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ANISOTROPIC PROBLEMS

E.F. D’Azevedo
C.H. Romine
J.M. Donato

Abstract

Second order elliptic partial differential equations arise in many impor-
tant applications, including flow through porous media, heat conduction,
and the distribution of electrical or magnetic potential. The prototype is
the Laplace problem, which in discrete form produces a coefficient matrix
that is relatively easy to solve in a regular domain. However, the presence
of anisotropy produces a matrix whose condition number is increased, mak-
ing the resulting linear system more difficult to solve.

In this work, we take the anisotropy into account in the discretization
by mapping each anisotropic region into a “stretched” coordinate space in
which the anisotropy is removed. The region is then uniformly triangu-
lated, and the resulting triangulation mapped back to the original space.
The effect is to generate long slender triangles that are oriented in the
direction of “preferred flow.” Slender triangles are generally regarded as
numerically undesirable since they tend to cause poor conditioning; how-
ever, our triangulation has the effect of producing effective isotropy, thus

improving the condition number of the resulting coefficient matrix.
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1. Introduction

Second order elliptic partial differential equations arise in many important ap-
plications, including flow through porous media, heat conduction, and the dis-
tribution of electrical potential. A simple prototype is the piecewise constant

coefficient equation,
0 0P 0 oP
dz (Kx 3:1:) + dy (Ky 0y) -1 (1)

which reduces to the Laplace problem for K, = K, = 1. The discretization
of the Laplace problem over a regular grid produces a coefficient matrix that is
relatively easy to solve. However, the presence of strong anisotropy (K, > K,)
produces a poorly conditioned matrix, making the resulting linear system more
difficult to solve.

In this report, we take the anisotropy into account in the discretization by
mapping each anisotropic region into a “stretched” coordinate space in which
the anisotropy is removed. The region is then uniformly triangulated, and the
resulting triangulation mapped back to the original space. The effect is to gen-
erate long slender triangles that are oriented in the direction of “preferred flow.”
Slender triangles are generally regarded as numerically undesirable; however, our
triangulation has the effect of producing effective isotropy, thus producing a coef-
ficient matrix with a smaller condition number. Furthermore, our initial experi-
ments suggest such “coeflicient-adaptive” triangulation suffers no degradation in
approximation accuracy.

The idea of using special approximation basis functions that depend on the
rough coeflicients has also been proposed by Falk and Osborn [3] in the analysis of
mixed finite element methods for problems with rough coefficients. A technique
of using Delaunay triangulation under an anisotropic transformation has been
examined by Letniowski [9] and Forsyth [4]. The idea in their work is to ensure
that the coefficient matrix resulting from the standard Galerkin finite element

approximation of the second-order diffusion operator is an M-matrix. Our work
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differs in that our focus is on improving the conditioning of the linear system.
In Section 2, we describe the motivation for coefficient-adaptive mesh gener-
ation, using a simple example for illustration. In Section 3, we describe in more
detail the approach that we have taken to discretizing anisotropic problems. Sec-
tion 4 presents our sequence of test problems, based on Stone’s third problem [10].
Section 5 presents the results of our empirical studies, comparing our coefficient-
adaptive discretization to the standard 5-point Laplacian discretization on the
test problems. Finally, in Section 6, we summarize our conclusions and discuss

how the results can be expanded.

2. Fourier Analysis of Anisotropic Problem

In this section, we use a Fourier analysis technique to analyze the condition of
the coefficient matrix arising from the 5-point finite difference discretization of a
model anisotropic problem. The analysis we present here follows the technique

described by Chan and Elman [1] and Donato and Chan [2].

The problem we analyze is

g 0P 0 oP

— | Ke— |+ 7= | Ky | =—

83:( 6m)+6y( yay) e
on the unit square with Neumann boundary conditions, where K, and K, are
constant. Clearly, the differential equation with pure Neumann boundary condi-
tions is not well-posed, and the resulting coefficient matrix will be rank-deficient.

Rather than imposing an additional constraint, we define the modified condition

number of the coefficient matrix to be

= Jmaz 2.1)

)
/\min

where Apnin is the smallest nonzero eigenvalue of the matrix.
Let k., hy be the grid spacing in z and y, so that n, = h;' and n, = h;*

are the number of grid points in z and y, respectively. We wish to compute the
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modified condition number as a function of K, K, h, and h,. More accurately,
we will compute the modified condition number as a function of the degree of
anisotropy o = K,[/K, and the grid aspect ratio p = hy/h;. The corresponding
finite difference equations are:

—P;_1,;+2F; — Py
hi?

_Piiy +2P;— P
+ K,—= +h 7 T = ;. (2.2)
Y

K.

On the boundary of the square, the Neumann boundary conditions can be im-

posed using centered differences, yielding
P;jy1 = Pij—1 for =0 and : = ng;

Piy1,;=Pia; for j=0and j =mn,.

If we scale (2.2) symmetrically so that the coefficient of P;; is 1, we have
Pij + b(Picj + Piaj) + c(Pija + Piji) = G (2.3)

where b = —2(1 + a/p®)™" and ¢ = —3(1 + p*/a)™* = —1 — b. A straightfor-
ward analysis of the spectrum of the difference operator leads to the following

expression for the eigenvalues:
Aij =14 2bcos 0; + 2ccos ¢;, (2.4)

where 0; = irh; for : =0,...,n, — 1 and ¢; = jwh, for § =0,...,ny — 1.

T is an eigen-

The pure Neumann boundary conditions mean that (1,1,...,1)
vector, with corresponding eigenvalue Agp = 0. Furthermore, since b and c are
both negative, Ao, Occurs at ¢ = ny — 1 and j = ny — 1, yielding Aper = 2.

By inspection, Apin = min{Aio, Ao1}. To determine which of these eigenvalues is

smaller, we use the Taylor approximation cos§ =1 — 6%/2 + O(#*). This yields

Ao = 3(1+ a/p*)H(x*hL) + O(hY)
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dor = 3(1+ p*/a)7H(x?R2) + O(R3).

If we ignore the fourth-order terms, simple algebraic manipulation verifies that
Ao1 = aXye. Hence, if K, > K, so that o < 1, then Xmin = Ao Conversely, if
K, < Ky, Amin = Mo.

We now have an expression for the modified condition number, & = Apqaz/ Nmin
as a function of @ and p. If K, > K, then

. 4(1 + a/p?
/s(a,p) ~ (W—zhz—)u

If K, < K, then
. 41 + p*/a)
Ii(a, p) ~ ——W
Now we have the machinery in place to answer our primary question concern-
ing the construction of a discretization grid: For a given degree of anisotropy
(fixed ) and a given number of unknowns N, what is the grid aspect ratio

(p) that minimizes the (modified) condition number of the resulting coefficient

matrix? If we assume that a > 1, then we seek to minimize

4(1+e/p’)

2}2
w2h2

At

v
~v

Using the fact that N = ngn, = h;'h;' we can rewrite this as

for which the minimum occurs at p = /. The same result is obtained for & < 1.
We use this result in defining the mapping described in Section 3. The smallest
condition number is obtained when « = 1, indicating that the isotropic case
produces the best conditioned matrix.

To summarize, for p = 1/c, we have

_ 8N
RN —7r—2(max{Ky J Ko Ko [ K, )2
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We used a series of MATLAB tests to verify the conclusions of the analysis
described above. Table 2.1 is in three sections. The first four rows display the
close agreement between the condition number % gpys of the coefficient matrix and
the theoretical condition number &, both computed by MATLAB. Two digits of
agreement are obtained even for very small problems.

The second section of the table verifies that as the degree of anisotropy (c)
is multiplied (or divided) by 100, the optimal condition number % increases by
V100 = 10, as predicted. The second and third sections of the table together
illustrate that choosing the correct aspect ratio p can significantly improve the

condition number of the resulting coefficient matrix.

o Ng Ny Ng * Ny | # unknowns E REDM

1 12 12 144 169 | 1.1672e+02 | 1.1739e-+02

2 14 10 140 165 | 1.6049e+02 | 1.6117e+02

4 16 8 128 153 | 2.0751e+02 | 2.0817e+-02

10 21 6 126 154 | 3.2463e+-02 | 3.2524e+4-02

5| 5,981 | 2,674 | 15,993,194 16,001,850 | 2.8987e-+-07 -

500 | 18,914 845 | 15,982,330 16,002,090 { 2.8968e+08 -
1/500 845 | 18,914 | 15,982,330 16,002,090 | 2.8968e+-08 -
' 5| 4,000 | 4,000 | 16,000,000 16,008,001 | 3.8907e+07 -
500 | 4,000 [ 4,000 | 16,000,000 16,008,001 | 3.2488e+09 -
1/500 | 4,000 | 4,000 | 16,000,000 16,008,001 | 3.2488e+-09 -

Table 2.1: MATLAB results verifying the analysis.

3. Coefficient Adaptive Triangulation

We modified an existing triangular mesh generation package, GEOMPACK [7],
to generate coefficient adaptive triangulations. GEOMPACK is a mathematical
software package written in Fortran 77 for the generation of convex polygon
decompositions and triangular meshes in two-dimensional polygonal regions.
GEOMPACK generates a triangular mesh by first decomposing the polygonal

domain into simpler convex polygons [6]. The decomposition can be further

- e ——————— -
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controlled by equidistribution of a user supplied density function. We chose to
use (K;K,)"/? as the density function, to allocate proportionally more triangles
in regions where K, or K, is small. GEOMPACK then generates a uniform
triangulation within the interior of each convex subdomain [5]. A final step
handles the mesh connection between neighboring subdomains [8] to generate a
Delaunay triangulation.

GEOMPACK was modified to perform a rescaling by K;'/? and K;/? in the
z and y directions before the generation of a uniform mesh within each convex
subdomain. The node coordinates of this triangulation are then mapped back

into the original space.

4. Stone’s problem

We tested the technique for coefficient adaptive triangulation on a variant of

Stone’s third problem [10] in solving

0 0P 0 oP
= (55) 35 (K5 =

on the [0, 30] x [0, 30] with Neumann boundary conditions. Locations and strengths

of point sources and sinks are

q1(3) 3) = 1'0) q2(3’ 37) = 057 q3(23)4) = 067 (41)
g4(14,15) = —1.83, ¢5(27,27) = —0.27 .

The distribution of material properties, K, K, were (see Figure 4.1)

((1,9) if (z:,9;) € B, 14<i<30,0<;< 16,
i (0,0) if (z:;,y;) €D, 12<i<19, 21 <j <28, '

| (L,1) if (2,9;) € A

A 31 x 31 regular grid with v = 100 was used in the original problem. Note
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Figure 4.1: Stone’s third problem.
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Figure 4.2: Coefficient adaptive triangulation of Stone’s Third Problem, 4 = 100.
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that region D with K; = K, = 0 was modeled as a hole in the plate. We
chose a consistent discretization scheme based on linear triangular elements in
a Galerkin Finite Element formulation. Even on a regular rectangular grid, we
generate a triangulation by consistently splitting each rectangle into two right-
angle triangles. For the regular rectangular grid, this yields the identical standard
5-point finite difference stencil, with the exception of the nodes at interfaces

between different materials.

5. Results

We chose MATLAB to perform the numerical experiments and visualization.
We used linear triangular elements in a Galerkin Finite Element formulation to
perform the matrix assembly. Initially, we imposed a Dirichlet condition at the
origin (0, 0) to avoid exact rank deficiency. However, subsequent testing revealed
that the CG iteration applied to the original semi-definite problem converged
more rapidly than CG iteration on the problem with a Dirichlet condition im-
posed. We have reported the times for both problems in the interest of complete-
ness. To simplify visualization, all solutions were interpolated and compared on
a 31 x 31 regular rectangular mesh. Since region D is modeled as a hole, nodes
within region D were set to zero for simplicity. We used the solution obtained
from a 121 x 121 grid as an accurate solution. Note that the sources and sinks
introduce point singularities; thus in comparing solution accuracies we ignore the
errors within one mesh block of the point singularities.

Figure 4.2 displays the coefficient adaptive unstructured triangular mesh for
v = 100. Note the orientation of slender triangles within regions B and C.
Figure 5.1 displays the accurate solution obtained with the 121 x 121 mesh for
7 = 100. Notice the flat solution profiles in regions C and D (see also Figure 4.1).

The linear systems resulting from the discretization were first scaled to unit

diagonal, before they were solved using the conjugate gradient (CG) method with

no further preconditioning. We used a relative reduction in the initial residual as



Figure 5.1: Accurate solution on 121 x 121 grid with vy = 100.

our termination criterion:
lIrellz < 107%|ro]|2 ,

where 7}, is the residual vector on the k-th iteration. Tables 5.1 and 5.2 show the
number of CG iterations, maximum discretization error and condition number.!

We also tested the problems using CG with SSOR preconditioning. If matrix
A =1—(L+ L7) represents the global assembled matrix with unit diagonal, and

L is strictly lower triangular, then the SSOR factorization used is
Q = (I-wh)(I-wLb). (5.1)

A few preliminary runs on various problem show the optimal w to be between

1For the semidefinite case, we report the ‘modified’ condition number (2.1).
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Regular Grid Adaptive Triangulation
v | iters  err® F2 iters  err® 3 nelts® N°
1180 3.7e-2 8.9e+2 | 170 8.6e-3 8.5e+2 | 1653 900
10 | 210 6.7e-2 1.8e+3 | 168 4.9e-2 9.3e+2 | 1635 894
100 | 367 8.4e2 1.3e+4| 202 3.2e-2 1.7e+3 | 1589 870
1000 | 629 7.7e-2 1.2e+5 | 278 1.7e-2 8.9e+3 | 1579 865

Table 5.1: Diagonally Scaled PCG on Stone’s Third Problem, No Dirichlet
Boundary Condition Imposed

Regular Grid [ Adaptive Triangulation
v | iters K iters K nelts® N°¢
11207 1.9e+4 | 195 1.8e+4 | 1653 900
10| 243 5.0e+4 | 190 2.1e+4 | 1635 894
100 | 418 3.6e+5 | 227 4.5e+4 | 1589 870
1000 | 665 3.4e+6 | 305 2.2e+5 | 1579 865

Table 5.2: Diagonally Scaled PCG on Stone’s Third Problem, Dirichlet Bound-
ary Condition Imposed

Maximum discretization error, estimated by comparing a highly accurate solution of
the resulting linear system to the ‘exact’ solution.

SNumber of triangular elements in the discretization.

°Total number of unknowns in the resulting linear system.
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1.4 and 1.6. A value of w = 1.5 was consistently used for all runs for simplicity.
All matrices were also consistently reordered using the bandwidth reducing RCM
(Reverse Cuthill-McKee) ordering to minimize the effect of matrix ordering on

convergence. The results are summarized in Table 5.3.

Regular Grid | Adaptive Triangulation
0 iters iters
1 47 51
10 56 53
100 104 70
1000 207 111

Table 5.3: Results of SSOR PCG on Stone’s Third Problem

The results from Tables 5.1 and 5.3 show coefficient adaptive triangulations
generate better conditioned matrices with no loss of approximation accuracy even

using slender triangles.

6. Summary

We have explored the use 6f coefficient adaptive mesh generation techniques on
strongly anisotropic problems. The initial results on Stone’s problem suggest
there is no loss in approximation accuracy even with slender triangles and the
resulting discretization produces better conditioned matrices.

More extensive testing with more realistic problems is required. It is straight-

forward to extend this approach to generating tetrahedral meshes in three-dimensions.
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