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ABSTRACT

In practical applications of robotics, it is usually quite difficult, if not impossible, for
the system designer to fully predict the environmental states in which the robots will
operate. The complexity of the problem is further increased when dealing with teams
of robots which themselves may be incompletely known and characterized in advance.
It is thus highly desirable for robot teams to be able to adapt their performance during
the mission due to changes in the environment, or to changes in other robot team
members. In previous work [40, 44], we introduced a behavior-based mechanism —
called the ALLIANCE architecture — that facilitates the fault tolerant cooperative
control of multi-robot teams. However, this previous work did not address the issue
of how to dynamically update the control parameters during a mission to adapt to
ongoing changes in the environment or in the robot team, and to ensure the efficiency
of the collective team actions. In this paper, we address this issue by proposing
the L-ALLIANCE mechanism, which defines an automated method whereby robots
can use knowledge learned from previous experience to continually improve their
collective action selection when working on missions composed of loosely coupled,
discrete subtasks. This ability to dynamically update robotic control parameters
provides a number of distinct advantages: it alleviates the need for human tuning of
control parameters, it facilitates the use of custom-designed multi-robot teams for any
given application, it improves the efficiency of the mission performance, and it allows
robots to continually adapt their performance over time due to changes in the robot
team and/or the environment. We describe the L-ALLIANCE mechanism, present
the results of various alternative update strategies we investigated, present the formal
model of the L-ALLIANCE mechanism, and present the results of a simple proof of
concept implementation on a small team of heterogeneous mobile robots.
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1 INTRODUCTION

Achieving cooperative robotics is desirable for a number of reasons. First, many
robotic applications are inherently distributed in space, time, or functionality, thus
requiring a distributed solution. Second, it is quite possible that many applications
could be solved much more quickly if the mission could be divided across a num-
ber of robots operating in parallel. Third, by duplicating capabilities across robot
team members, one has the potential of increasing the robustness and reliability of
the automated solution through redundancy. Furthermore, it may actually be much
cheaper and more practical in many applications to build a number of less capable
robots that can work together at a mission, rather than trying to build one robot
which can perform the entire mission with adequate reliability.

Achieving cooperative robotics, however, is quite challenging. Many issues must
be addressed in order to develop a working cooperative team, including action selec-
tion, coherence, conflict resolution, and communication. Cooperative teams often
work in dynamic and unpredictable environments, thus requiring the robot team
members to respond robustly, reliably, and adaptively to unexpected environmental
changes, failures in the inter-robot communication system, noisy sensors and effectors,
and modifications in the robot team that may occur due to mechanical failure, the
learning of new skills, or the addition or removal of robots from the team by human
intervention. Many multi-robot applications also require the use of heterogeneous
robots with overlapping capabilities, which must coordinate their selection of tasks
in order to efficiently accomplish their overall mission. However, the appropriate se-
lection of tasks during one mission may not be proper for another similar mission, or
for a later time in the same mission, due to changes that occur in the robot team or
the environment. Since it is virtually impossible for the human designer to predict
the robot environment and complete mission characteristics in advance, the robots
must be able to autonomously adapt their actions over time based upon knowledge
they learn from previous experience.

In previous work [40, 44], we introduced a formalism — called the ALLIANCE
architecture — that facilitates the fault tolerant cooperative control of multi-robot
teams. This behavior-based, fully distributed framework allows robots to select ap-
propriate actions based upon the requirements of the mission, the activities of other
robots, the current environmental conditions, and their own internal states. The
ALLIANCE architecture is based upon the interaction of mathematically modeled
control parameters that represent motivations of behavior, such as impatience and
acquiescence, within each robot. These motivations allow robots to take over tasks
from other team members if those team members do not demonstrate their ability —
through their effect on the world — to accomplish those tasks. Similarly, it allows a
robot to give up its own current task if its sensory feedback indicates that adequate
progress is not being made to accomplish that task.

However, the ALLIANCE architecture does not address the issue of how to
dynamically update the control parameters during a mission to adapt to ongoing



changes in the environment or in the robot team, and to ensure the efficiency of the
collective team actions. Instead, it was assumed that a human designer provided
the appropriate control parameters at the beginning of the mission that allow the
robots to cooperate effectively. While our previous work illustrated that a high de-
gree of fault tolerance is possible using these fixed control parameters, a much higher
level of flexibility, adaptivity, and efficiency can be achieved by dynamically varying
the control parameters during the mission. The L-ALLIANCE architecture provides
this capability by defining an automated mechanism whereby robots can use knowl-
edge learned from previous experience to continually improve their collective action
selection when working on missions composed of loosely-coupled, discrete subtasks.
The ability to dynamically update the control parameters provides a number of dis-
tinct advantages: it alleviates the need for human tuning of control parameters, it
facilitates the use of custom-designed multi-robot teams for any given application, it
improves the efficiency of the mission performance, and it allows robots to continu-
ally adapt their performance over time due to changes in the robot team and/or the
environment.

This paper presents the L-ALLIANCE mechanism for dynamic control param-
eter updates. We begin with an overview of related cooperative robotics work in the
following section. We then present a brief overview of the ALLIANCE architecture in
section , followed by a discussion of the motivation for efficiency improvements in L-
ALLIANCE. Section presents a simplified version of the efficiency problem and shows
that it is intractable, thus leading to the need for approximate solutions. Section
presents an overview of the L-ALLIANCE mechanism, followed by the discussion of
the various control strategies we investigated for use in L-ALLIANCE. The formal
model of L-ALLIANCE is presented in section 7.5. In section 8.8, we present the
results of a simple proof of concept implementation of this approach on a team of
mobile robots performing a box pushing demonstration. Finally, we offer concluding
remarks in section 9.4.2.



2 RELATED WORK

Research in cooperative robotics can be characterized in many ways. In [20],
Dudek proposes a taxonomy of cooperative robotics that distinguishes systems based
upon the size of the team, the communication range, topology, and bandwidth, re-
configurability, unit processing ability, and team composition (heterogeneous versus
homogeneous). Here, we broadly segment the cooperative robotics work into two
categories based on team composition: large numbers of homogeneous robots versus
smaller numbers of heterogeneous robots.

A significant body of research in cooperative mobile robotics deals with the
study of large numbers (or swarms) of homogeneous robots. This approach to multi-
robot cooperation is useful for non-time-critical applications involving numerous rep-
etitions of the same activity over a relatively large area, such as cleaning a parking
lot or collecting rock samples on Mars. The approach to cooperative control typ-
ically taken in these systems is derived from the fields of neurobiology, ethology,
psychophysics, and sociology, and is characterized by teams of large numbers of ho-
mogeneous robots, each of which has fairly limited capabilities on its own. However,
when many such simple robots are brought together, globally interesting behavior
can emerge as a result of the local interactions of the robots. A key research issue in
this scenario is determining the proper design of the local control laws that allow the
collection of robots to solve a given problem.

A number of researchers have studied the issues of swarm robotics. Deneubourg
et al. [17] describe simulation results of a distributed sorting algorithm. Theraulaz
et al. [49] extract cooperative control strategies, such as foraging, from a study of
Polistes wasp colonies. Steels [47] presents simulation studies of the use of several
dynamical systems to achieve emergent functionality as applied to the problem of
collecting rock samples on a distant planet. Drogoul and Ferber [19] describe simu-
lation studies of foraging and chain-making robots. McFarland [37] describes a robot
ecosystem that allows cooperation to emerge in a collective team. In [34] Mataric de-
scribes the results of implementing group behaviors such as dispersion, aggregation,
and flocking on a group of mobile robots. Beni and Wang [5] describe methods of gen-
erating arbitrary patterns in cyclic cellular robotics. Kube and Zhang [31] present the
results of implementing an emergent control strategy on a group of five mobile robots
performing the task of locating and pushing a brightly lit box. Stilwell and Bay [48]
present a method for controlling a swarm of robots using local force sensors to solve
the problem of the collective transport of a palletized load. Arkin et al. [2] present
research concerned with sensing, communication, and social organization for tasks
such as foraging. The CEBOT work, described in [24] and many related papers, has
many similar goals to other swarm-type multi-robotic systems; however, the CEBOT
robots can be one of a number of robot classes, rather than purely homogeneous.

Another primary area of research in cooperative control deals with achieving
“intentional” cooperation among a limited number of typically heterogeneous robots
performing several distinct tasks. In this type of cooperative system, the robots often




have to deal with some sort of efficiency constraint that requires a more directed
type of cooperation than is found in the swarm approach described above. Although
individual robots in this approach are usually able to perform some useful task on their
own, groups of such robots are often able to accomplish missions that no individual
robot can accomplish on its own. The general research issues of adaptive action
selection, communication, and conflict resolution are of particular importance in these
types of systems.

Two bodies of previous research are particularly applicable to this second type
of cooperation. First, several researchers have directly addressed this cooperative
robot problem by developing control algorithms and implementing them either on
physical robots or on simulations of physical robots that make reasonable assumptions
about robot capabilities. Examples of this research include the work of Noreils [39],
who proposes a three-layered control architecture that includes a planner level, a
control level, and a functional level; Caloud et al. [12], who describe an architecture
that includes a task planner, a task allocator, a motion planner, and an execution
monitor; Asama et al [4] who describes an architecture called ACTRESS that utilizes
a negotiation framework to allow robots to recruit help when needed; Cohen et al [13],
who use a hierarchical division of authority to address the problem of cooperative fire-
fighting; and Wang [50], who proposes the use of several distributed mutual exclusion
algorithms that use a “sign-board” for inter-robot communication.

The second, significantly larger, body of research related to intentional cooper-
ation comes from the Distributed Artificial Intelligence (DAI) community, which has
produced a great deal of work addressing this type of intentional cooperation among
generic agents. These agents are typically software systems running as interacting
processes to solve a common problem rather than embodied, sensor-based robots. In
most of this work, the issue of task allocation has been the driving influence that dic-
tates the design of the architecture for cooperation. Typically, the DAI approaches
use a distributed, negotiation-based mechanism to determine the allocation of tasks
to agents. See [7] for many of the seminal papers in this field.

Much less work has been done in the area of multi-robot learning, although the
topic is gaining increased interest. Asada et al. [3] proposes a method for learning
new behaviors by coordinating previously learned behaviors using Q-learning. They
have applied their approach to a simulation of robots playing a simplified version of
competitive soccer, and are transferring their results to physical robots. Mataric [36]
introduces a method for combining basic behaviors into higher-level behaviors through
the use of unsupervised reinforcement learning, heterogeneous reward functions, and
progress estimators. This mechanism was applied to a team of robots learning to
perform a foraging task. Kubo and Kakazu [32] proposed another reinforcement
learning mechanism that use a progress value for determining reinforcement, and
applied it to simulated ant colonies competing for food.



3 THE ALLIANCE ARCHITECTURE

The L-ALLIANCE dynamic parameter learning mechanism is built upon our
earlier work — the ALLIANCE architecture. Thus, to provide suitable background
information, we first briefly review the ALLIANCE approach to fault tolerant coop-
erative control in this section.

ALLIANCE is a fully distributed architecture for fault tolerant, heterogeneous
robot cooperation that utilizes adaptive action selection to achieve cooperative con-
trol. Under this architecture, the robots possess a variety of high-level task-achieving
functions that they can perform during a mission, and must at all times select an
appropriate action based on the requirements of the mission, the activities of other
robots, the current environmental conditions, and their own internal states. Table 1
gives examples of what we consider to be the high-level task-achieving functions of a
number of previously reported robots.

In ALLIANCE, individual robots are designed using a behavior-based approach
[8]. Under the behavior-based construction, a number of task-achieving behaviors are
active simultaneously, each receiving sensory input and controlling some aspect of
the actuator output. The lower-level behaviors, or competences, correspond to prim-
itive survival behaviors such as obstacle avoidance, while the higher-level behaviors
correspond to higher goals such as map building and exploring. The output of the
lower-level behaviors can be suppressed or inhibited by the upper layers when the up-
per layers deem it necessary. This approach has been used successfully in a number
of robotic applications, several of which are described in [11].

Extensions to this approach are necessary, however, when a robot must select
among a number of competing actions — actions which cannot be pursued in parallel.
Unlike typical behavior-based approaches, ALLIANCE delineates several behavior
sets that are either active as a group or hibernating. Figure 1 shows the general
architecture of ALLIANCE and illustrates three such behavior sets. The jth behavior
set, a;;, of a robot r; corresponds to those levels of competence required to perform
some high-level task-achieving function. When a robot activates a behavior set, we say
that it has selected the task corresponding to that behavior set. Since different robots
may have different ways of performing the same task, and therefore activate different
behavior sets to perform that task, we define the function k;(a;;), for all robots r; on
the team, to refer to the task that robot r; is working on when it activates its j-th
behavior set, a;;.

Because of the alternative goals that may be pursued by the robots, the robots
must have some means of selecting the appropriate behavior set to activate. Thus,
controlling the activation of each of these behavior sets is a motivational behavior.
Due to conflicting goals, only one behavior set per robot can be active at any point in
time. This restriction is implemented via cross-inhibition of motivational behaviors,
represented by the arcs at the top of figure 1, in which the activation of one behavior
set suppresses the activation of all other behavior sets. However, other lower-level
competences such as collision avoidance may be continually active regardless of the



Robot High-Level Functions

Allen [8] Wander

Attila/Hannibal [21] | Keep walking

Genghis [9] Keep walking

George/HARV [1] Reactively navigate

Herbert [14] Collect empty soda cans

Hilare [28] Map office environment

Polly [29] Give Tth floor AI Lab tours

Rocky III Search for soft soil; acquire soil sample;
[38, 26] return sample to home

Rocky IV Collect soil sample; chip rocks; deploy
[27, 26] instruments; return sample to home

RPV [6] Reactively navigate underwater

Squirt [23] Eavesdrop

Toto [35] Map office environment; go to goal

Table 1: High level task-achieving functions of various robots.

high-level goal the robot is currently pursuing. Examples of this type of continually
active competence are shown in figure 1 as layer 0, layer 1, and layer 2.

The primary mechanism for achieving adaptive action selection in this architec-
ture is the motivational behavior. At all times during the mission, each motivational
behavior receives input from a number of sources, including sensory feedback, inter-
robot communication, inhibitory feedback from other active behaviors, and internal
motivations called robot impatience and robot acquiescence. The output of a motiva-
tional behavior is the activation level of its corresponding behavior set, represented
as a non-negative number. When this activation level exceeds a given threshold, the
corresponding behavior set becomes active.

Intuitively, a motivational behavior works as follows. Robot r;’s motivation to
activate any given behavior set a;; is initialized to 0. Then, over time, robot 7;’s
motivation m;;(t) to activate behavior set a;; increases at a “fast” rate (which we
call é_fast;;(t)) as long as the task corresponding to that behavior set (i.e. hi(a;;)) is
not completed, as determined from sensory feedback. However, the robots must be
responsive to the actions of other robots, adapting their task selection to the activities
of team members. Thus, if a robot r; is aware that another robot r is working on
task h;(ai;), then r; is satisfied for some period of time that the task is going to
be accomplished even without its own participation, and thus go on to some other
applicable action. Its motivation to activate behavior set a;; still increases, but at
a slower rate (which we call §_slow;;(k,t)). This characteristic prevents robots from
replicating each other’s actions and thus wasting needless energy. Of course, detecting
and interpreting the actions of other robots (often called action recognition) is not a
trivial problem, and often requires perceptual abilities that are not yet possible with
current sensing technology. As it stands today, the sensory capabilities of even the



The ALLIANCE Architecture
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Figure 1: The ALLIANCE architecture. The symbols in this figure that connect the output
of each motivational behavior with the output of its corresponding behavior set (vertical
lines with short horizontal bars) indicate that a motivational behavior either allows all or
none of the outputs of its behavior set to pass through to the robot’s actuators. The “S”
inside a circle indicates that the output of a higher level behavior is suppressed as needed
by lower level behaviors (e.g. to avoid an obstacle).

lower animals far exceed present robotic capabilities. Thus, to enhance the robots’
perceptual abilities, ALLIANCE utilizes a simple form of broadcast communication
to allow robots to inform other team members of their current activities, rather than
relying totally on sensory capabilities. At some pre-specified rate, each robot r;
broadcasts a statement of its current action, which other robots may listen to or
ignore as they wish. No two-way conversations are employed in this architecture.

Each robot is designed to be somewhat impatient, however, in that a robot r;
is only willing for a certain period of time to allow the communicated messages of
another robot to affect its own motivation to activate a given behavior set. Continued
sensory feedback indicating that a task is not getting accomplished thus overrides the
statements of another robot that it is performing that task. This characteristic allows
robots to adapt to failures of other robots, causing them to ignore the activities of a
robot that is not successfully completing its task.

A complementary characteristic in these robots is that of acquiescence. Just
as the impatience characteristic reflects the fact that other robots may fail, the ac-
quiescence characteristic indicates the recognition that a robot itself may fail. This
feature operates as follows. As a robot r; performs a task, its willingness to give up
that task increases over time as long as the sensory feedback indicates the task is not



being accomplished. As soon as some other robot r; indicates it has begun that same
task and r; feels it (i.e. ;) has attempted the task for an adequate period of time, the
unsuccessful robot r; gives up its task in an attempt to find an action at which it is
more productive. Additionally, even if another robot ri has not taken over the task,
robot r; may give up its task anyway if it is not completed in an acceptable period
of time. This allows r; the possibility of working on another task that may prove to
be more productive rather than becoming stuck performing the unproductive task
forever. With this acquiescence characteristic a robot is able to adapt its actions to
its own failures.

The behavior-based design of the motivational behaviors also allows the robots
to adapt to unexpected environmental changes which alter the sensory feedback. The
need for additional tasks can suddenly occur, requiring the robots to perform addi-
tional work, or existing environmental conditions can disappear and thus relieve the
robots of certain tasks. In either case, the motivations fluidly adapt to these situa-
tions, causing robots to respond appropriately to the current environmental circum-
stances. Refer to [40, 44] for more details of the ALLIANCE architecture, including
the formal mathematical model of ALLIANCE, proofs of correction which guarantee,
under certain conditions, that a mobile robot team will accomplish its missions under
the control of ALLIANCE, and results of robot implementations of the ALLIANCE

architecture.



4 MOTIVATION FOR EFFICIENCY
IMPROVEMENTS

As described in the previous section, the ALLIANCE architecture allows robots
to adapt to the ongoing activities and environmental feedback of their current mis-
sion. However, ALLIANCE does not address a number of efficiency issues that are
important for cooperative teams. These issues include the following:

o How do we ensure that robots attempt those tasks for which they are best suited?

In heterogeneous robot teams, there may often be more than one robot that
can accomplish a given task, but with different levels of performance. The
heterogeneous members of a robot team may also have different mixtures of
capabilities, such that the “best” action for a given robot may vary depending
upon which other robots belong to the team. Ideally, the robot individuals
optimize their action selections depending upon the other team members that
are present, and their capabilities. \

o Can we enable the robot team to increase its performance over time?

It is desirable that robot teams use knowledge learned from previous experience
to improve mission performance from trial to trial. This obviates the need for
attempting to hand-code the “optimal” team configuration in advance, thus
greatly reducing the programming burden.

o Does failure at one task imply total robot failure?

Ideally, a robot should recognize when it has failed at a given task, and continue
to another task for which it is better suited. Failure at one task should not
preclude the execution of another, unrelated, task.

e How do we minimize robot idle time?

As described in the previous section, the ALLIANCE architecture utilizes mo-
tivations to achieve appropriate action selection. However, as described, the
architecture does not address the issue of robot idle time while the motivations
are increasing. For practical applications, we must ensure an acceptably short
upper limit on the idle time.

The L-ALLIANCE enhancement to ALLIANCE addresses these issues of ef-
ficiency by incorporating a dynamic control parameter update mechanism into the
ALLIANCE architecture. This parameter update mechanism allows us to preserve
the fault tolerant features of ALLIANCE while improving the efficiency of the robot
team performance. A number of benefits result from providing robots with the ability
to automatically adjust their own control parameter settings, including the following:

1. Relieves humans of the parameter adjusting task:




As described earlier, ALLIANCE requires human programmer tuning of mo-
tivational behavior control parameters to achieve desired levels of robot per-
formance. The use of any architecture is much simpler to use if humans are
relieved of the responsibility of having to tune numerous parameters.

2. Improves the efficiency of the mission performance:

Related to the previous item is the issue of the efficiency of the robot team’s
performance of its mission. As human designers, it is often difficult to evaluate
a given robot team performance to determine how best to adjust parameters
to improve efficiency. However, if the robots were controlled by an automated
action selection strategy that has been shown to result in efficient group action
selection in practice, then the human designer can have confidence in the robot
team’s ability to accomplish the mission autonomously, and thus not feel the
need to adjust the parameters by hand.

3. Facilitates custom-designed robot teams:

Providing the ability for robot teams to carry over their learned experiences
from trial to trial would allow human designers to successfully construct unique
teams of interacting robots from a pool of heterogeneous robot types for any
given mission without the need for a great deal of preparatory work. Although
ALLIANCE allows newly constructed teams to work together acceptably the
first time they are grouped together, automated parameter adjusting mecha-
nisms would allow the team to improve its performance over time by having
each robot learn how the presence of other specific robots on the team affects
its own behavior.

Providing robot team members with the ability to automatically update their
own motivational behavior parameters requires solutions to two problems:

e How to give robots the ability to obtain knowledge about the quality of team
member performances

e How to use team member performance knowledge to select a task to pursue

Solutions to the first problem require a robot to learn not only about the abilities
of its teammates, but also about its own abilities. Although each robot “knows” the
set of behaviors that it has been pre-programmed to perform, it may perform poorly
at certain tasks relative to other robots on the team. Robots must thus learn about
these relative performance differences as a first step toward efficient mission execution.
However, learning these relative performance quality differences is only a first step in
improving efficiency. The next question is how robots use the performance knowledge
to efficiently select their own actions.
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5 THE EFFICIENCY PROBLEM

To understand the difficulty of this efficiency problem, we first look formally
at a simplified version of the problem, showing that even the simplified version is
NP-hard. This leads to the need for approximate solutions.

Let R = {r1,rs,...,7s} represent the finite set of » robots on a cooperative
team, and the finite set T = {task,, tasks, ..., taskn, } represent the m independent
tasks required in the current mission. Each robot in R has a number of high-level
task-achieving functions (or behavior sets) that it can perform, represented by the
finite set A; = {ai,ai,...}. Since different robots may have different ways of per-
forming the same task, we define the set of n functions H, where H : A; — T,
H = {hi(aik), h2(azx)y -+, hn(@nk)}, and h;(aix) returns the task, task;, that robot r;
is working on when it activates behavior set a.

We denote the metric evaluation function as g(a;;), which returns the “quality”
of the action a;; as measured by a given metric. Typically, we consider metrics
such as the average time or average energy required to complete a task, although
many other metrics could be used. Of course, robots unfamiliar with their own
abilities or the abilities of their teammates do not have access to this g(a;;) function.
Thus, an additional aspect to the robot’s learning problem is actually obtaining the
performance quality information required to make the appropriate action selection
choice.

Finally, we define the tasks a robot r; elects to perform during a mission as the
set U; = {a;j|robot r; performs task h;i(a;;) during the current mission}.

In the most general form of this problem, the following condition holds:
Condition 1 (Different Robots are Different): Different robots may have differ-
ent collections of capabilities; thus, we do not assume that Vi.Vj.(A; = A;). Further,
if different robots can perform the same task, they may perform that task with different
qualities; thus, we do not assume that if hi(aiz) = hj(ajy), then q(aiz) = q(ajy).

Let us assume, for the simplified case, that the performance measurements of
the robots performing the tasks for which they are capable are known in advance.
Then we define the formal efficiency problem under condition 1 as follows:

ALLIANCE Efficiency Problem (AEP):

For each robot r;:
Given T, A;, and h;(a:x), determine the set of actions U; such that

o Vi.U; C A;
o V7.3:.3k.((task; = hi(ai)) and (aix € Ui))

and the following is minimized, according to the time performance metric:

mazi( Y q(aw))

aix€U;
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The first two constraints of the efficiency problem ensure that each task in the
mission is assigned to some robot that can actually accomplish that task. The final
constraint ensures that the total time required to complete the mission is minimized.
Since robot team members will usually perform their actions in parallel during a
mission, the total mission completion time is the time at which the last robot finishes
its final task. Thus, when the performance metric is time, the maximum amount of
time any robot takes to perform its set of actions should be minimized.

Under the assumption that the robots have accurate and complete information
on their own abilities and the abilities of their teammates, how realistic is it to require
the robots to derive the optimal action selection policy? It can be easily shown that
the efficiency problem, AEP, is NP-hard by restriction to the well-known NP-complete
problem PARTITION [25]. The PARTITION problem is as follows: given a finite
set W and a “size” s(w) € Z* for each w € W, determine whether there is a subset
W' C W such that 3 ew $(w) = Lyew-w: s(w). We then have the following:

Theorem 1 The ALLIANCE efficiency problem (AEP) is NP-hard in the number
of tasks required by the mission.

Proof: By restriction to PARTITION:

Allow only instances of AEP where n = 2, A; = A; = W, VeVj.(hy(a;) =
task;), and Vj.(g(a1;) = g(asz;) = s(w;)), for w; € W. Then since PARTITION is a
special case of AEP, AEP must be NP-hard. O

Since the PARTITION problem is stated in terms of finding two equally-sized
subsets of tasks W and W, the proof of this theorem restricts AEP to those instances
involving two robots with identical capabilities and qualities of capabilities. Further-
more, each robot has the same one-to-one mapping of behavior sets to tasks, meaning
that all robots use the same behavior set to accomplish the same task, and all behavior
sets are needed to accomplish the mission. These AEP instances are then instances
of PARTITION, so that, if we could solve AEP, we could solve PARTITION.

Thus, since this efficiency problem is NP-hard, we cannot expect the robot
teams to be able to derive an optimal action selection policy in a reasonable length
of time. Thus, we look instead to heuristic approximations to the problem that work
well in practice.
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6 OVERVIEW OF THE L-ALLIANCE
MECHANISM

This section provides an overview of the L-ALLIANCE approach to the dy-
namic update of cooperative team control parameters. This approach was developed
primarily to provide an infrastructure that affords a robot team with a high degree
of fault tolerance and efficiency when working on missions composed of independent,
discrete tasks. The assumptions made in the development of this approach are de-
scribed, followed by a description of the overall framework under which L-ALLIANCE

operates.

6.1 ASSUMPTIONS MADE IN L-ALLIANCE
Two key assumptions are made in the development of L-ALLIANCE, as follows:

o A robot’s average performance in executing a specific task over a few recent trials
is a reasonable indicator of that robot’s expected performance of the same or
related tasks in the future.

e If robot r; is monitoring environmental conditions C to assess the performance of
another robot 7%, and the conditions C change, then the changes are attributable
to robot r¢.

Without the first assumption, it is quite difficult for robots to learn anything
at all about their own expected performance, or the performance of their teammates,
since past behavior would provide no clues to the expected behavior in the future. The
challenge, of course, is determining which aspects of a robot’s performance are good
predictors of future performance. It is crucial that the chosen quality be observable by
robots on the team, since each robot must assess the performance of its teammates
in order to detect improvements in performance or robot failures, and thus alter
its action selection accordingly. However, robots do indeed experience failures or
changes in capabilities during a mission, or across missions; thus the measure of
past performance cannot be guaranteed to predict future performance. Robots must
therefore use their knowledge about previous performance only as a guideline, and not
as an absolute determinant of the abilities of robot team members. In L-ALLIANCE,
we have used the simple measure of the time of task completion, which has served to
be a good indicator of future performance.

The second assumption deals with the well-known credit assignment problem,
which is concerned with determining which process receives credit (or punishment)
for the successful (or unsuccessful) outcome of an action. The assumption made in
L-ALLIANCE is that the only agents which affect the properties of the world that a
robot 7; is interested in are the robots that r; is monitoring. Thus, if a robot r; declares
it is performing some task, and that task becomes complete, then the monitoring robot
assumes that r; caused those effects. This assumption is certainly not always true,
since external agents really can intrude on the robots’ world. However, since this issue
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even causes problems for biological systems, which often have difficulty in correctly
assigning credit, we accept this oversimplification here.

6.2 PERFORMANCE MONITORS

Figure 2 illustrates the L-ALLIANCE extensions to the ALLIANCE architecture.
These extensions incorporate the use of performance monitors for each motivational
behavior within each robot. Each monitor is responsible for observing, evaluating,
and cataloging the performance of any robot team member (including itself) when-
ever it performs the task corresponding to that monitor’s respective behavior set.
Formally, robot r;, programmed with the b behavior sets A = {ai1, aiz, ..., @i}, 2lso
has b monitors MON; = {mon;;, mon;, ..., mon;}, such that monitor mon;; observes
the performance of any robot performing task h;(ai;), keeping track of the time of
task completion (or other appropriate performance quality measure) of that robot.
As mentioned earlier, since passive action observation is quite difficult to accom-
plish, the robots use the broadcast communication mechanism in L-ALLIANCE to
inform teammates of their current actions, from which robots can derive task comple-
tion times. Monitor mon;; then uses the mechanism described below to update the
control parameters of behavior set a;; based upon this learned knowledge. If is im-
portant to note here that a robot r; does not keep track of the task completion times
for capabilities of other robots that r; does not share. This allows the L-ALLIANCE
architecture to scale favorably as the mission size increases.

6.3 TWO L-ALLIANCE CONTROL PHASES

The ability of robots to monitor, evaluate, and catalog the performance of team mem-
bers in executing certain tasks is of central importance to L-ALLIANCE. Without
this ability, a robot must rely on human-supplied performance measurements of robot
team members. Once these performance measurements are obtained, the robot team
members have a basis for determining the preferential activation of one behavior set
over any other either for the sake of efficiency, or due to the occurrence of a robot
failure.

The degree to which robot team members can obtain knowledge concerning
team member abilities depends on the type of mission in which they are engaged.
If they are on a training mission, whose sole purpose is to allow robots to become
familiar with themselves and with their teammates, then the robots can explore their
capabilities without concern for possibly not completing the mission. On the other
hand, if the robots are on a live mission, then the team has to ensure that the mission
is completed as efficiently as possible. Even so, as they perform the mission, the
robots take advantage of the opportunity to find out what they can about the robot
capabilities that are demonstrated.

Thus, one of two high-level control phases are utilized for robot team members
under L-ALLIANCE, depending upon the type of the team’s mission. During training
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The L-ALLIANCE Architecture
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Figure 2: The L-ALLIANCE architecture. The changes from the ALLIANCE architec-
ture are shown in bold. These changes add a monitor corresponding to each motivational
behavior within each robot. These monitors are responsible for observing and recording
the performance of robot team members, and of adapting the control parameters of the
respective motivational behaviors accordingly. The “S” inside a circle indicates that the
output of a higher level behavior is suppressed as needed by lower level behaviors (e.g. to
avoid an obstacle).
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missions, the robots enter the active learning phase, whereas during live missions, they
enter the adaptive learning phase.

6.3.1 Active Learning Phase

Clearly, the only way robots can independently learn about their own abilities and
the abilities of their teammates is for the robots to activate as many of their behavior
sets as possible during a mission, and to monitor their own progress and the progress
of team members during task execution. Of course, on any given mission not all
of the available behavior sets may be appropriate, so it is usually not possible to
learn complete information about robot capabilities from just one mission scenario.
However, the active learning phase allows the team to obtain as much information as
possible through the active exploration of robot abilities. In this phase, the robots’
motivational behaviors interact to cause each robot to select its next action randomly
from those actions that are: (1) currently incomplete, as determined from the sensory




feedback, and (2) currently not being executed by any other robot, as determined from
the broadcast communication messages.

While they perform their tasks, the robots are maximally patient and minimally
acquiescent, meaning that a robot neither tries to preempt another robot’s ongoing
task, nor does it acquiesce its own current action to another robot. Since robots at the
beginning stages of learning do not yet know how long it may take them to perform
their tasks, this maximal patience/minimal acquiescence feature allows them to try
as long as needed to accomplish their tasks. Of course, if a robot has the ability to
detect failure with certainty, then it can give up failed tasks to another team member.

During the active learning phase, each monitor mon;; in each robot r; monitors
the performance of all robots r; that are performing task h:(a;;). Monitor mon;;
observing robot r; then catalogues the average time plus one standard deviation re-
quired by robot 7 to perform task h;(a;;), maintaining this information over only
the previous p trials of r’s performance of h;(a;;). This running average plus one
standard deviation is called task_time;(k, j,1). In the case of robot failure, the actual
time attributed to the failed robot is some penalty factor (greater than 1) multiplied
by the actual attempted time. The standard deviation is added to the task time
to account for environmental variations and sensory and effector noise that will un-
doubtably cause performance to differ across task executions. Determining how many
trials, g, over which to maintain this data depends upon the desired characteristics of
the robot team [46]. Maintaining an average over too many trials results in a slow re-
sponse to changes in robot performance. On the other hand, maintaining an average
over too few trials does not provide a reasonable predictor of future performance. The
experiments reported in this article have shown than an average over about 5 trials
results in good predictive capability, while still allowing the robots to be responsive
to failures.

6.3.2 Adaptive Learning Phase

When a robot team is applied to a “live” mission, it cannot afford to allow members
to attempt to accomplish tasks for long periods of time with little or no demonstrable
progress. The team members must accomplish the mission with available knowledge
about team member abilities, and must not tolerate long episodes of robot actions
that do not have the desired effect on the world. Thus, in the adaptive learning phase,
the robots acquiesce (give up tasks) and become impatient (take over tasks) according
to their learned knowledge and the control strategies described in the remainder of
this article, rather than being maximally patient and minimally acquiescent as they
are in the active learning phase. However, the monitors within each robot continue to
monitor and catalog robot performances during this phase, and update the average
task completion times and standard deviations for the most recent p trials.
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7 EMPIRICAL INVESTIGATIONS OF
DYNAMIC PARAMETER UPDATE
MECHANISMS

Once the quality measurements have been obtained, they are input to a control mecha-
nism that allows the robot team to improve its efficiency over time while not sacrificing
the fault tolerant characteristics demonstrated through the ALLIANCE architecture.
Since, in the context of L-ALLIANCE, we are interested in the fault tolerant and
efficient execution of a mission composed of loosely-coupled subtasks, this control
problem translates into two related issues: (1) how an individual robot determines
whether to interrupt the task currently being performed by another robot (i.e. be-
come impatient), or whether it should acquiesce its own current task (either to some
other team member, or to attempt some other task), and (2) how an individual robot
selects from among a number of incomplete tasks that no other team member is
currently performing.

The answers to these action selection questions largely determine the efficiency
with which the robot team can perform its mission. The ideal is for the motivational
behaviors to interact to cause each robot to select its tasks in such a way that the
team as a whole minimizes the time required to accomplish its mission. However,
each robot is working with incomplete global information, since it at best knows
solely about its own abilities to perform certain tasks and the quality with which
its teammates perform those same tasks. In addition, each robot has a restricted
view of the scope of the mission, since it can only sense the need for those actions
that it is able to perform; robots are completely ignorant of any other tasks required
by the mission that teammates may have to execute. However, as we have already
noted, this efficiency problem is NP-hard, and thus we cannot expect the robots to
be able to derive an optimal selection of actions even if they did possess complete
global information. Thus, we investigated a number of greedy approaches to this
problem to find those approaches that work well in practice. The investigation of
potential control approaches considered a number of factors that affect performance.
The following subsections describe the approaches we investigated as a function of
the task coverage, the relative mission size, the degree of heterogeneity across robots,
the number of robots, and a condition we call Progress When Working.

In this context, we define task coverage as the measure of the number of capa-
bilities on the robot team that may allow some team member to achieve a given task,
given by: )

task_coverage(tasky) = ;;{ (1] fﬂg};&:{;g tashy) }
The relative mission size is given by the ratio of the total number of tasks required
by the mission to the size of the robot team. In this context, robot team members
can be heterogeneous in two ways: (1) they can have different behavior sets that
give them the ability to perform different tasks, and (2) they can share the ability
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to perform the same task, but demonstrate different qualities of performance of that
task (e.g. the time required to complete the task may vary). For this study, the first
type of heterogeneity is included in the task coverage of the team. Thus, the “degree
of heterogeneity” in this section refers to the degree of difference in the qualities of
performance of the same task by those robots which can perform that task.

Finally, we define a condition that holds in many multi-robotic applications:

Condition 2 (Progress when Working): Let z be the finite amount of work re-
maining to complete a task w. Then whenever robot r; activates a behavior set corre-
sponding to task w, either (1) r; remains active for a sufficient, finite length of time
€ such that z is reduced by a finite amount which is at least some constant § greater
than 0, or (2) r; experiences a failure with respect to task w. Additionally, if z ever
increases, the increase is due to an influence external to the robot team.

Condition 2 ensures that even if robots do not carry a task through to comple-
tion before acquiescing, they still make some progress toward completing that task
whenever the corresponding behavior set is activated for some time period at least
equal to e. One exception, however, is if a robot failure has occurred that prevents
robot r; from accomplishing task w, even if r; has been designed to achieve task w.
This condition also implies that if more than one robot is attempting to perform the
same task at the same time, the robots do not interfere with each others’ progress so
badly that no progress towards completion of the task is made. The rate of progress
may be slowed somewhat, or even considerably, but some progress is made neverthe-
less. Finally, Condition 2 implies that the amount of work required to complete the
mission never increases as a result of robot actions. Thus, even though robots may
not be any help towards completing the mission, at least they are not making mat-
ters worse. Although this may not always hold true, in a wide variety of applications
this is a valid assumption. Of course, this does not preclude dynamic environmental
changes from increasing the workload of the robot team. As we shall see, the relative
performances of the various control strategies vary depending upon whether or not
this condition is true in a given situation.

Although we investigated the various dynamic parameter update strategies as
functions of these factors, our goal was to find a single automated technique that
could be incorporated into each robot on the team such that, regardless of the spe-
cific situation in which the robots find themselves, the robots could select the most
appropriate control strategy for their situation. Ideally, the selection criteria should
be as simple as possible, so that robots do not have to deliberate extensively to
ascertain the proper parameter update technique.

7.1 THREE IMPATIENCE/ACQUIESCENCE UPDATE
STRATEGIES

As described in section , the motivational behaviors are the foundation of the adaptive
action selection facilitated by ALLIANCE. The primary motivations incorporated into
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Three Impatience/Acquiescence Update Strategies

Strategy Impatience (¢:;(k,1)) Acquiescence (¢;;(t))
I own time own time
I own time minimum time of team
I11 time of robot performing the task own time

Table 2: Basis for setting the impatience and acquiescence parameters for a given
task within a given robot, for each of three strategies.

ALLIANCE are the impatience and acquiescence motivations, which allow robot team
members to dynamically reallocate their actions based upon the effect the robots have
on the world. Since these motivations are incorporated into the team members as
control parameters, we must address how the appropriate parameter settings of these
motivations are obtained. Colloquially, this problem can be stated as “knowing when
to give up”, either on one’s own performance, or on the performance of other team
members. Specifically, a robot must determine when it should become impatient
with other robot performances, and when it should acquiesce its own current action.
This issue affects not only the robot team’s response to failures and difficulties in
the environment, but also the efficiency of the action selection. If these impatience
and acquiescence factors are set too low, then the robot team thrashes between tasks,
perhaps seriously degrading the team efficiency. On the other hand, if these factors
are set too high, then the robot team wastes time, and perhaps energy, waiting on a
failed robot to complete a task.

Three primary parameters in L-ALLIANCE determine robot r;’s response to
robot r}’s performance of task h;(a;;) at time #: ¢;;(k,t) (robot impatience), 1;;(t)
(robot acquiescence to another robot), and A;;(2) (robot acquiescence to try another
task). The first two parameters concern a robot’s response to the actions of its
teammates, whereas the third (A;;(¢)) affects a robot’s response to its own performance
in the absence of impatient team members. A number of different strategies for
setting these impatience and acquiescence rates can be used, all of which are based
upon the knowledge each robot gains about its own abilities and/or the abilities of
its teammates. We studied three impatience/acquiescence update control strategies,
which are discussed in the following paragraphs. Table 2 summarizes the parameter
settings for these strategies.

7.1.1 Strategy I: Distrust Performance Knowledge about Teammates

The first impatience/acquiescence parameter update strategy takes a minimalist ap-
proach to the problem by requiring the robot to use only the knowledge it learns
about its own performance; robots are not required to know anything about the ca-
pabilities of their teammates. This strategy is the one most likely to be used when
a robot team is first formed, before the team members have had an opportunity to
learn about their teammates’ capabilities. This strategy can also be used when robots
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have little confidence in the knowledge that they have learried about other robots,
perhaps due to significant environmental changes that have rendered earlier quality
measurements invalid.

Under strategy I, a robot holds other robots to the same standard by which it
measures itself. Thus, if a robot r; knows that it should be able to complete a certain
task h;(a;;) in a certain period of time ¢, then it becomes impatient with any other
robot r; that does not complete h;(a;;) in that same period of time. Of course, since
r; is holding itself to its own standards, then it is willing to acquiesce its task after
working on it for a period of time ¢ without task completion.

The expected group behavior resulting from strategy I is for better robots to
begin execution of tasks being pursued by worse robots, but only after the worse
robots have attempted their tasks for a period of time determined by the better
robots’ own expected performance time. However, a worse robot is not willing to give
up its task until it feels it has had a fair chance to complete the task according to its
own performance expectations.

7.1.2 Strategy II: Let the Best Robot Win

The second strategy for setting the impatience and acquiescence factors endows the
robot team with the character of “striving for the best”. Under this strategy, a robot
holds itself to the performance standard of the best robot it knows about in the group,
for each task to be accomplished. Thus, if a robot r; has learned that the quickest
expected completion time required by a robot team member for a task hi(as;) is ¢,
then r; will acquiesce task h;(a;;) to another robot if r; has attempted h;(a;;) for a
time longer than ¢. On the other hand, robot r; will become impatient with a robot
rx which is performing task h;(a;;) only after r, has attempted the task for a longer
period of time than r; believes that it, itself, needs to accomplish A;(a;;).

Implicit in this strategy is the assumption by an acquiescing robot that other
robots know their own performance levels better than does the acquiescing robot.
Their behavior can be informally summarized with the statement: “If I think I’'m
not doing very well, and you think you can do better, then I'll give up.” In this
strategy, the acquiescing robot r; does not compare its own expected performance
with its knowledge about the expected performance of the impatient robot, r;. If it
did, 7 might at times find that it expects r; to actually perform the task worse than
7 could. However, since r; assumes that r; has better knowledge about r;’s abilities
than r; does, 7 gives up its task.

The expected group behavior resulting from strategy II, then, is for better
robots to take over tasks from worse robots, with the worse robots giving up their
tasks when they feel that both (1) they are not successful, and (2) that another robot
on the team can do a better job.
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7.1.3 Strategy III: Give Robots a Fighting Chance

The third strategy for updating the impatience and acquiescence factors results in
a robot team that judges performances of robot team members based on each team
member’s own individual expected performance, rather than its comparison to other
team members’ performances. Under strategy III, a robot r; becomes impatient with
robot ry’s performance only after 7, begins performing worse than its (r4’s) normal
abilities. Otherwise, robot r; will not become impatient with rt, even if r; expects
that it could perform r;’s task much better. Likewise, each robot expects the same
courtesy, and is therefore unwilling to acquiesce its own action until it believes it has
had a fair chance to accomplish the task, according to its own expected performance
requirements.

Thus, the expected group behavior resulting from strategy III is for robots to
exhibit a first-come-first-served approach to action selection, not interrupting other
agents nor acquiescing to other agents until deteriorated functionality is demon-
strated.

7.2 THREE TASK ORDERING STRATEGIES

The second issue in the action selection problem is determining how each robot selects
from among a number of incomplete tasks that no other team member is currently
performing. We investigated a number of approaches to this task ordering problem.
A key concern in evaluating the alternative approaches is the degree of vulnerability
of the robot team to any type of component failure — either the failure of robots or
the failure of the communication system. If the robots are absolutely dependent upon
the communication system to perform anything useful, then efforts to create robust,
reliable, flexible, and coherent teams are lost with one component failure. Indeed,
communication failure is not a problem to be taken lightly, as applications performed
in the real-world offer many more challenges to the communication system than are
present in, say, multi-processor communication!. Thus, to assure a high level of fault
tolerance, robots cannot be required to wait to be “awarded a bid”, or to receive
permission from some other robot via a communicated message before starting on a
task, since a communication failure would cause the team to accomplish nothing.

We therefore investigated three approaches in which each robot’s next action
selection is either a greedy choice based upon the expected execution time of the
tasks it is able to perform, or is a random choice of actions. The following paragraphs
describe these three task ordering approaches, called Longest Task First, Modified

Shortest Task First, and Modified Random Task Selection.

! As anecdotal evidence of this problem, at a recent AAAI robot competition [16, pg. 39] held
in what most would consider to be a very controlled environment, communication failure due to
extreme RF noise from portable microphones, transmitters, two-way radios, and halogen lighting
dimmers and starters caused havoc for several of the competing robots.

21




7.2.1 Longest Task First

In the multi-processor scheduling community, a centralized greedy approach called
Descending First Fit has been shown to result in mission completion times within
22% of optimal [25] for identical processors. In this approach, the tasks are assigned
to processors in order of non-increasing task length. Thus, we first attempted a
distributed version of Descending First Fit to determine its effectiveness for the multi-
robot application domain. The distributed version, which we call “Longest Task
First”, requires each robot to select as its next task that which is expected to take the
robot the longest length of time to complete. The mechanism utilized to implement
this approach is to have the fast and slow impatience parameters of each motivational
behavior (§_fast;;(t) and 6_slow;;(k,1)) to grow at a rate proportional to the expected
task completion time (i.e. larger task times imply faster rates of impatience). The
philosophy behind the Longest Task First approach is that the mission cannot be
completed any quicker than the time required to execute the longest task in the
mission. Thus, the team may as well start with the longest task and perform as many
of the shorter tasks in parallel with that task as possible.

7.2.2 Modified Shortest Task First

As a logical next step, we studied the dual of the Longest Task First approach —
Shortest Task First — in which the motivational behaviors interact to cause each
robot to select as its next action that which it expects to perform the quickest. The
centralized version of this greedy approach for identical multi-processors has been
shown to result in minimizing the mean flow of the mission; in other words, the
average completion time of the tasks in the mission is minimized [15]. However,
in our approach, the pure Shortest Task First technique is modified somewhat to
compensate for the fact that heterogeneous robots have different sets of tasks which
they are able to pursue. If a mission includes tasks that can only be accomplished by
one specific robot, then it makes sense for that robot to first select the actions which
it alone is able to accomplish. Extending this principle even further, we can require
a robot to first select from among those actions which it expects to perform better
than any other robot on the team, and only after these tasks are complete continue
on to select tasks which the robot expects other robots on the team could accomplish
quicker. In this second case, we prefer a robot to at least attempt tasks that it may
not perform as well as other robot team members rather than remaining idle while
the better robots are working on other tasks. Even with their inferior capabilities, the
slower robots may still be able to complete tasks during the time in which the better
robots are occupied with other tasks, thus reducing the overall mission completion
time.

Thus, the interaction of the motivational behaviors under the Modified Short-
est Task First approach effectively divides the tasks a robot can perform into two
categories:

1. Those tasks which robot r; expects to be able to perform quicker than all other
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robots present on the team.
2. All other tasks r; can perform.

This two-category mechanism is implemented via the learned_robot_influence function
defined in the formal L-ALLIANCE model in section 7.5, which initially “blinds” the
robot to those tasks in the second category. This causes the robot to first select
from among those actions that it feels it can perform quicker than any other robot
team member. If no tasks remain in the first category, the robot is initially satisfied
that the tasks will be accomplished by other team members. However, the robot
does not idle indefinitely just because other team members might possibly be able
to accomplish the tasks in the second category. Instead, each robot is motivated by
a boredom factor, which increases whenever the robot is doing nothing. Once the
boredom factor gets high enough, it causes the robot to “forget” that another robot
is present that can perform one of the actions in the second category, thus leading
the robot to select some pertinent action. The robot then continues task execution
in this manner until the mission is complete.

The selection of the shortest task within each category is accomplished by the
settings of two parameters in L-ALLIANCE: 6_slow;;(k,t) and §_fast;;(t). To cause a
robot to select the task it expects to perform the quickest, these rates of impatience
for each behavior set grow at a rate inversely proportional to the expected task
completion time. Section 7.5 discusses the details of how this is implemented.

7.2.3 Modified Random Task Selection

As a baseline against which to compare the other approaches, a ran