" (2, En) M (EN) (2, En)] - (49)

Subsequently, for the D-criterion the point
ZN+1 = argmax w(z, En)$T (2, En) M (én) (2, én), (4.10)

must be added to the design £5. That is an imitation of step (a) from the iterative
procedures considered in the two previous sections.

There exists a simple intuitive explanation why iterative procedures based on
(4.10) provide “good” supporting points in the sense of the D-criterion. First,

let us recollect that in the no-correlation case accordingly to stage (a) of the

iterative procedure from Section 2 the additional observation(s) must be allocated
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at point(s), where the ratio

variance of prediction with the estimated ¢

variance of prediction with the given

_ @) + M@M(O)f ()

o?(z)

is maximal. This follows, for instance, from (2.5) when

(4.11)

Y(M) = —InM]| and $(z,&) = m — fT(2) M () (z) for o*(z) = 1
(@, 6) = m — o= (2) {7 (&) M) f(2),

in the more general case (see Fedorov (1972)) for details. In the case of correlated

observations we are looking for a maximum of the same ratio

variance of prediction with the estimated 8

variance of prediction with the given 8

_ Sz, én) + 97 (2, &) M (En)(, En)

2(a, &) (4.12)

When z — z; € suppén, then

w(z, En)Y7 (2, En) M (En)9(, En)) — 0 (4.13)

for f(z) and V(z,€n) continuous in the vicinity of z. In other words the iterative
procedure defined by (4.10) does not admit coinciding supporting points. The
result follows from the definitions of ¥ (z,£x) and S*(z,én), and the fact that

{VHEemV(ei,én)}, = 8,

where 4;; is the Kronecker symbol. Formula (4.10) can be easily rewritten for

the deleting procedure. ;From (4.9) it follows that in the case of the D-criterion
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candidates for deleting are defined by the equation:

Ty = arg rflfinw(xea§N+1)¢T($£,€N+1)M-1(§N+l)¢($é,§N+1)- (4.14)

We are not aware of any results on the properties of the iterative procedures
based on (4.10) and (4.14) for the D-criterion or similar procedures for other cri-
teria. There are empirical confirmations that the exchange-type algorithms lead
to a significant improvement of the starting design. For instance, Rabinowitz and
Steinberg (1990) applied that type of algorithm to the problem of selecting sites
for a seismographic network. They have shown that the computed designs are rel-
atively efficient and are better than the standard D-optimal designs constructed
for models with uncorrelated observations. It is reasonable to note that compu-
tationally (4.9) and (4.14) are much more demanding than their counterparts in
the standard design theory. There exist a number of studies where the optimiza-
tion problem (4.1) is considered for some special and relatively simple covariance
functions, for instance, generated by autoregressive models. Various details and
further references may be found in Bickel and Herzberg (1979), Bishoff (1992),
Kunert (1988), Martin (1986), Miiller and Pdzman (1995) and Nather (1985).
In conclusion of this section let us emphasize again the significant difference
between the case with correlated observations and the standard case. For un-

correlated observations the additiveness of the normalized information matrix
(o(z) =1): N
M) = NS fz)ff(z:) = N7 M(éw)

i=1
leads to many simple and elegant theoretical results initiated by Kiefer’s pioneer-
ing findings. Very frequently normalized information matrices may be treated as
a limit, i.e.:
M(E) = Jim N-M(en). (4.15)

In many cases for correlated observations the corresponding limit does not exist

and the matrix M(£) cannot be introduced. One of the most successful attempts
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to replace (4.15) was due to by Sacks and Ylvisaker (1966, 1968); see more in

Section 7.

5. Random coefficients regression models: Trend estima-

tion

In what follows we intend to consider some simple models for the random com-
ponent in (2.1). It is convenient to partition “intrinsic” or “process”, and “ob-

servational” sources of randomness:
Yi; = 1(z:, 0) + uij + €i;. (5.1)

Values u;; describes deviations of the observed response from 7(z;, ) due to
some causes which are independent of an observer. For instance, an average wind
velocity may be disturbed by various local micro-eddies. The term ¢;; describes
“observational” errors. Sometimes these errors are defined by the selected obser-
vational technique and, at least partly, they are controlled by an observer. The
proposed partitioning is very conditional, and the reader may use a different one,
which is more compatible with the corresponding experimental situation.

Let us assume that
Yij = G’ffl(:z:,) + Hg;fz(x,) + Eijs 1= 1, censy N, ] = ]., ceey k, (52)

or

Y; = Fi(én)T 01 + Fo(6n) 025 + €5, (5.3)

where

01 € R',0y; € R, t+1=m, F(én) = (falz1),-.., fulzn)), @ =1,2,

6? = (€1j, N ,EINj).

Pe
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Vector 6, is random with
E(6;) =0, E(6:07)=Var(8;) =A, (5.4)

vector ¢ describes the observational errors, which are random and

We assume that 8, and ¢ are uncorrelated. In terms of (5.1) we have
E(u) =0, E(ux”) = FJ (én)AFy(én)-
If e=u+e¢,then
E(e) =0, E(ee”) =V(En) = oI + Fy (En)AFa(én). (5.5)

Thus we are going to consider a very special case of (4.1) with V(én) defined by
(5.5). It may be illuminating to associate index “;” with time (hour, day, ...)
and “:” with location (z; is a vector of coordinates of a particular site).

Model (5.5) gives an opportunity to introduce criteria of optimality which
provide a very reasonable description of various experimental situations. Those
criteria may be divided in two main groups. The first group is related to the
“average over time” behavior of the observed response. The corresponding criteria
depend upon the precision of estimators of ;. This means that we consider some
functions of Var(#;), where 6; is an estimator of 6;.

The second group deals with “instant” responses and the corresponding cri-
teria are based on Var(f), 87 = (7,67).

Let us start with the first group, i.e. with estimating the subvector 8;. The

best linear unbiased estimator is (compare with (4.3):

k
b1 = M3} (En)Fu(En)V 7 () S KTY; (5.6)

=1
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The dispersion matrix of g is

k-Var(6:) = M7} (én), (5.7)

where

M1 (&n) = Fi(&n)V Y (En)FE (En). (5.8)

An optimal design (or optimal observational network) is defined as

{n = arg ngrnllf (M1 (EN)], (5.9)

which differs from (4.7) only by the more detailed information about V(£y).
It may be expedient to note that unlike the situation described in comments
accompanying (4.13) the covariance is not anymore a continuous function at the

diagonal:

lim E(e(z)e(z) # o + fF(z)Afao(2). (5.10)

z—x!

Therefore (5.9) may admit designs with repeated observations, i.e. it could
be that = € suppén and M(éx + z) is better than M(én).
Using the identity

(A+BDBT) ' = A7 '~ A'B(BTA'B+ D) 'BTA™! (5.11)
and assuming the existence of the A~!, one can find that
May(én) = Mua(ew) — Mralén) [aen) + A7) Man(én), (5.12)
where Mag(én) = 0 2 Fo(én) F] (én)

Now let us consider the matrix

D21(én) Da2(én) Moi(én) Maa(én)+ AT

D(¢én) = (

Du(én) Dr2(én) ) _ (MH({N) Mis(én) )_1.
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¢From the Frobenius formula it follows that

D1y (én) = M3y (En)-

The matrix D({x) can be also considered as the dispersion matrix of the best

linear unbiased estimator of parameter §7 = (67,07 for the regression model.
y= 9TF(§N) +5’

where FT(¢y) = (Ff(fN),Fg(fN)) ,E(¢) = 0,E(ee’) = o%l, with the prior
information about parameters 8, described by a prior distribution P(#) such

that
E(62) = / 6,dP(62) = 0

and

See, for instance, Fedorov (1972), Pilz (1991), and Seber (1977). Thus, the
optimization problem (4.1) may be embedded in the framework of convex design
theory. For instance, for the D-criterion, when [My;(én)|™" = [Du(én)| must be
minimized, one can use any algorithm developed for the construction of “exact”
or “discrete” optimal designs; see, for instance, Cook and Nachtsheim (1980),
Fedorov (1972), Ermakov (1983), and Pukelsheim (1993) when only the subvector
6, has to be estimated. More generally we can now describe experimental design

as the following optimization problem

¢ = argmin ¥ (M(£) + Mo), (5.13)

M0=02N'1 0 0
0 A )]

N is now the total number of possible observations, and

where




xxil

M(©) = [ £(@)f"(@)¢(de),

(@)= (fi (), £ (=)).

Let us note that occasionally the total number of observations and the number
of supporting points may coincide (like in (5.2). Then N stands for both. The
results of Sections 2 and 3 may routinely be applied to (5.13) when ¥ is properly
defined and o2 and A are known.

Subset D-optimality. According to (4.10) we have to minimize some function
of the matrix M7}, when the parameters ;, are of prime interest. In terms of
(5.13) it means that the objective function ¥ must depend upon elements of the

matrix Aj;(€), which may be defined as follows:

A11(€) Alz(f) Mll(g) M12(§) !
A(é) = = .
© ( Ag1(€) Aze(é) ) (le(ﬁ) Ma2a(¢) + Mozz) (814

where

Mgoa = 0'2N-1A—1.

One of the possibilities is to select :
U (M(£) + Mo) = In |As1 (¢)] -

;From Theorem 1 it immediately follows that a necessary and sufficient con-

dition for £* to be optimal is that (compare with Fedorov, 1972):

FT(@)AE) f(z) = fF(z) (M2a(€7) + Moz2) ™" fol)

(5.15)
< ATA(E)M(E*) — tr (Mag(£%) + Moza) ™" Maa(£*).

Notice that

vi(,€) = f1(2)A€) f(z)
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is the normalized variance of #7 f(z), where  is the best linear unbiased estimator

of 8 from model (5.2), and

va(z,€) = f7 (z) (Ma(€") + Mo2) ™ fz(?)

may be considered as a normalized variance of the best linear estimator for
the regression model with the same observational errors but with the response
87 f2(z). To get non-normalized values we have to multiply the normalized values

by o N~1. Simple, but rather long matrix calculations show that
vi(z,€) = d(z,€) + R(z,z) — BT (z,6)R(€)R(z, )

+B%(2,€) (R(6) + p74(9)) " Blz,0), (5.16)

where
d(z,€) = f(e)M7'(E)fi(z), Rlz,z') = f7(z) Mz o),
R(:L',f) = F2TM6§12 2(93), R(é) = FgM()_212F2v
pHE) = W-WIEOW, B(z,£) = Wd(z,£) — RTH(E)R(z,¢),

(5.17)
d(f) = FFMﬁlFly d_(:l:, 6) = FlTMl_llfl(m)v

I

Fl (fl(zl)" "7f1($N)), F2 = (f2($1),'~-,f2(xN))’

Wi = bup;, pi=¢E&(z:), {z1...,2.} = suppé.

This collection of formulae looks much more complicated than the similar terms

in (5.15). However, that presentation has one remarkable feature: it does not

depend upon functions f>(z) and matrix A explicitly. All elements in (5.16) are
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completely defined by the covariance function
02 NR(z,7) = E (f2(2)00.£7 (z)) = V(3,2), = # 2"
Similar to (5.16)
va(2,€) = R(z,2) = B¥(2,6) (RO + W) R(z,8).  (5.18)

Thus, when the covariance function is known directly, i.e. we do not use (5.5)
to get it, one can use (5.16) and (5.18) to construct optimal design. Moreover,
the cases, in which [ = dim 6, — oo may be considered. The first attempt in this

direction was done by Miller-Gronbach (1993).

¥

6. Random coefficient regression models: Prediction

The presentation of the design problem for model (5.2)-(5.4) in the form (5.13)
allows us to develop a rather simple technique for experimental design when the

objective is the prediction of observed values. For the sake of simplicity, let
n(z,0) =0 in (5.2) and
wi(@:) = wij = 07 f(a;). (6.1)

Then the corresponding optimal designs are defined as
£ = argmin ¥ (M(€) + My), (6.2)

where

M(E) = / F(2)f7(2)€(dz) and Mo = 02N~'A™".

It is expedient to note that

min E [(§ - 6)(6 — 6)"] = D(¢) = a®>N~ (M(€) + Mo) ™,
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where the expectation operator E takes into account randomness of both obser-
vational errors and regression parameters. Minimization is taken with respect
to all linear estimators, see Gladitz and Pilz (1982), Fedorov and Miiller (1989),

Pilz (1991) . The best linear estimator is
A 1 N
8; = N7 (M(€) + Mo)™" Y i f(z:).-

=1

Similar to arguments in Section 5 we can apply the equivalence theorem to
(6.2) to find, for instance, necessary and sufficient conditions for a design £* to be
optimal. Leaving to the reader the possibility to formulate them for the general
case we focus only on three simple and very popular criteria.

Minimaz and D-criterion. For the D-criterion, when
U (M(E) + Mo) = ~In|M(£) + Mo|, (6.3)

one can easily derive from Theorem 1 that a necessary and sufficient condition

for £€* to be optimal is that

FF(@) (M(E) + Mo) ™" f(z) < tr(M(E7) + Mo) ™ M(£7) (6.4)

for all z € X.
This inequality appears, especially when the dimension of f is large, more at-

tractive and meaningful in notation described in comments accompanying (5.11):
-1
R(z,7) - B (z,€) (W™ + R(£)) ™ R(=,¢)

< tr (B - RO (W™ + R(©) RO). (6.5)

The variance of the best linear unbiased predictor for u(x) equals

Var(u(z) — a(2)[f),
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= 0?4+ o* N7 [R(z,2) - B(2,6) (W + RO) T R0,  (69)

where
i) =07 f(z) = R(z,6)(W+R(E©) Y (6.7)
= VT(z,¢) (PW N, +V(E) Y, (6.8)

and the components of the vector Y are averages of observations at the corre-
sponding points. For the continuously changing weights p; the i-th component of
Y may be considered as the observation made with a precision o/p;N = ;2. If
one introduce the covariance function

¥ (z,27) = { V(z,z'), z # 2, (6.9)

o2+ V(z,z) otherwise,

then (compare with (4.6) or coming later (7.1)) predictor %(z) coincides with
the best linear unbiased predictor for y(z) = u(z) + e(z) everywhere except
z € suppl. At the design points z; the realization(s) of y(z) are measured
directly and are not needed to be predicted, i.e. one may select y(z) = §(z) and
Var (y(z) — 9(z)|£) = 0. Obviously

Var (y(z) — §(2)I¢) = o + Var (u(z) — i(z)1¢) (6.10)

otherwise.

Using Theorem 1 together with (6.5) and (6.10) we can formulate the analogue

of the Kiefer-Wolfowitz equivalence theorem:

Theorem 3. The following two design problems are equivalent:
e ming [D(£)],
® min; max.cx Var(y(z) — g(z)[¢).

There is one significant difference between this result and the original equivalence
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theorem: an optimal design generally depends upon the number of observations
N to be used.

Theorem 3 and formula (6.5) give another insight into numerical procedures
from Sections 2 and 3: at every stage one has to relocate the design measure from
the point(s) where y(z) may be predicted easily (small Var(y(':c) —g(z)]&s)) to
the point(s), where the prediction is poor ( large Var(y(z) — y(z)|¢;)) .

Two linear criteria. Two objective functions which are very popular in spatial

statistics are the weighted average variance of prediction:
Qs(6) = Bl w(e) (v() - §())" de],
and the variance of the weighted average of prediction:
2
Q:(©) = B | [ wlely(@)dz - [ wiz)j(z)dz] |

where Z is the “prediction” set or the area of interest. Using (6.6) one can find

that minimization of Q1(¢) and Q,(£) is equivalent to minimization of

U [M(E)] = trA(M(E) + M), (6.11)

where in the first case

4= [ wi()f(e)f (e)da,

;From part 2 of Theorem 1 it is easy to conclude that

Theorem 4. . The design £* is linear optimal if and only if

#(z, %) < /X é(z, )¢ (dz), for all z € X, (6.12)
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where
$(x,€) = fT(x) (M(£) + Mo)™ A(ME") + Mo)™" f().

Similar to the D-criterion we can show that for the average variance of pre-
diction

&z, &) = ¢1(z, &) = /Z Cov’(z, z'|€)w?(z")dz’, (6.13)

while for the variance of the weighted average

82.6) = balz,6) = wi(o) ([ Contaule)da’) . (619)

where

Cov(a,'|€) = R(z,o') — R (2,6) (W + R(6))” R(',€).

The counterparts of Theorem 3 and 4 may be formulated for optimal designs
with bounded density. To do this function %(z,{*) in Theorem 2 should be
replaced either with Var (y(z) — g(z)|€), or with ¢:1(z,§), or with @a(z,§).

Remarks on applicability of the results. Let us note that the introduction of
model (5.2) -(5.4) to generate correlated observations allows us to use the convex
design theory for regression problems with correlated observations. Moreover, all
results may be presented in a form which does not demand any direct knowledge
of the functions f(z). We can formulate results for a particular criterion using
only information about the covariance function.

In this and in the previous section we have discussed only the properties of
optimal designs. We hope, that having the sensitivity function ¢ (z, ) represented
for various criteria in terms of the normalized covariance function Cov(z,z’|€),
the reader can easily construct numerical procedures similar to those discussed

in sections 2 and 3.

7. Comparison with the methods based on the variance -

covariance structure of observed random fields

Sacks-Ylvisaker approach. Let us suppose that in model (4.1) there is no trend,

L.
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i.e. n(z,0) = 0, and the covariance function V(z,z’) is defined and known for
all z,z' € X. The objective of an experiment is to predict y(z) at a given set of
points Z, which can be either discrete or continuous.,

The best linear unbiased predictor for y(z) may be presented as follows (com-

pare with (4.5 and (4.6)):

9(z) = VI{z,&n)V 7 (&n) Y, (7.1)

Var (§(z) = y(2))] = V(z,2) = VI (2,&n)V &0V (2, én).- (7-2)

We again use notation £y = (z1,...,2n) to emphasize that there is only one
observation at every point z;. Criteria @:({n) and Q2(¢n) introduced in the
previous section have been most intensively analyzed in the studies related to the
design problem with correlated errors. Usually it has been assumed that Z = X.

A very good summary of the main results for the criterion @1({x) may be
found in Micchelli and Wahba (1981). The criterion Q2({n) was analyzed by
Sacks and Ylvisaker (1970) and Ylvisaker (1987). Further references and com-
ments may be found in Cambanis and Benhenni (1992), Cambanis (1985), Cam-
banis and Su (1993).

Noting (see (7.1)that

J, #(@)de = ¢ (e ¥,

where

7 (en) = [ Via.tn)V ™ (En)de,

we can consider minimization of either @;(én) or Q2(€n) as a problem of finding

an optimal basis for a quadrature formula in approximation theory, with a rather
specific objective function; see Karlin and Studden (1966), Sacks and Ylvisaker
(1970), Stroud (1975).

When N — oo, both Qi(éx) and Qz(én) converge to zero for “smooth”
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covariance functions V(z,z’) and for any atomless sequence {x. As in Section
3 we may introduce the limit design measure that defines {x. How a sequence
én may be generated with a particular £(dz) is discussed in details by Cambanis
(1985) for X C R!. For instance, the so called regular median sequence or design

én is defined as

TNt 2_
xNizarg(AN f(d.’l:): 2.2N1>7 i=1723'~'a n,X:[a,b]. (73)

When X is hypercube and V{z,z’) is separable with respect to all components
of z, then design £y may be defined as a direct product of univariate designs (see
Ylvisaker (1975) for details). Thus the design problem is reduced to the search
of the limiting measures providing the best convergence rate for the selected op-
timality criterion. The rather elaborate technique, a close sibling of the classical
approximation theory, leads to a very special minimization problem. Introducing

the design density {(dz) = h(z)dz we may state this problem as follows
h* = argmin  Q[B(h)], (7.4)

where

Bos(h) = [ wale)os(e)h ™ Hz)dz, af=1,...,m,¢(ds) = h(a)da,

m is the number of estimated integrals (for instance, integrals of Q({n)-type
with various weight functions), functions ¢,(z) and integer k are defined by a
covariance function and by an optimality criterion.

Similar problems were considered in studies concerned with simultaneous cal-
culation of m integrals by Monte-Carlo method; see Mikhailov and Zhigljavsky
(1989), Zhigljavsky (1988), for details and further references. Actually, (7.4) be-
ing an optimization problem in a space of probability measures has many features
in common with the standard design problem. Some interesting results including

the analogue of the iterative numerical procedure from Section 2 are summarized
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and discussed by Zhigljavsky (1988).

- Analytical solutions of (7.4) for the one-dimension case were proposed in the
pioneering papers by Sacks and Ylvisaker (1966, 1968, 1970). Various general-
izations may be found in Hajek and Kimeldorf (1976) and Wahba (1971, 1974).
Following Cambanis (1985), the essence of those findings can be formulated as
follows:

If there exist exactly k quadratic mean derivatives of the random process y(z),

then under certain regularity conditions (see details in the cited publications)

h*(z) ~ [ak(x)w2(m)] H @) , (7.5)

where
ar(z) = VERD(g 2/ ) — VD (g 2 4 0)

and superscripts indicate the order of partial derivatives. For any design with
density separated from zero the integral Q(¢y) diminishes as O(N~%~2) and
h*(z) minimizes

Nim N #H2Qq(én) (7.6)

In fact, the immediate objective of Sacks and Ylvisaker (1966,1968,1970) was min-
imization of some function of the dispersion matrix of estimators of parameters ¢
describing a linear trend 67 f(z) in model (4.1). They reduced the corresponding
minimization problem to minimization of objective functions similar to Q2(én)-
For instance, when # € R!, then one has to minimize Q2(éy) with a weight

function which is a solution of the following integral equation:

f(z) =AV(m,x’)w(m')dx’.

Evidently, for stationary covariance functions cax(z) = constant. Subsequently
the optimal limiting density A*(x) is completely defined by the weight function

w(z). In other words, only the behavior of V(z,z') at its diagonal influences the

solution! The Sacks-Ylvisaker approach (at least in its current form) cannot be
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used in two cases of practical importance. First, it does not work for “infinitely”

smooth covariance functions, when ax(z) = 0 for any k. The covariance function
V(z,2") ~ ezp[~(z — 2')?/2] (1.7)

is a popular example (see Sacks and Ylvisaker (1966). The presence of the “white”
noise (see model (5.1)) in observed variables gives another example, when the
approach does not work. The latter case is of interest for many applications
being a very reasonable model when a random process is observed with some
instrumental error. In conclusion of this subsection let us note that the concept
asymptotically optimal design £3; based on the existence of a continuous limit
density 2*(z) and assumption that

lim max(z;n — z;-1yn) = 0;

Neroo 1

see Sacks and Ylvisaker (1966). The definition (7.3) of design ¢ is one-dimension
by its nature and that makes the approach difficult for spatial applications; see
Ylvisaker (1975) for further details.

Random parameters approach. To understand the advantages and disadvan-
tages of approach proposed in Sections 5 and 6 relative to to the Sacks-Ylvisaker

approach let us introduce the following model:

Yoo (2) = 3 B ful @) + oe(a), (1.8)

a=1

where f,(z) are eigenfunctions of the covariance kernel V(z,z")

dafol@) = [ V(e,2")ful)de, (7.9)

6 are random with zero means and diagonal covariance matrix, such that Var(8,) =
Aoy M2 A2>...2 A > ..., g(z)is white noise with the variance 1, and ¢

is a normalizing constant.

It is well known (Mercer’s theorem; see for instance, Kanwal (1971)) that
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under very mild conditions the series

Va(e,2) = 3 daful@)fola), 2 € X,
a=1
is uniformly and absolutely convergent and subsequently under very mild as-
sumptions {A,} must diminish not slower then O(1/¢) . For many widely used
stochastic processes or fields the rate is significantly faster; see Micchelli and
Wahba (1981), Theorem 3.

Therefore, for sufficiently large n the kernel V,,(z, z') may be a very reasonable
approximation of V(z,z’). Allowing & — 0 we may hope that the process y, »(z)
is “close” to y(z) in the sense of their second moments. Subsequently, we might
expect the closeness of the corresponding optimal designs. This probably holds for
designs {n with relatively small N. However, for N — oo the diminishing ¢ does
not guarantee closeness of optimal designs with o = 0 and ¢ > 0. First, formally
the Sacks-Ylvisaker approach does not work for any model with additive “white”

noise, because it causes discontinuity of a covariance kernel at its diagonal:

V(z,z'), T #a,

V(z,z)+0o% z=2"

Ely(z)y(z")] =

Secondly, for any ¢ > 0 and any £y the rate of convergence for either Q;({n) or
for Q2(£xn) will not be generally better than O(N~1). This is slower than for any
continuous covariance kernel.

Thus, for large N the Sacks-Ylvisaker approach and results from Sections
5 and 6 may lead to the different asymptotically optimal designs. If one be-
lieves that there is no instrument or any other observation error, then the Sacks-
Ylvisaker approach leads to the better limit designs.

When the contribution of observation errors is significant then approximation
(7.8) becomes very realistic and allows the use of methods from Sections 5 and 6,

which usually produce optimal designs with very moderate numbers of support-

ing points. Usually these designs have about n supporting points.The existence
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of well developed numerical procedures and software allows the construction of
optimal designs for any reasonable covariance function V(z,z’) and various de-
sign regions X, including two and three dimension cases. Let us notice that the

function Cov(z, z’[€) used in Theorem 4 may be presented in the following form:
PN Cov(z, l€) = Vale,2") — VT (2,€) (P + Val(®)) " Va(z,6),  (1.10)

P =ébiri, ri = piN.

This formula is convenient for some theoretical exercises. For more applied ob-
jectives and for development of numerical algorithms based on the iterative pro-
cedures from Sections 2 and 3, the direct use of eigenfunctions f,(z) is more
convenient.

Popular kernels.There are several show-case processes and design regions for
which analytic expressions for the covariance kernel exist, and the corresponding
eigenvalues and eigenfunctions are known:

For the Brownian motion the kernel is
V(z,2') = min(z,2"), 0<z,2' <1,
and its eigenvalues and eigenfunctions are
Ao = (@—1/2)7%772, fo(z) = V2sin(a—1/2)xz, a=1,2,....
For the Brownian bridge,
V(z,2') = min (z,2') [l — max (z,2")], 0< 2,2’ <1,

and

Ae =0 2772, fo(z)=V2sinarz, a=1,2,....

Both kernels are not differentiable on the diagonal (see comments to (7.5)) and

their “jump” functions ax(z) are easy to calculate. These two kernels or some

I
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simple functionals of them (compare with Wahba (1971)) are convenient candi-
dates for the Sacks-Ylvisaker approach. For the Poisson kernel
1— B2

V(z,2) = 1 —2Bcos2x(z — 2') + B%° Osadsl, 0<f<l,

and
)‘0 = 17 /\20:—-1 = A201 = ﬁa7

folz) =1, foqo1 = V2 cos 207z, froa = V2sin2arz, a=1,2,....

The shape of the Poisson kernel may be controlled by the parameter 5. It is
“smooth” at the diagonal and the Sacks-Ylvisaker approach cannot be used.

For most real-world problems it is impossible to represent covariance kernels
in a simple closed form. However, a representation in the form of an infinite series
is standard. For instance, in many experiments related to either diffusion or heat
conduction the covariance kernel may be expressed in the the two dimensional

finite domain case (see Butkovskiy (1982)) as

[e o]
V(z,2') =4 > Aagsinarz,sin frz,sin arz) sin frzsy, (7.11)
a,f=1

where X = {0 < 21,2, < 1}. Evidently,
fap(z) = 2sin axz, sin frza, Mg = exp[—a’n?(@® + BY)], o,8=1,2,...,

and a is some constant. Representation (7.11) is very natural and convenient for
the techniques considered in Sections 5 and 6. Note that the physical problems
mentioned above lead to the Gaussian type kernels (compare with (7.7)) when
X becomes infinite with respect to any or both coordinates.

The curious reader will find more covariance kernels in any serious book on
integral equations containing a chapter on definite kernels or describing Green’s

functions (see, for instance, Kanwal (1971) and Butkovskiy (1982)).

Selecting the number of terms in (7.8) sufficiently large assures the closeness
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of Vo(z,2") and V(z, 2') may be assured. In many cases it is convenient to assume
that coefficients {0,}$° are normally distributed. This assumption does not help
in the present problem and in fact can cause some theoretical difficulties. To
avoid that we suppose that for any a distribution P(§,) has a finite support set
[aq,bs) in R. For instance, we may select some simple symmetric distribution
P(6) defined on [~a,a] with E(62) = 1 and use P(6,v/\s) as a distribution for
6. Selection of distributions with finite supporting sets assures not only close-
ness of an exact kernel and its approximation but proximity of 3 5o 8, fa(z)
and 3°7_; 0 fo(z) if the sequence {f.(z)}$° satisfies some routine assumptions
from the approximation theory. The basic idea of using model (7.8) is in deriv-
ing optimal designs for the approximate model 3 2_; 8, fo(z) and verifying the
fact that these designs are optimal or close to optimal for V,(z,z’) or V{z,2’).
Furthermore, if the objective function is uniquely defined by a dispersion matrix
of estimated parameters, then the constructed design is optimal for any model
identical to the used one in terms of the first and second moments.

Using (7.8) with ¢ = 0 we may immediately conclude that minimization of
@2(én) is a rather standard problem from the approximate integration theory,
see Davis and Rabinowitz (1985), Stroud (1975).

For instance, it is known (the Gauss-Jacobi Theorem) that for any polynomial

p(z) of degree £ < 2N — 1 the exact equality

b N
[ wle)p(@)de =3 gin(as), (7.12)
e =1
can be achieved the properly selected weights and supporting points. If {p.(z)}Y
are orthogonal polynomials with the weight function w(z) > 0,then &nv = {z;}¥
are zeros of py(z), and

N-1
gt =g (én) = D pi(xi), (7.13)

a=0
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For example, let us consider the Brownian bridge kernel. Note that

— fo(z)dz = %n—:—;r-‘zdcos T = ?Ua_l(t)dt, (7.14)

where ¢ = cos 7z and U,—(¢) is the second kind Tschebysheff polynomial. Now,

with z(¢) = 7! arccos ¢, we have for a proper &y = {z;}Y

po (o) & (2(t)

[ wtehniain = [ wan) L8 = S aen 22D iy et

where y.(z) = T3, 0o fa(z), and it follows from (7.14) that y, (z(¢)) /v1 — 2
is a polynomial of degree not higher than n — 1. If w(z(t)) = /1 — 2, then &}
must coincide with zeros of Un(t), which are

:
N+1

z; = x(t;) = , t=1,...,N, 2N >n;
compare with Miiller-Gronbach (1993). Accordingly to (7.13) weights are ¢;(én) =
wsin? 7z;/(N+1), and finally

1
/0 Yn(z)sinrzdz = N T Zyn(:r sin 7 z;.

=1

The solution is extremely simple, but it could be more complicated for other
weight functions, see Davis and Rabinowitz (1986). The value of Q,({¥) is of or-
der O(X2n). Various results about remainders in approximate integration theory
may lead to the better estimates, but the corresponding technique is beyond the
scope of this paper. Further details and related results may be found for instance,
for the one dimension case in Davis and Rabinowitz (1986), Szegé (1959) and for
the multi-dimension case in Stroud (1975). Similar exercises may be done for
the criterion ¢1(éx) with o = 0. The minimization of Q1(£x) now becomes a

problem from the function approximation theory. When Z = X and w(z) =1,




XXXVIiii
then it follows from (7.1) that
N 2
Q1(én) = E/ z))? dx—-E/ ( —Zy(x,-)vi(x)) dz, (7.15)
i=1

where vT(z) = V(z,&n)VH{EN).
It is known (see e.g. Micchelli and Wahba (1981)), that

Qew) 2 E {ngn [ (-3 vafa(w))zdw} P ORI AT

This lower bound may be used to evaluate the efficiency of {5 and can be achieved

for any singular kernel, i.e. when

V(z,z') = Zn: Ao fo(Z) faulz').

a=1

To verify the latter conjecture one has to select the design {n coinciding with
all zeros of f,(z); see some additional details in Fedorov and Hackl (1994). In
cases when eigenfunctions cannot be found analytically the use of the remainder
theory is probably one of the most reliable ways to construct satisfactory designs;
see e.g. Davis and Rabinowitz (1984) or Achieser (1956). The ideas discussed
in this subsection help to generate effective designs with very moderate number
of observations N, obviously much less than we need using the Sacks-Ylvisaker
approach based on the local approximation of y(z). The author is not familiar
with any studies where the connection between the classical approximation theory
and the Sacks-Ylvisaker approach were analyzed systematically for models of type
(7.8) with n — oco. Perhaps Micchelli and Wahba (1981) and Miiller-Gronbach
(1993) considered the closest ideas and models.

Again, we would like to note that in most cases measurement errors may
contribute substantially to the randomness of observations. The rule of thumb in
selection of the number of terms in (7.8) is that the least eigenvalue Ay should

be significantly less than o.
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8. Discrete case. Optimality criteria and the lower bounds

When the design region X and the set of interest Z are discrete and contain
Nx and Nz points correspondingly, then the covariance matrix of the vector
{y(z:) — 9(z:) 7%, = € Z, completely describes any objective function based
on the second moments. We use the notation Dz(éy), when the latter matrix

consists of elements
D(én)y; = V(zi,2;) = VI (i, En)VHEN)V (25, €N), 30, 25, € Z.
The discrete versions of Q1(€x) and @»(én) are correspondingly
trDz(én) and LT Dz(én)L, (8.1)

where LT = (1,...,1). We will introduce any weights as we did in the continuous
case, to keep notations simple. In the discrete case we may introduce a very

special version of D-optimality

Q@3(én) = In[Dz(én)!. (8.2)

It is assumed that there are no points in common for Z and suppéy. Otherwise

the determinant equals zero, because
E [(§(e:) - y(2:))"] =0,

when z; € suppén.
Criterion (8.2) is very popular in the statistical literature related to the opti-

mization of monitoring networks; see, for instance, Guttorp et al (1993), Carelton
et al (1992), Schumacher and Zidek (1993), Shewry and Wynn (1987). In the
cited papers the authors talk about either entropy or information. After the as-

sumption of multivariate normality of the corresponding distributions is made, all

approaches lead to various modifications of D-optimality; compare with Lindley
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(1956).

In addition to (8.1) and (8.2) a number of other criteria were introduced for
application in monitoring network improvement. A good collection of them can
be found in Megreditchan (1979, 1989); see also Fedorov and Hackl (1994).

As soon as the criterion of optimality Q(£x) (we use this notation to emphasize
that only the criteria of optimality related to the problem of interpolation or
extrapolation are considered in this section) and the kernel V(z,z’) are defined,

we have to find

¢ = argmin Q(Lw)- (8.3)

It is interestingly to note that optimization problem (8.3) was considered
in a very different setting by Currin et al (1991) and by Morris et al (1993);
see also Sacks et al (1989) for older references. They considered the Bayesian
approach to design of computer experiments and introduced Q(£y) as a measure
of discrepancy between a computer model and its approximation based on some
prior knowledge expressed through the smoothness of the exact response. The
latter was defined by a covariance function.

When Ny is relatively “small” and Ny is not very “large” then exhaustive
search may be a proper numerical procedure for a modern computer. With
increase of Nz and Nx one can use the exchange type algorithms discussed in
Shewry and Wynn (1987) and in Fedorov and Hackl (1994), which are similar to
those discussed in sections 2-4.

An alternative approach may be based on the introduction of a model similar

to (7.8). For the sake of simplicity of notations, let Z C X, and let

/\afa = Vfon (84)

where Ay > Ay > ... 2> Any, Vi; = V(zi,25) and z;,z; € X. Then one may

consider the following approximate model

Y ~Yy= iv: oafa (8'5)

a=1
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where all vectors Y, Yn and f, have Ny components and

I

Y;=y(zi), zi € X, E(6,)=0, E(0?) = A,,a=1,...,N.
Similar to (7.16)

@Q1(én) 2 [rq{in(Y — FyTYI(y — F’YT)]

Nx

=Y - -Yn)]= 3 (8.6)
a=N+1
where F' = (fi,..., fv). There exists another result that can help to evaluate

the closeness of Yy and Y. Let
Vv = E(Y,YF) = Z/\afafT

Then (compare with Rao (1973), Ch. 8g)
Viy = argmin |V - 4,

where rank A = N and symbol || B|| denotes the Frobenius norm of B defined by
(trBY)Y? = (T,; BE)Y* . Moreover

Nx
WV -wi*= > X (8.7)
a=N+1
Thus, the vector Yy is the best (maybe not unique) approximation of ¥ in
the sense of two criteria (8.6) and (8.7). In fact, it is the best one for any strictly
increasing function of D = F [(Y - ?N)(Y - Y’N)T] which is invariant under
orthogonal transformations, where Yy = BY, rank B < N; see Seber (1984),
Ch. 5.2. The vector
Ya = V(X, &)V (EN)Y,

where VI (X,&x) = (V(z1,&n),.--, V(ZN,EN)), is one of the above linear es-




xlii

timates. Therefore (8.6) and (8.7) help to find the lower bounds for criteria
depending upon

D(en) =V = V(X,enV > EnV(X,&n) = E[(Y ~ Tw)(Y ~ Tw)T] .

Model (8.5) helps to understand some features of optimal designs and lead to
some interesting numerical procedures (see next section). Adding the “white”

noise, i.e. introducing the following model

N
Y, =) 8ofa+oe, (8.8)
a=1
where E(¢) = 0 and E(eeT) = I, allows us to use all the tools discussed in

Sections 2, 3,'5 to generate optimal designs.

9. Unknown covariance function

All the results discussed in the previous sections have essentially used the fact that
either a covariance function V(z,z’) or a matrix A is known. That is possible but
unfortunately uncommon in practice. In this section we explore two approaches
to estimate the covariance structure.

Direct estimation of a covariance matriz. Let us start with a discrete design
region X and assume there exist repeated observations at every point of X.
Meteorological and environmental networks provide the most typical examples;
see e.g. Megreditchan (1979, 1989) and Oehlert(1995a,b).

Let us define (compare with the previous section) the dispersion matrix of
residuals Y — ¥ as

D(¢v) =minE |(Y - BY (&) (Y = BY (&))" ], (9.1)

where €N = (1131,...,(13]\[), YT(&N) = (y(wl)a"'sy(xN))v and B is an NX x N
matrix. For the sake of simplicity we assume that E(Y) = 0 and that this fact
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is @ priori known. Minimization is understood in the matrix ordering sense. A
solution of (9.1) is
B* =V(X,&n)V 7 (éN)

and

D(¢n) = V(X) = V(X, &n)V T (EmVT (X, éw).-

When sufficiently many observations are accumulated at every point of X the

strong law of large numbers assures us that

?r'lf--‘

k
Z (Y; — BY;(én)) (Y; — BY;(&n))" =~ E [(Y = BY(&n)) (Y = BY ()"
(9.2)
and subsequently B* and B*, which minimize correspondingly the left and right

hand-sides, are close to each other. Straightforward minimization gives

vy

B = V(X,en)V 1 (En), (9.3)

where both matrices with caps are evident partitions of

V(X)=k7" fj Y; Y7 (9.4)

J=1
When there are missing observations, then it is better to use instead of (9.4)
pairwise estimates
. ki
Va(X) = k3" ) YiiYa,
i=1
where k;; is the number of cases when the response variable was measured at z;
and z; simultaneously.
Thus, (9.2) - (9.4) lead us to a very simple and widely used recipe: replace
unknown parameters by their estimates and use methods developed for cases in

which all parameters are known. Together with this simple recommendation (9.2)

helps to generate other versions of numerical algorithms considered earlier. Let
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us introduce matrix I(éy) with the following elements:

62' y When z; € supp £N’
Lifeny =4

0, otherwise.

The left-hand side of (9.2) may be represented now as

k
D(en,B) = k1Y (V; - BI(6w)Y;) (Y; — BI(EN)Y;)T

i=1

and the design problem may be viewed now as
&y = arg minmin Q [D({N,B)] . (9.5)
év B

. From the numerical point of view (9.5) may be considered as a multi-dimension
version of the best regression selection problem. Stepwise regression and best
subset selection are the popular algorithms and can be easily adopted to solve
(9.5). In fact the same methods mé.y be used when the matrix D(¢x, B) is

replaced by its true value; see comment in the conclusion of Section 8. Let

Q [D(éw, B)| = Du(éw, B),

i.e. we want to minimize the variance of prediction at point z;. In this case

2
k Nx
&y = arg I?jrnmbinz (Yﬂ - Z billi(éN)Yii) ) (9.6)
=1 =2

and it is a very standard problem of selection of N predictors from Nx — 1
candidates and there exist a numerous number of the statistical packages which
can be used to do that. The author is not familiar with multi-dimension versions
of the corresponding software products, which are needed for more complicated
criteria. The idea to use the least squares technique for selection of the most

informative subset of sensors was probably initiated by Megreditchan (1979).
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The search for an optimal design éx may be viewed in this setting as a parti-
tioning of X into two sets of given size Nx — N and N. The latter must contain
the most information about the whole set X; see, for instance, Shewry and Wynn

(1987), who proposed using
& = argminin |D,(év)l, (0.7

where the subscript “p” indicates that the matrix contains only elements corre-
sponding to the points (sites) with no observations. When (9.7) is replaced by

its empirical version
& = argminminln [D(¢n, B)|, (9.8)
Ev B

then the following simple and intuitively attractive exchange-type procedure may
be used to construct {}; see Fedorov and Hackl (1994):

(a) Given éys = {:c,}iv find

2
k N
o+ 3 L . V..
1T = arg m?.xn%m?; (YJz 2;1 bstm) .
Add the point z;+ to the design: {ni1)s = Ens + Ty+-
(b) Find

j=1 I,

2
k
1T = arg Hzlzﬂmbinz (ins - blel) ,

where z; € {n41)s and delete the point z;- from the design, i.e. construct
EN(s+1) = E(Nv41)s — Ti-. Return to (a).

Briefly, the exchange procedure (a), (b) may be spelled out in the following
way: add to the design the worst explained sites and delete from it the best
explained sites. Apparently, the approach may be called “model free”: only
existence of first two moments of observed Y is assumed. That may attract many

practitioners. However in the search for an optimal network we are confined to

sites where the measurements have been previously made. In other words, the
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selection of the most informative subsets of sites (sensors, observing stations)
may be discussed, but we cannot consider the problem of optimal extension.
Estimation of a parameterized covariance. In many practical cases the design
region X is a continuous set and the covariance function has to be known every-
where at X. The most popular approach is based on the assumption that this

function is homogeneous and isotropic, i.e.
Vizg,z)=V(r), rl=(z-2)F (z-1)

with the subsequent parsimonious approximation of function V(r); see e.g. Cressie
(1991), Marshall and Mardia (1985), Matérn (1986), Ying (1995). The approach
is frequently used in geostatistics, where a single realization of a random field is
available, and in particular in the “kriging method” paradigm.

Methods from in Sections 5-8 are essentially based on approximation of the
observed random fields by regression models with random coefficients. When
prior to design of a network there exist some historical observations, then one
may use the technique, which was developed for these models.It is expedient to
note that accurate knowledge of A or A, is useful but it is not as crucial as the
knowledge of a covariance function in the Sacks-Ylvisaker approach. In fact, in
basic optimization problems (5.13) and (6.2) the objective functions depend upon

the sum M(¢) + My, where Mo is defined by A. For instance, in the case of (6.2)
Mo = 0’2N—1A

and therefore the role of A diminishes when either 2 — 0 or N — oo. Moreover,
the simple dependence upon A allows to construct numerically optimal designs
for different matrices A to learn about their sensitivity with respect to A.

In the simplest case, when the observational errors are negligible, the following
estimators may be used:

k
An= k156,67, (9.9)

=1
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éj = arg mein Z (yj(:c;) - 0Tf(x,-))2 )
z€X

where § € R*, X; is the set of points with observations y;(z;) , and

rank ( > f(wi)fT(wi)) =n

€X 5

forall j =1,...,k. It is assumed that functions f(z) are known and
Viz,z") ~Vy(z,2") = fF(z)A.f(2)).

Subsequently,

V(z,2') = fT(z)Af(z)).
Actually, it is more convenient to use the matrix A, directly than the function
f/(:c, z') in all numerical procedures discussed in Sections 5, 6.

When the observational errors are comparable with the variations of 8, then
(9.9) must be replaced with more sophisticated estimators, which are computa-
tionally much more demanding and complicate. Details and references may be

found in Spjotvill (1977) and Fedorov et al. (1993).

10. Space and time

In most spatial experiments, after the sites are selected measurements are usually
taken on some regular schedule, for instance, several times a day, or they are
continuously recorded. Generally, the response function may depend upon time.
Random errors can be correlated both in time and space. We consider only
the simplest case, where there is no spatial correlation, following the ideas from
Section 2. The generalization for more general models considered in Sections 3-6
is straightforward.

To adopt {2.1) for the time dependent response we assume that

n(z,t,0) = 67 f(z,t), 0 <t < T,
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and
Ele(zi,tj)e(zo, ty)] = bipszr(2)-

When p;;» = §;;+, then the information matrix of observations made accord-

ingly to the time schedule ((dt/z) may be presented in the following form

miz)= [ 1(e.0)f (@ 00(dt/2).

For measurements which are correlated in time,
- T
m(z) = Zf(a:,tj)Rjﬁ(x)f (z,t50),
53’

where, for the sake of simplicity, we assume that supp{(dt/z) is a discrete set
ti,ta..., by, and R(z) = pjs(2);. .

When the measure ((dt/x) is fixed for each given z, then all the results from
Section 2 may be used, with obvious replacement the function ¥%(z, ), which in

the standard case has the form

®(¢) — f1(2)A6) f(2)

for all criteria satisfying assumptions (a) - (e), by the function

¥(,£) = 8(¢) — trm(z) A(£).

For instance, for the D-criterion the sensitivity function m — f7(z)M~*(¢)f(z)
must be replaced by m — trm(z)M 1 (£). More details may be found in Atkinson
and Fedorov (1988), Fedorov and Nachtsheim (1995), and Spruil and Studden
(1979). Formally the time dependent observation may be treated as a vector-
observation case (see, for instance, Fedorov (1972), Ch. 5).

Evidently, introducing the time variable does not change the basic theory,
but makes all techniques, including computing of optimal designs, more time and

effort consuming. However there exist models and optimality criteria for which
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optimal designs are the same both for the static and for the time dependent
cases. For instance, the latter is true for models with uncorrelated observations

and with separable variables, when
f(z,1) = fi(z) ® fa(?)

or where

7](:13, 0) = 00 + O{fl(x) + Hng(t)7 OT = (007 0{765)7

and the selected criterion satisfies assumptions (a) — (e) from Section 2; see Cook
and Thibodeau (1980), Hoel (1965), Huang and Hsu {1993), Schwabe (1994,
1995).

When time is included explicitly in model, then the concept of sensor alloca-
tion can be extended and “mobile” sensors may be introduced. In this case design
consists of trajectories z;(t) € X,0 < ¢t < T. The topic is beyond the scope of
this survey. A reader can find the results and references in Chang (1979), Fedorov

and Nachtsheim (1995), Titterington (1980) and Zarrop (1979).
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