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HETEROSCEDASTICITY GENERATED BY ERRORS IN
PREDICTORS

Darryl J. Downing
Valerii V. Fedorov
Randy K. Nanstad

Abstract

The heteroscedasticity or changing variance observed in ”raw” data
may be the result of randomness or uncertainty in the predictor variables.
As an example we consider ”Charpy Test” experiments widely used to
characterize the ductile-brittle toughness of steels such as those used for
nuclear pressure vessels. While this type of experiment is of interest in
itself, our main objective is to show that the use of a proper statistical
technique may help to avoid the use of more complicated physical models
to explain the heteroscedasticity of the observations. We also extend the
existing method of regression analysis with errors in controllable variables
to the case when the variances of the response and the controllable vari-
ables are both unknown.

Key words: Predictors subject to errors, regression analysis, errors in con-
trollable variables, iterated estimators, logistic response model.
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1. Introduction

This short study was essentially motivated by results reported by Downing, Hag-
gag, and Nanstad , 1990 or in the sequel DHN, 1990, for brevity. They were
interested in the analysis of experiments related to the fracture toughness of
commercial nuclear light water reactor pressure vessels. One of the tests con-
ducted for toughness determination is the ”Charpy” impact test. The tests were
conducted over a range of temperatures and the impact energy required to break
either irradiated or unirradiated specimens was measured and then modeled as a

function of temperature.

In Section 2 we briefly discuss the model used by DHN, 1990 and the results of
their statistical analyses. The basic statistical model that includes possible errors
in the controllable variables is formulated and discussed in Section 3. Section 4
is based on the approach developed by one of the authors. In Section 5 a more

general technique is developed and then applied to the case-study example.

2. Original regression problem

In what follows we accept the basic physical ideas used by DHN, 1990. For

obvious reasons the same data sets will be used to make the results comparable.

DHN, 1990, fit the following model

yi=nt,0)+oe, t=1,...,k, (1)

where
v; is the natural logarithm of energy absorbed at test,
7(t;,0) is a given function,

0 are unknown parameters,



¢; are standardized random variables (errors of observations) with the density

function

p(e;) = exp(e; — exp &), (2)

which is widely used in reliability analysis to describe the distribution of extrema.
The parameter o is usually unknown. In DHN, 1990, the response _function
7 (t;,0) was approximated by a fourth degree polynomial. Using a fourth degree
polynomial in temperature over the range from -100 to 100 C may lead to unstable
estimation. Therefore in this study our analysis is based on the logistic response

function:
0,

1+ explbs (t — 64)]

This function is flexible enough and has a more “physical” interpretation than

q(t,,ﬂ) =1n 01 +

(3)

the polynomial model. Data analysis in DHN, 1990, was based on the maximum
likelihood method using the error distribution given in (2). For small and mod-
erate o the maximum likelihood estimators for problem (1) - (3) may be well

approximated by the least squares estimators for the following regression model:

yi =7 (t:,0) +op + oy (4)

where v; = ¢; — p, 1 = E(€;) = 0.577 and 7(t, ) is defined by (3).
Moreover, asymptotically (n — oo) both estimators coincide. The correction
term op may be incorporated in 6; and 6, through the obvious transformation.

Therefore, for the sake of simplicity, we will use the model

i =1 (:,0) +ov. ()
In what follows the superscript “/” will be omitted when it is not misleading.

Model (1) - (3) and subsequently (5) assumes homogeneous observational er-

rors (o = constant). Numerous physical models discussed in applied publications
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(see, for instance, Helm, 1995) support this assumption. The results reported in

DHN, 1990, were based on this assumption.

However, one can notice from plots presented in DHN, 1990, and partly cited
here (see Fig 1) that the residuals are visibly greater around the mid-point of the
so-called ductile to brittle (i.e., high energy to low energy) transition temperature
region in each case. In the same temperature range the variability of the response

variable is also highest.

The materials in question are known to be anisotropic and heterogenous in
terms of microstructural features (e.g., grain size and orientation, etc). Fur-
thermore, in the transition temperature region, there is competition between the
separate micromechanisms which lead to brittle or ductile fracture. These factors
contribute to variations in measured mechanical properties. Besides those met-
allurgical contributions to variability, there are two other possible explanations
for the observed variability of the response variable. First, it can be that the se-
lected model is not very accurate and the “intrinsic” or “physical” variability of
the observed response depends upon the temperature of a tested specimen. The
second possibility is that some additional variability induced by an experimenter
(or experimental system) may be an explanation of the observéd phenomenon. In
this paper we will try to explore the second case, suspecting that the variability

may arise due to error in temperature control of the test.

3. Errors in predictors

Let us consider the following modification of model (5):

Y = T](t,‘,g)'l'O'I/,‘, (6)
t; = toit v,
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Figure 1: Response function for the 72W irradiated data from DHN 1990.
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Figure 2: Response function for the 72W unirradiated data from DHN 1990.
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Figure 3: Response function for the 73W irradiated data from DHN 1990.
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Figure 4: Response function for the 73W unirradiated data from DHN 1990.



-8-

where y; and to; (the desired temperature) are known, v; and v; are stangla,rdized
random variables with zero means and unit variances. We assume that v; and ;
are independent and all random variables corresponding to different observations
are independent as well. Model (6) means that an experimenter wants to test
specimens at temperatures to; but cannot control those temperatures completely
and therefore the actual tests take place at temperatures tg;-+67; . The regression
problem for this model was intensively studied for quite a while. If one suspects
that the shape of the probability distributions of »; and v; may significantly
influence the estimates then the conditional distribution, p (y:|to:), must be found
and the maximum likelihood method can be applied (see Fuller, 1987, Ch 1.6.)
For our purpose a simpler approach based on the.results by Fedorov, 1974, see

also Seber and Wild, 1989, Ch 10.9, appears to be sufficient.

Let us first assume that o and § are known and also that § is “relatively”
small. Assuming the existence of all the needed moments of the distribution
under consideration and using Taylor’s expansion of (6) with respect to 6 one

can show:

1.
E(yilto;,0) = n(to:,0) + 55277(t0£,9) + o(6?), (7
Var(yilte:, 0) = o+ 6*5%(ti, 0) + 0(6%), (8)

where E and Var mean “expectation” and “variance” correspondingly, 7 and 7
mean the first and second derivatives of 7 with respect to ¢. From (8) it is easy to
see that the “total” uncertainty in the observations have the tendency to increase
in regions where the absolute value of the first derivative 7 (¢,0) increases. This

fact may explain the behavior of residuals in Fig 1a and b.



4. Estimation method

If one wants to stay within the realm of the least squares method then the esti-

mator (the higher order terms are neglected):

-7 (tOi, 0) — %6277 (tOi, 0)
o2 + 6532 (t0r, 0) ’

. .o | Y
0 —Arg{‘%ls_rzl; 9)

where ) is the set of admissible values of 8, looks very reasonable. However, in
Fedorov, 1974, it was shown that generally the estimator defined by (7) is not
consistent and that the following “iterated” least squares estimators should be

used instead:

0= Jim b, (10)
0, = Argmin’S" wg [ysi — 7 (o, 0)]% (11)
eq =1
where
wil = o+ 6% (toi, 05-1),

1.
Ysi = Yi— 552772(t0i)05—1)-

Discussions of similar approaches (but in different statistical settings) may be
found, for instance, in Charles, Frome and Yu, 1976, and Jennrich and Moore,
1975. Estimation procedure (10) assumes that a standard nonlinear least squares
algorithm with weights is used repeatedly without any intrinsic changes in the

algorithm itself or corresponding software.

When there exists an opportunity to develop an independent software then
the following version of (10) based on the Newton-Raphson algorithm (see, for
instance, Seber and Wild, 1989) looks more attractive from the computational

standpoint:
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6 = limo, (12)
os = 03—1 +CsMs_1Y;, (13)

n
Ms = Zwsifsifg,",
=1

Y; = Zwsiysifsia

=1 0
fSi = f(ti’as"l)a f(t:0)= 677(’(;9’ )

When (; =1, then 1 can be considered as the solution of the linearized with
respect to § version of (11). Evidently the estimators (10) and (12) are statis-
tically identical if one manages to prove that limits of the sequences generated
by (10) and (12) coincide. In practice this coincidence may be guaranteed by a
proper choice of the sequence {(;}. For the simplest choice of {{;} when (, =1
the following asymptotic result takes place (we do not pursue the mathematical

rigor here).

For sufficiently smooth 7 (z, §) as a function of z and 4 (and, in particular, for
the logistic function considered in this paper) the probability P, that the limits
for (10) and (12) coincide tends to one when the number of observation n tends

to infinity, i.e.

lim P, = 1. (14)

n—oo

In other words, for relatively small sample sizes there exists an opportunity
that (10) and (12) may be different when {; = 1, but for larger samples the

chances of that are negligible.

In the standard least squares method enforcing the monotonicity of the se-

quence
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ve =3 st (9si — 1 (tai,Bacn))’ (15)

=1
through the proper choice of {; (compare, for instance, with Seber and Wild,

1989) usually assures the convergence of an iterative procedure.

Enforced monotonicity in the considered case may cause estimator (12) to
be inconsistent (compare with Fedorov, 1974). To explain this phenomenon the

reader must notice that generally it can not be stated that

n n
. 2 . : 2
min ;:1: wsilysi — 1(toi» 0)]° > lim min ;§=1: wsilysi — mi(toi, )]

Actually in practice the inverse can be observed frequently. Estimator (10) is
consistent and asymptotically normally distributed in the framework of approx-
imation (7), (8), see Fedorov, 1974. Therefore, for sufficiently large number of
observations the variance-covariance of the estimated parameters approximately

equals:

Cov(8) = > wif(t:, 0%) F (4, 67) (16)

=1

where w; = lim,,co ws; , and f(2,0) is defined in the comments to (12), (13).

Matrix (16) may be computed inside of a standard nonlinear least squares

routine used to solve (11). One can notice also that
Cov(6™) = lim M.,

where the matrix M, is defined in comments to (12), (13).
So far, we have assumed that the standard errors o and ¢ are given. Of course,
in most practical situations those parameters have to be estimated. Details on

how to modify (10) to estimate o and § are discussed in Section 5.
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For the experiments analyzed in DHN, 1990, the needed standard errors can
be estimated independently of (10). As a matter of fact, there are a number
of points with repeated observations and some of them are allocated where the
response function (see Fig. 1-4) achieves its upper limit and correspondingly the

first derivative of response function vanishes. Therefore,
Var(y:|te:, 0) ~ o?

and for the first stage of this study the simple estimator

o 1 _
§* = m— ;(yij -3’
J.—

1
R
ny j=1 ?

was used.

The parameter § was chosen as the accuracy of achieving the desired temper-
ature. With a view towards analyzing a boundary situation, § was selected to be
15C. This selection was chosen following a review of Nanstad et al. (1990), which
considered the influence of various thermal conditioning on media on temper-
ature changes experienced by the test specimen during Charpy impact testing.
The value chosen and used for this study is not a value normally observed or
expected. The estimation procedures (8) can be easily embedded in the standard
reweighted least squares algorithm. In particular we have used the nonlinear least
squares procedure with reweighting from SAS, 1990. In (8) the set §) was defined
by inequalities: 6; > 0, 62 > 0, 63 > 0. Fig. 5-8 give a graphical presentation of
the results, while Table 1 complements them with the parameter estimates and
their asymptotic standard errors.

Everywhere the iterations were started with wg;' = 6% and yo; = y;. Therefore
the results of the first iteration coincide with the least squares estimates (dotted

lines). One can see that the iterated estimation does not change the response



- 13-

Log Energy
5 4

-20 -10 0 10 20 30 40 50 60 70 80 90 100
Temperature
LEGEND — Adjusted  *** Data === Unadjusted

Figure 5: Response function for the 72W irradiated data. Calculated with and
without adjusting for error in temperature.
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Figure 6: Response function for the 72W unirradiated data. Calculated with and
without adjusting for error in temperature.
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Figure 7: Response function for the 73W irradiated data. Calculated with and
without adjusting for error in temperature.
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Figure 8: Response function for the 73W unirradiated data. Calculated with and
without adjusting for error in temperature.
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Table 1: Parameter estimates and their standard errors.

Dataset Parameter Standard LSE Iterated LSE
Estimate Standard Error Estimate Standard Error

721 u 4.45 0.054 4.58 0.137
03 0.04 .002 0.04 0.006

04 44.75 1.647 52.17 5.023

72U u 4.93 0.033 4.93 0.040
03 0.04 0.001 0.04 0.004

04 -1.57 2.265 -3.70 4.274

731 u 4,23 0.035 4.46 0.116
03 0.05 0.002 0.03 0.006

04 29.94 1.217 45.55 4.766

730 u 4.90 0.030 4.89 0.033
03 0.04 0.001 0.04 0.004

04 -15.98 2.113 -18.60 4.844

function too much. As expected the most significant corrections appear in areas
where the second derivatives are relatively large. Evidently the least squares
estimation of the response function leads to a negative bias when the second
derivative is positive and to a positive bias when it is negative, compare with (7).

The values of the parameters estimates do not change significantly going from
the unweighted to the weighted/iterated estimates. We would like to mention
here that estimates of #; were not significantly different from 0 in all the cases
and therefore this parameter was excluded from further analysis. Since §; was

excluded then we may use a more convenient version of (3):

7(t:,0) = v — In (1 + exp(0s(t — 04))) (17)

Note in this parameterization that u has taken the place of In(f;) and u is given
in Table 1.

The most noticeable changes in the results occurred to the “accuracy” mea-
sures of the estimators. We can see than almost twofold increase in the values

of the standard error estimates. Actually only the numbers reported for the last



- 18 -

iteration can be considered as the asymptotic variances of the estimators. The
values, which appear at the first iteration and are usually reported as the vari-
ances in the least squares method may support false expectations of a practitioner
about the quality of the standard least squares estimates. In reality, the variances
of the least squares estimates will be greater than the values reported in Table
1. Moreover the estimators of the parameters are not consistent due to the bias

generated by (7).

We plofted the standardized residuals (see Fig. 9-16)

Tsi = Wsi [ysi -7 (ti, és)]

for 6 = 0 and 6* = 15, when the procedure had converged. Since the residuals fall
in a horizontal band across all temperatures, one can see that for §* there is no
more heteroscedasticity which is so prominent with § = 0 (for the standard least
squares estimators). In other words, based on a § = 15 (considered a bounding
value) and neglecting metallurgical factors, the methodology developed herein
may explain the heteroscedasticity observed in Charpy impact populations such
as those in DHN, 1990. We would like to emphasize at this point that perhaps
other explanations for the heteroscedasticity of the original regression model can
be found and they can be related to the change of the response function or
the type of assumed distribution on the errors ¢;. Our analysis tried to remove
the heterscedasticity within the framework of the previously accepted “physical”

model.

5. Unknown o and § -

Iterative procedure (10) together with (11) leads to the results which have ex-
plained the appearance of heteroscedasticity in DHN, 1990. Nevertheless, two
parameters: o and § were evaluated in a rather ad hoc fashion. The whole

estimation procedure will become better formalized if the iterative estimation in-
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Figure 9: Standardized residuals for the 72W irradiated data. Not adjusted for

error in temperature. .
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Figure 10: Standardized residuals for the 72W irradiated data. Adjusting for
error in temperature.
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Figure 11: Standardized residuals for the 72W unirradiated data. Not adjusted
for error in temperature.
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Figure 12: Standardized residuals for the 72W unirradiated data. Adjusting for
error in temperature.
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Figure 13: Standardized residuals for the 73W irradiated data. Not adjusted for
error in temperature.
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Figure 14: Standardized residuals for the 73W irradiated data. Adjusting for
error in temperature.
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Figure 15: Standardized residuals for 73W unirradiated data. Not adjusted for
error in temperature.
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Figure 16: Standardized residuals for the 73W unirradiated data. Adjusting for
error in temperature.
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cludes o and §. The corresponding statistical technique for that was considered
in a number of publications, and probably the closest regression problems were

analyzed in Malyutov, 1982.

Application of the ideas of the iterated estimation to the extended set of

unknown parameters: 8,0 and § yields the following iterative estimators:

(6,6,6) = lim (0,6s,5,) (18)
fs = Arg Tbninz Wsi [ysi -7 (tOi’ 0)]2 ) (19)
€Q =1
(8s5,05) = Arg Igin; w?; [usi — vs (t0i, 0, 6)]7, "(20)
where
w;il = 0 3—1 + 53—1ﬁ2 (tois 0s-1)

'Us(toi, o, 6) = 02 + 627:]2 (tOia 03) ’

Usi = [ysi - 77(t02'7 95)]2°

From the computational point of view optimization problems (19) and (20) are
standard least squares problems. Moreover, (20) is linear. It is evident that (18)
- (20) may be replaced by the procedure similar to (12), (13). In our calculations
we have used this modified version. We repeated the analysis with the enhanced
procedure. Amazingly our initial guesses about o and ¢ were very close to the
estimated results. Consequently all the results are very close and we do not report

the latter ones here.

6. Conclusions

1. Heteroscedasticity of residuals may be a consequence of not being able
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to control independent variables as well as we think. The effect is more

pronounced in areas for which the response function has greater slope.

. Results of using the usual least squares estimators make us think that we are
doing better than we are, i.e. the standardly reported “accuracy” measures
are not true. When the curvature of the response function is significant the
usual least squares estimators are not consistent and may show a noticeable

bias even for moderate sample sizes.

. Methods are proposed to estimate all parameters including variances of
errors both in response and predictors. These methods allow one to develop
algorithms based on software available through commercial packages (SAS,

for instance was used in this study).
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