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ABSTRACT

We have considered the problem of determining the values of the joint variables of a mobile
manipulator with many redundant degrees of freedom that will minimize an objective function
“when the position and orientation of the end of the manipulator are given. The objective function is
the weighted sum of three components: distance, torque, and reach. Each of the three components
is a max or min. We have converted the min-max optimization problem into a nonlinear
programming problem and used the Kuhn-Tucker conditions to derive necessary conditions for the

optimum solution.

The necessary conditions require that one or more of each of the three sets (distance, torque,
and reach) of nonnegative Lagrange multipliers must be positive. If one of the Lagrange
multipliers is positive, the corresponding slack variable must be zero. When two or more of the
Lagrange multipliers from a single set are positive, the slack variables place constraints on the joint
variables. Specification of the Cartesian position and orientation of the end of the arm also places
constraints on the joint variables. If the mobile manipulator has N degrees of freedom and the total
number of constraints is M, the constraints define a manifold of dimension N - M. When N =M,
the dimension of the manifold is zero (it consists of isolated points). When N > M, a search of the
manifold may yield a submanifold that maximizes the Lagrangian function. We discuss examples
where the. number of slack variable constraints (M) is two or more.




1. INTRODUCTION.

There is great interest in mobile robots. They can carry sensors and explore the
environment. But they have limited ability to change the environment. Adding a manipulator to a
vehicle greatly extends the capabilities of a mobile robot. Mobile manipulators can perform many
tasks: material handling, construction, and maintenance. Autonomous mobile manipulators are
especially useful in environments that are hazardous to humans: battlefields, police work, handling
hazardous chemicals, fire fighting, and working in high radiation fields.

We became interested in motion planning for a mobile manipulator when HERMIES-III
became operational in 1989 (see Fig. 1). HERMIES-III is a large (820 kg) mobile manipulator
designed for human scale experiments. The vehicle (1.6m X 1.3m X 1.9m) has two steering
wheels and four corner caster wheels. The manipulator is the CESARm, a 7-DOF (degrees of
freedom) compliant arm with all revolute joints, a spherical wrist, and a low friction back driveable
drive train. The CESARm can reach 1.4m, has a load capacity of approximately 14 kg, and has an
unloaded tip speed of 3.0 mv/s.

Mobile manipulators can be highly redundant. HERMIES-III combines a 3 DOF vehicle
with a 7-DOF arm for a total of 10 DOF. The redundancy allows the system to both move in
Cartesian space and accomplish other objectives: avoid obstacles, avoid joint limits, avoid
singularities, and minimize joint torques. In three recent papers [Pin (1990), Pin (1992), and
Pin (1994)], we have reported on some numerical calculations to resolve the redundancy for
mobile manipulators by minimizing the maximum value of an objective function. While most
methods for redundancy resolution are based on the mean square norm, we prefer the min-max
norm. If each joint of the manipulator has a maximum permissible torque, we want to be sure that
the torque in every joint is below the limit. We cannot be satisfied if the average torque is below
the average limit. If we want to avoid obstacles, we focus on the minimum distance to an obstacle
and not the average distance to an obstacle. In this paper, we define a nonlinear programming
problem for the min-max problem in Pin (1994) and apply the Kuhn-Tucker conditions to derive a
set of necessary conditions for the variables.

 Thereisa large literature on algorithms for the solution of min-max problems. An example
is a recent paper by Polak (1991). However, our min-max problem has an extra constraint on the
joint variables [the Cartesian position and orientation of the end of the manipulator are given].
Consequently, the necessary conditions for our min-max problem are more general than for the
standard problem. Polak calls a point that satisfies the necessary conditions for the standard
problem a Danskin point. Our conditions will reduce to the conditions for the Danskin point when

the extra constraint is removed.




Fig. 1. The HERMIES-III mobile manipulator.




The results of a computerized literature search are summarized in Table 1. The one paper in
set S9 is our paper [Pin (1994)]. Of the 26 papers in set S8, the paper by Klein (1983) is the only
one that is using the phrase min-max in the same way that we are. Klein avoids joint limits using a
least squares norm and remarks that the ideal norm is the min-max norm. He claims that the min-
max norm is not computationally tractable.

Table 1. Summary of the results of a computerized literature search.

Set Number of Papers Keywords

S1 76,404 Mobile (Mobile or Platform? or Vehic?)

S2 42,827 Manipulators (Manipulat? or Arm or Arms)
S3 16,512 Redundancy (Redundan?)

sS4 3,491 Min-Max _(Min-Max or minimax)

S5 1558 Mobile Manipulators

S6 938 Redundant Manipulators

S7 77 Redundant Mobile Manipulators

S8 26 Min-Max Manipulators

S9 1 Min-Max Mobile Manipulators

In the next section, we will develop a general theory for min-max redundancy resolution
for mobile manipulators. Our goal is to find a trajectory in joint space that will keep the end of the
manipulator on a given path and minimize a scalar objective function. The objective function is the
weighted sum of three components: distance, torque, and reach. Each of the three components is a
max or min: distance is the minimum distance to an object; torque is the maximum normalized joint
torque; and reach is the minimum difference between the reach variable and its upper and lower
limits. For torque, we have a min-max problem. For distance and reach, we have a min-min
problem. We will convert the min-max optimization problem into a nonlinear programming
problem and use the Kuhn-Tucker conditions to derive necessary conditions for the optimum

solution. The final section will present our conclusions.




2. THEORY.

‘When a six DOF manipulator is mounted on a three DOF vehicle, the combined system (a
mobile manipulator) is highly redundant. The redundancy allows the mobile manipulator to
perform a task (specified by a trajectory in Cartesian space) and simultaneously accomplish other
objectives (examples include: avoid obstacles, avoid joint limits, and minimize joint torques). We
will assume that the mobile manipulator is described by an N vector of joint variables (6). All
points on the mobile manipulator move in Cartesian space. We are usually interested in the
position and orientation of the end of the manipulator. The position and orientation of the end of
the manipulator are described by a vector (x) with six components in 3D space. There is a unique
mapping from the joint space to the Cartesian space:

Cx =1(8) | (1)

Thus, we are not considering a nonholonomic vehicle.

Our goal is to find a trajectory in joint space [0(t)] that will keep the end of the manipulator
on a given path [XG(t)] and minimize a scalar objective function (L). The objective function has
three components (L;): distance, torque, and reach. The objective function is a weighted sum of
the components: |

L= $wL \ @)

i=1

where the w; are the weights. This section will use the Kuhn-Tucker conditions to derive
necessary conditions for mininﬁzing the objective function.

For distance, our objective is to avoid obstacles and not to maximize the distance from an
obstacle. Thus, we consider a sphere of influence defined by its radius (d; an input parameter).
The minimum value of the distance component of the objective function [L1(d)] occurs at d = dj,
where d is the distance to the closest object [d = d(8)]. When d > di, the objective function
increases slowly and when d < di, L increases strongly. When d is negative, L has a very large
value. To be more quantative, when d = dy, L1 = 0.01, and when d = d [where d; is a small
positive number: (d; = dj / 1000.99)], L; = 1000.

L; = 0.01 d/d; whend > d; 3)
L; = (dy/d)-0.99 when d; <d <dj 4)
L; = 1000 (1 +dz2-d) whend <d; 3)
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The static joint torque (7) is determined by the static force and torque on the tip of the arm
(F) and by the Jacobian (J):

t = JIF 6)

The components of the Jacobian can be calculated from the partial derivatives of the equations
relating the Cartesian position of the tip of the arm to the N joint variables. Given the six
components of the force, the N components of the joint torque can be calculated [1; = 1;(0)]. We
would like a single number to characterize the torque state for the arm. While most research on

redundancy resolution is based on the Euclidian norm, we prefer the min-max norm:

Q= mai\x ltil/1d €]

where the T} are limits for each joint.

Given a value for the torque norm, we need to define the torque component of the objective
function [L,(Q)]. Our objective is to choose values for the joint variables that will reduce the
torque norm but the objective function should not become very large for large values of the torque.
For a given static force, we can calculate the maximum possible value for the torque norm (Q,,).

Our objective function is the torque norm divided by the maximum value:
L, = QQp ‘ ®

Thus, the torque component of the objective function will be positive but less than 1.0.

The reach component of the objective function [L3(D)] should be high when the arm is near
singular configurations or near the boundary of its reach envelope. We define reach (R) to be the
distance from the base of the arm to its tip. The reach has a maximum (Ry) and a minimum (R; )
value; for the CESARm: Ry = 1.250 meters and Ry = 0.277 meters.

The reach objective function is near 98 when the reach approaches its upper or lower limit
and is O when the reach is half way between the two limits. Let D be the minimum distance
between the reach and its limits: Dy =R - Ry, Dg=Ryg - R, and D = min (DL,DH). Define the
parameters Ry and Ry by: R; =Ry - Ry andR; =1/0.51. We define the reach objective function
by:

Lz = R/ (D +0.01R) - Ry )




When D =0,L3=100-R,,and whenD=R;/2,L3=0.

The objective function has three components that depend on distance (d), torque (Q), and
reach (D). We have completed our definition of the three components. Next we will relate
distance, torque, and reach to the joint variables. We begin with distance.

We subdivide the mobile manipulator and the obstacles into objects. We assume that a
distance function can calculate the minimum distance between each member (j) of the mobile
manipulator set and each member (k) of the obstacle set. For convenience, we make a one
dimensional array (i) out of the two dimensional array (j,k). Thus, d; is the minimum distance
between some member [j(i)] of the mobile manipulator set and some member [k(i)] of the obstacle
set. The minimum distance between two objects depends on the joint variables: d; = d;(0). Letd

be the minimum distance between one component of the mobile manipulator and one component of
the obstacles:

d = min d;(6) (0
1

Define a non-negative slack variable (p;) that is the difference between each distance (d;)

and the minimum distance:
d = dj-pj where p; = 0 (11)

Define the normalized torque [G;(6)] to be the magnitude of the torque at each joint divided
by the torque limit for the joint:

Gi(8) = Itjl/1% ' (12)
Using our new notation, Eq. (7) may be written:

Q = max Gi(®) (13)
1

Define a non-negative slack variable (;) that is the difference between each normalized

torque (G;) and the maxmum normalized torque:

Q = Gi(8) + o where o; = 0 (14)

5




The goal is to minimize the objective function, while placing the end of the arm at a
Cartesian position x®):

f(8) = x* (15)

Since D is the minimum distance between the reach and its limits [D = min(Dy ,Dg)], we
can define two non-negative slack variables (\;) that are the difference between Dy and Dy and D:

D = Dg(®) - v where y; 2 0 (16)
D =D () - v where y, 2 0 17)
Using the definitions of Dy, and Dy, Egs. (15) and (16) may be written:

D

Il

Ry - R(®) - v; (18)

D=R® -R -y (19)

Our goal is to minimize the objective function (L) subject to constraints on distance (d),

torque (Q), and reach (D). We maximize a Lagrangian function (H) that includes the objective
function and the constraints:

H = -w; Ly(d) -wy Ly(Q) -3 LsD) - D4; (d + pi- di(®) +
2.8;(Q-0j-Gj(®) - 1 D -Ry +RO) +yy) +
J

Y, (D-R(O) + R + ) + I My (fa(0) - X3 ) | (20)
n

where A, J;, ¥;, and ; are Lagrange multipliers. The Lagrangian function depends on the joint
variables, the distance, torque, and reach variables, the slack variables, and the Lagrange

multipliers:

H = H(d, QD, A, p,9,6,0,7, ¥, ) 1)




To derive a set of necessary conditions for the variables, we apply the Kuhn-Tucker
conditions to the Lagrangian function. For the unrestricted variables (d, Q, D, 6, A, §, v, and L),

the Kuhn-Tucker conditions require that the partial derivatives of H with respect to each variable is
zero. For the slack variables (p, , and ), the Kuhn-Tucker conditions require that the partial
derivatives of H with respect to each variable is non-positive and the sum of the Lagrange
multipliers and the slack variables equals zero. For our problem, the necessary conditions are:

ki = -wp a;;l 22)
Y5 = wz% (23)
i
L
2% = -W3 %5 (24)
i
R z o,

() 2 Zhn - 25
Z 2 Jae M) 5~ - Hn 36, =
A 20 (26)
Z?\,i P = 0 (27)
1
8 > 0 | (@8)
ZBi G; = 0 (29)
i
%20 | (30)
2Ny =0 31)
1

(o]




The necessary conditions place restrictions on the signs of the derivatives of the
components of the objective function. Equations (22) to (24) and the conditions that the Lagrange
multipliers are non-negative require that the components of the objective function satisfy:

Ly <0 Thus, dy <d < d; (32)
ad _
Ly (33)
aQ

oL,

— < 34
5 (34)

Since L; increases when d > d; and decreases when d < dj, inequality (32) is satisfied for
dy <d < dj. Inequality (33) is satisfied because L, increases with Q [see Eq. (8)]. Inequality (34)
is satisfied because L3 decreases with D [see Eq. (9)].

Since the right sides of Egs. (22) to (24) are positive, one or more of each of the Lagrange
multipliers (A;, 8;, and ;) must be positive. Equations (27), (29), and (31) require that sums of
the products of Lagrange multipliers and slack variables must be zero. Since both the Lagrange
multipliers and slack variables are non-negative, every term in the sums must be zero. If one of the
Lagrange multipliers is positive (for example, A,,), the corresponding slack variable must be zero
(for example, p,). If two of the Lagrange multipliers for distance are positive, then two of the
corresponding distance slack variables must be zero: d = dj(0) and d = dy(0).

When the two reach slack variables (y;) are zero, Egs. (18) and (19) imply that
R(6) = (Ryg + Rp)/2. Furthermore, L3 = 0.

When two or more of the distance slack variables must be zero, the joint variables are
constrained:

g8 =0 (35)
where g is a vector with M components.. Let Jg be the Jacobian matrix of g:

_ 98(®

Te 26

(36)




If the rank of J g is M, Eq. (35) defines a manifold of dimension N - M. Specification of the
Cartesian position and orientation of the end of the arm [Eq. (15)] places constraints on the joint
variables. When two or more of the slack variables are zero, Eqgs. (11), (14), and (18) and (19)
place constraints on the joint variables. When N = M, the dimension of the manifold is zero (it
consists of isolated points). When N > M, a search of the manifold may yield a submanifold that
maximizes the Lagrangian function (H).

In Pin (1994), we used numerical search techniques to maximize the Lagrangian function
(H). Results were obtained for three cases. Since the goal (x*) is a Cartesian position but not an
orientation, the goal provides three constraints. The mobile manipulator has 3 DOF for the vehicle
and 4 DOF for the manipulator (thus, N = 7). For the first case [Fig. 5 in Pin (1994)], the weights
for reach and torque were zero and the Cartesian position for the wrist of the manipulator was 0.15
meters above the top of a box. For the best solution that we found numerically, only one of the
slack variables was zero for distance, torque, and reach. Thus, one distance was minimum, one
torque was maximum, and the reach was not at the mid-point [(Rg + Ry )/2].

For the second case [Fig. 6 in Pin (1994)], all three components of the objective function
were active (w; = 1 fori=1, 2, 3) and the Cartesian position for the wrist of the manipulator
remained at 0.15 meters above the top of a box. For the best solution that we found numerically,
only one of the slack variables was zero for distance and torque. Since the reach was at the mid-
point, the two reach slack variables (\;) were zero.

For the third case [Fig. 7 in Pin (1994) and Fig. 2 in this paper], all three components of
the objective function were active (w; = 1 fori= 1, 2, 3) and the Cartesian position for the wrist of
the manipulator was surrounded by four boxes. For the best solution that we found numerically,
only one of the slack variables was zero for torque and reach. As shown in Table 2, several of the
distances were almost equal. In Table 2, the first two distances are equal. By further searching,
we might find joint variables that would make the first three distances equal. It is possible that we
might find joint variables that would make the first five distances equal. If we had five distance
slack variables that were zero, we would have four distance constraints and three Cartesian
constraints and might have N=M =7.
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Fig. 2. . An optimal configuration for an objective function with

distance, torque, and reach components.
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Table 2. The five smallest distances for the third case.

b—t s

d;

0.049143
0.049148
0.050254
0.052344
0.053112

[, ¥ SN EUS I o P

To simplify Eq. (25), we will group the functions for distance, torque, and reach into a

single vector [h(8)]:
-d

ho) =| § 37
-R

We will group the Lagrange multipliers into a single vector [ot]:

A
o=] 3 (38)

Using our two new vectors, Eq. (25) becomes:

Jha =31y 39)

where Jj, is the Jacobian matrix of h:

= — - 40
Jn 3% (40)

Equation (39) is our generalization of the conditions for a Danskin point. If we ignore the
constraint on the Cartesian position and orientation of the end of the arm [Eq. (15)], 1 =0 and Eq.
(39) reduces to Polak's condition [his Eq. (7)]. Only a few of the components of the nonnegative
o vector will be positive (most of them will be zero). For each component that is positive, the

corresponding slack variable will be zero. To satisfy Polak's condition, a linear combination of a
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few of the columns of J;f must map to an N component zero vector. Let V be a basis for the null

space of J. Since the columns of J¥ and V form a basis for the space of all vectors with N
components, any vector with N components (1) can be written:

u=JTpu+vVp : (41)

The right side of Eq. (39) does not have the null space term. To satisfy our condition, a linear
combination of a few of the columns of J;f must map to an N component vector that is in the
subspace spanned by the columns of J¥ and does not have a projection in the null space of J.

We can classify the sets of points that satisfy the necessary conditions based on the number
of the q; that are positive. For Class 1, one of the o; will be positive. For Class 2, two of the o
will be positive. For Class n, n of the o; will be positive.

We have developed a general theory for min-max redundancy resolution for mobile
manipulators. In Reister (1993), we have developed numerical examples for less general
problems. The objective function has only one component: torque. Furthermore, the vector for
position and orientation has one component (z). The necessary conditions require that at one or
more of the joints the magnitude of the normalized torques will be equal to the min-max value.
We have classified the sets of points that satisfy the necessary conditions based on the number of
the normalized torques that are equal to the min-max value. We have solved the min-max problem
by identifying all of the points in all of the classes. We have explored the torque surfaces for two
mobile manipulators: a planar manipulator and the CESARm. The mobile planar manipulator has
three revolute joints. We began by exploring the Class 3 paths. We defined four cases and 16
subcases. For each of the 16 subcases, we have defined the three link angles in terms of a single
parameter. By relating the three link angles to the parameter, we have resolved the redundancy.

We have found that 13 of the 16 subcases satisfy the necessary conditions. Of the 13
subcases, there are five configurations with a one meter workspace, three configurations with a
three meter workspace, and one configuration with a five meter workspace. Given an initial value
for z and a final value, a path planner will choose one of the 13 options. All but one of the options
has a portion of the workspace where it is superior to any of the other options. Thus, the Class 3
paths reach all parts of the workspace.

We have explored Class 2 and Class 1 paths. We have surveyed Class 2 paths for a
constant value of z. By examining Class 2 paths, we have been able to identify all 10 of the Class
3 subcases that can reach the point z = 0.25. In 8 of the 10 subcases, we have found a local
minima. All of the local minima for the Class 2 paths occurred at Class 3 points (where the torques
were equal at all three joints). Thus, we were unable to find any Class 2 local minima. All of the
Class 1 solutions had higher values for the torque than the best Class 3 paths.
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The CESARm is a manipulator with 7 degrees of freedom that can reach points in 3D space
[Dubey (1991)] . We assumed that the CESARm is mounted on a mobile vehicle that will control
the x and y coordinate of the arm's tip We have three joint angles controlling the height of the arm
(z). We explored the Class 3 paths. There are four ways that three torques can be equal. For the
planar manipulator, the four cases were distinct. For the CESARm, the four cases correspond to
changes of variables. We found four segments for the Class 3 paths. While the four segments
. have low values for the maximum torque, they only cover part of the workspace and do not join
together.

By exploring Class 2 paths, we have found paths that cover the workspace and bridge
between the disjoint Class 3 path segments. We have evaluated the necessary conditions for both
the Class 3 paths and the Class 2 paths. In most cases, the paths satisfy the necessary conditions.

We have examined all of the possible Class 1 solutions. In all cases, the Class 1 solutions
have much higher values for the torque than the best Class 2 and Class 3 paths.
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3. CONCLUSIONS

We have considered the problem of determining the values of the joint variables of a mobile
manipulator with many redundant degrees of freedom that will minimize an objective function
when the position and orientation of the end of the manipulator are given. The objective function is
the weighted sum of three components: distance, torque, and reach. Each of the three components
is a max or min. We have converted the min-max optimization problem into a nonlinear
programming problem and used the Kuhn-Tucker conditions to derive necessary conditions for the
optimum solution.

The necessary conditions require that one or more of each of the three sets (distance,
torque, and reach) of nonnegative Lagrange multipliers must be positive. If one of the Lagrange
multipliers is positive, the corresponding slack variable must be zero. When two or more of the
Lagrange multipliers from a single set are positive, the slack variables place constraints on the joint
variables. .Specification of the Cartesian position and orientation of the end of the arm also places
constraints on the joint variables. If the mobile manipulator has N degrees of freedom and the total
number of constraints is M, the constraints define a manifold of dimension N - M. When N =M,
the dimension of the manifold is zero (it consists of isolated points). When N > M, a search of the
manifold may yield a submanifold that maximizes the Lagrangian function. We have discussed

examples where the number of slack variable constraints (M) is two or more.
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