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ABSTRACT

In practical applications of robotics, it is usually quite difficult, if not impossible, for
the system designer to fully predict the environmental states in which the robots will
operate. The complexity of the problem is further increased when dealing with teams
of robots which themselves may be incompletely known and characterized in advance.
It is thus highly desirable for robot teams to be able to adapt their performance during
the mission due to changes in the environment, or to changes in other robot team
members. In previous work [40, 44], we introduced a behavior-based mechanism —
called the ALLIANCE architecture — that facilitates the fault tolerant cooperative
control of multi-robot teams. However, this previous work did not address the issue
of how to dynamically update the control parameters during a mission to adapt to
ongoing changes in the environment or in the robot team, and to ensure the efficiency
of the collective team actions. In this paper, we address this issue by proposing
the L-ALLIANCE mechanism, which defines an automated method whereby robots
can use knowledge learned from previous experience to continually improve their
collective action selection when working on missions composed of loosely coupled,
discrete subtasks. This ability to dynamically update robotic control parameters
provides a number of distinct advantages: it alleviates the need for human tuning of
control parameters, it facilitates the use of custom-designed multi-robot teams for any
given application, it improves the efficiency of the mission performance, and it allows
robots to continually adapt their performance over time due to changes in the robot
team and/or the environment. We describe the L-ALLIANCE mechanism, present
the results of various alternative update strategies we investigated, present the formal
model of the L-ALLIANCE mechanism, and present the results of a simple proof of
concept implementation on a small team of heterogeneous mobile robots.
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1 INTRODUCTION

Achieving cooperative robotics is desirable for a number of reasons. First, many
robotic applications are inherently distributed in space, time, or functionality, thus
requiring a distributed solution. Second, it is quite possible that many applications
could be solved much more quickly if the mission could be divided across a num-
ber of robots operating in parallel. Third, by duplicating capabilities across robot
team members, one has the potential of increasing the robustness and reliability of
the automated solution through redundancy. Furthermore, it may actually be much
cheaper and more practical in many applications to build a number of less capable
robots that can work together at a mission, rather than trying to build one robot
which can perform the entire mission with adequate reliability.

Achieving cooperative robotics, however, is quite challenging. Many issues must
be addressed in order to develop a working cooperative team, including action selec-
tion, coherence, conflict resolution, and communication. Cooperative teams often
work in dynamic and unpredictable environments, thus requiring the robot team
members to respond robustly, reliably, and adaptively to unexpected environmental
changes, failures in the inter-robot communication system, noisy sensors and effectors,
and modifications in the robot team that may occur due to mechanical failure, the
learning of new skills, or the addition or removal of robots from the team by human
intervention. Many multi-robot applications also require the use of heterogeneous
robots with overlapping capabilities, which must coordinate their selection of tasks
in order to efficiently accomplish their overall mission. However, the appropriate se-
lection of tasks during one mission may not be proper for another similar mission, or
for a later time in the same mission, due to changes that occur in the robot team or
the environment. Since it is virtually impossible for the human designer to predict
the robot environment and complete mission characteristics in advance, the robots
must be able to autonomously adapt their actions over time based upon knowledge
they learn from previous experience.

In previous work [40, 44], we introduced a formalism — called the ALLIANCE
architecture — that facilitates the fault tolerant cooperative control of multi-robot
teams. This behavior-based, fully distributed framework allows robots to select ap-
propriate actions based upon the requirements of the mission, the activities of other
robots, the current environmental conditions, and their own internal states. The
ALLIANCE architecture is based upon the interaction of mathematically modeled
control parameters that represent motivations of behavior, such as impatience and
acquiescence, within each robot. These motivations allow robots to take over tasks
from other team members if those team members do not demonstrate their ability —
through their effect on the world — to accomplish those tasks. Similarly, it allows a
robot to give up its own current task if its sensory feedback indicates that adequate
progress is not being made to accomplish that task.

However, the ALLIANCE architecture does not address the issue of how to
dynamically update the control parameters during a mission to adapt to ongoing



changes in the environment or in the robot team, and to ensure the efficiency of the
collective team actions. Instead, it was assumed that a human designer provided
the appropriate control parameters at the beginning of the mission that allow the
robots to cooperate effectively. While our previous work illustrated that a high de-
gree of fault tolerance is possible using these fixed control parameters, a much higher
level of flexibility, adaptivity, and efficiency can be achieved by dynamically varying
the control parameters during the mission. The L-ALLIANCE architecture provides
this capability by defining an automated mechanism whereby robots can use knowl-
edge learned from previous experience to continually improve their collective action
selection when working on missions composed of loosely-coupled, discrete subtasks.
The ability to dynamically update the control parameters provides a number of dis-
tinct advantages: it alleviates the need for human tuning of control parameters, it
facilitates the use of custom-designed multi-robot teams for any given application, it
improves the efficiency of the mission performance, and it allows robots to continu-
ally adapt their performance over time due to changes in the robot team and/or the
environment.

This paper presents the L-ALLIANCE mechanism for dynamic control param-
eter updates. We begin with an overview of related cooperative robotics work in the
following section. We then present a brief overview of the ALLIANCE architecture in
section , followed by a discussion of the motivation for efficiency improvements in L-
ALLIANCE. Section presents a simplified version of the efficiency problem and shows
that it is intractable, thus leading to the need for approximate solutions. Section
presents an overview of the L-ALLIANCE mechanism, followed by the discussion of
the various control strategies we investigated for use in L-ALLIANCE. The formal
model of L-ALLIANCE is presented in section 7.5. In section 8.8, we present the
results of a simple proof of concept implementation of this approach on a team of
mobile robots performing a box pushing demonstration. Finally, we offer concluding
remarks in section 9.4.2.



2 RELATED WORK

Research in cooperative robotics can be characterized in many ways. In [20],
Dudek proposes a taxonomy of cooperative robotics that distinguishes systems based
upon the size of the team, the communication range, topology, and bandwidth, re-
configurability, unit processing ability, and team composition (heterogeneous versus
homogeneous). Here, we broadly segment the cooperative robotics work into two
categories based on team composition: large numbers of homogeneous robots versus
smaller numbers of heterogeneous robots.

A significant body of research in cooperative mobile robotics deals with the
study of large numbers (or swarms) of homogeneous robots. This approach to multi-
robot cooperation is useful for non-time-critical applications involving numerous rep-
etitions of the same activity over a relatively large area, such as cleaning a parking
lot or collecting rock samples on Mars. The approach to cooperative control typ-
ically taken in these systems is derived from the fields of neurobiology, ethology,
psychophysics, and sociology, and is characterized by teams of large numbers of ho-
mogeneous robots, each of which has fairly limited capabilities on its own. However,
when many such simple robots are brought together, globally interesting behavior
can emerge as a result of the local interactions of the robots. A key research issue in
this scenario is determining the proper design of the local control laws that allow the
collection of robots to solve a given problem.

A number of researchers have studied the issues of swarm robotics. Deneubourg
et al. [17] describe simulation results of a distributed sorting algorithm. Theraulaz
et al. [49] extract cooperative control strategies, such as foraging, from a study of
Polistes wasp colonies. Steels [47] presents simulation studies of the use of several
dynamical systems to achieve emergent functionality as applied to the problem of
collecting rock samples on a distant planet. Drogoul and Ferber [19] describe simu-
lation studies of foraging and chain-making robots. McFarland [37] describes a robot
ecosystem that allows cooperation to emerge in a collective team. In [34] Mataric de-
scribes the results of implementing group behaviors such as dispersion, aggregation,
and flocking on a group of mobile robots. Beni and Wang [5] describe methods of gen-
erating arbitrary patterns in cyclic cellular robotics. Kube and Zhang [31] present the
results of implementing an emergent control strategy on a group of five mobile robots
performing the task of locating and pushing a brightly lit box. Stilwell and Bay [48]
present a method for controlling a swarm of robots using local force sensors to solve
the problem of the collective transport of a palletized load. Arkin et al. [2] present
research concerned with sensing, communication, and social organization for tasks
such as foraging. The CEBOT work, described in [24] and many related papers, has
many similar goals to other swarm-type multi-robotic systems; however, the CEBOT
robots can be one of a number of robot classes, rather than purely homogeneous.

Another primary area of research in cooperative control deals with achieving
“intentional” cooperation among a limited number of typically heterogeneous robots
performing several distinct tasks. In this type of cooperative system, the robots often




have to deal with some sort of efficiency constraint that requires a more directed
type of cooperation than is found in the swarm approach described above. Although
individual robots in this approach are usually able to perform some useful task on their
own, groups of such robots are often able to accomplish missions that no individual
robot can accomplish on its own. The general research issues of adaptive action
selection, communication, and conflict resolution are of particular importance in these
types of systems.

Two bodies of previous research are particularly applicable to this second type
of cooperation. First, several researchers have directly addressed this cooperative
robot problem by developing control algorithms and implementing them either on
physical robots or on simulations of physical robots that make reasonable assumptions
about robot capabilities. Examples of this research include the work of Noreils [39],
who proposes a three-layered control architecture that includes a planner level, a
control level, and a functional level; Caloud et al. [12], who describe an architecture
that includes a task planner, a task allocator, a motion planner, and an execution
monitor; Asama et al [4] who describes an architecture called ACTRESS that utilizes
a negotiation framework to allow robots to recruit help when needed; Cohen et al [13],
who use a hierarchical division of authority to address the problem of cooperative fire-
fighting; and Wang [50], who proposes the use of several distributed mutual exclusion
algorithms that use a “sign-board” for inter-robot communication.

The second, significantly larger, body of research related to intentional cooper-
ation comes from the Distributed Artificial Intelligence (DAI) community, which has
produced a great deal of work addressing this type of intentional cooperation among
generic agents. These agents are typically software systems running as interacting
processes to solve a common problem rather than embodied, sensor-based robots. In
most of this work, the issue of task allocation has been the driving influence that dic-
tates the design of the architecture for cooperation. Typically, the DAI approaches
use a distributed, negotiation-based mechanism to determine the allocation of tasks
to agents. See [7] for many of the seminal papers in this field.

Much less work has been done in the area of multi-robot learning, although the
topic is gaining increased interest. Asada et al. [3] proposes a method for learning
new behaviors by coordinating previously learned behaviors using Q-learning. They
have applied their approach to a simulation of robots playing a simplified version of
competitive soccer, and are transferring their results to physical robots. Mataric [36]
introduces a method for combining basic behaviors into higher-level behaviors through
the use of unsupervised reinforcement learning, heterogeneous reward functions, and
progress estimators. This mechanism was applied to a team of robots learning to
perform a foraging task. Kubo and Kakazu [32] proposed another reinforcement
learning mechanism that use a progress value for determining reinforcement, and
applied it to simulated ant colonies competing for food.



3 THE ALLIANCE ARCHITECTURE

The L-ALLIANCE dynamic parameter learning mechanism is built upon our
earlier work — the ALLIANCE architecture. Thus, to provide suitable background
information, we first briefly review the ALLIANCE approach to fault tolerant coop-
erative control in this section.

ALLIANCE is a fully distributed architecture for fault tolerant, heterogeneous
robot cooperation that utilizes adaptive action selection to achieve cooperative con-
trol. Under this architecture, the robots possess a variety of high-level task-achieving
functions that they can perform during a mission, and must at all times select an
appropriate action based on the requirements of the mission, the activities of other
robots, the current environmental conditions, and their own internal states. Table 1
gives examples of what we consider to be the high-level task-achieving functions of a
number of previously reported robots.

In ALLIANCE, individual robots are designed using a behavior-based approach
[8]. Under the behavior-based construction, a number of task-achieving behaviors are
active simultaneously, each receiving sensory input and controlling some aspect of
the actuator output. The lower-level behaviors, or competences, correspond to prim-
itive survival behaviors such as obstacle avoidance, while the higher-level behaviors
correspond to higher goals such as map building and exploring. The output of the
lower-level behaviors can be suppressed or inhibited by the upper layers when the up-
per layers deem it necessary. This approach has been used successfully in a number
of robotic applications, several of which are described in [11].

Extensions to this approach are necessary, however, when a robot must select
among a number of competing actions — actions which cannot be pursued in parallel.
Unlike typical behavior-based approaches, ALLIANCE delineates several behavior
sets that are either active as a group or hibernating. Figure 1 shows the general
architecture of ALLIANCE and illustrates three such behavior sets. The jth behavior
set, a;;, of a robot r; corresponds to those levels of competence required to perform
some high-level task-achieving function. When a robot activates a behavior set, we say
that it has selected the task corresponding to that behavior set. Since different robots
may have different ways of performing the same task, and therefore activate different
behavior sets to perform that task, we define the function k;(a;;), for all robots r; on
the team, to refer to the task that robot r; is working on when it activates its j-th
behavior set, a;;.

Because of the alternative goals that may be pursued by the robots, the robots
must have some means of selecting the appropriate behavior set to activate. Thus,
controlling the activation of each of these behavior sets is a motivational behavior.
Due to conflicting goals, only one behavior set per robot can be active at any point in
time. This restriction is implemented via cross-inhibition of motivational behaviors,
represented by the arcs at the top of figure 1, in which the activation of one behavior
set suppresses the activation of all other behavior sets. However, other lower-level
competences such as collision avoidance may be continually active regardless of the



Robot High-Level Functions

Allen [8] Wander

Attila/Hannibal [21] | Keep walking

Genghis [9] Keep walking

George/HARV [1] Reactively navigate

Herbert [14] Collect empty soda cans

Hilare [28] Map office environment

Polly [29] Give Tth floor AI Lab tours

Rocky III Search for soft soil; acquire soil sample;
[38, 26] return sample to home

Rocky IV Collect soil sample; chip rocks; deploy
[27, 26] instruments; return sample to home

RPV [6] Reactively navigate underwater

Squirt [23] Eavesdrop

Toto [35] Map office environment; go to goal

Table 1: High level task-achieving functions of various robots.

high-level goal the robot is currently pursuing. Examples of this type of continually
active competence are shown in figure 1 as layer 0, layer 1, and layer 2.

The primary mechanism for achieving adaptive action selection in this architec-
ture is the motivational behavior. At all times during the mission, each motivational
behavior receives input from a number of sources, including sensory feedback, inter-
robot communication, inhibitory feedback from other active behaviors, and internal
motivations called robot impatience and robot acquiescence. The output of a motiva-
tional behavior is the activation level of its corresponding behavior set, represented
as a non-negative number. When this activation level exceeds a given threshold, the
corresponding behavior set becomes active.

Intuitively, a motivational behavior works as follows. Robot r;’s motivation to
activate any given behavior set a;; is initialized to 0. Then, over time, robot 7;’s
motivation m;;(t) to activate behavior set a;; increases at a “fast” rate (which we
call é_fast;;(t)) as long as the task corresponding to that behavior set (i.e. hi(a;;)) is
not completed, as determined from sensory feedback. However, the robots must be
responsive to the actions of other robots, adapting their task selection to the activities
of team members. Thus, if a robot r; is aware that another robot r is working on
task h;(ai;), then r; is satisfied for some period of time that the task is going to
be accomplished even without its own participation, and thus go on to some other
applicable action. Its motivation to activate behavior set a;; still increases, but at
a slower rate (which we call §_slow;;(k,t)). This characteristic prevents robots from
replicating each other’s actions and thus wasting needless energy. Of course, detecting
and interpreting the actions of other robots (often called action recognition) is not a
trivial problem, and often requires perceptual abilities that are not yet possible with
current sensing technology. As it stands today, the sensory capabilities of even the



The ALLIANCE Architecture
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Figure 1: The ALLIANCE architecture. The symbols in this figure that connect the output
of each motivational behavior with the output of its corresponding behavior set (vertical
lines with short horizontal bars) indicate that a motivational behavior either allows all or
none of the outputs of its behavior set to pass through to the robot’s actuators. The “S”
inside a circle indicates that the output of a higher level behavior is suppressed as needed
by lower level behaviors (e.g. to avoid an obstacle).

lower animals far exceed present robotic capabilities. Thus, to enhance the robots’
perceptual abilities, ALLIANCE utilizes a simple form of broadcast communication
to allow robots to inform other team members of their current activities, rather than
relying totally on sensory capabilities. At some pre-specified rate, each robot r;
broadcasts a statement of its current action, which other robots may listen to or
ignore as they wish. No two-way conversations are employed in this architecture.

Each robot is designed to be somewhat impatient, however, in that a robot r;
is only willing for a certain period of time to allow the communicated messages of
another robot to affect its own motivation to activate a given behavior set. Continued
sensory feedback indicating that a task is not getting accomplished thus overrides the
statements of another robot that it is performing that task. This characteristic allows
robots to adapt to failures of other robots, causing them to ignore the activities of a
robot that is not successfully completing its task.

A complementary characteristic in these robots is that of acquiescence. Just
as the impatience characteristic reflects the fact that other robots may fail, the ac-
quiescence characteristic indicates the recognition that a robot itself may fail. This
feature operates as follows. As a robot r; performs a task, its willingness to give up
that task increases over time as long as the sensory feedback indicates the task is not



being accomplished. As soon as some other robot r; indicates it has begun that same
task and r; feels it (i.e. ;) has attempted the task for an adequate period of time, the
unsuccessful robot r; gives up its task in an attempt to find an action at which it is
more productive. Additionally, even if another robot ri has not taken over the task,
robot r; may give up its task anyway if it is not completed in an acceptable period
of time. This allows r; the possibility of working on another task that may prove to
be more productive rather than becoming stuck performing the unproductive task
forever. With this acquiescence characteristic a robot is able to adapt its actions to
its own failures.

The behavior-based design of the motivational behaviors also allows the robots
to adapt to unexpected environmental changes which alter the sensory feedback. The
need for additional tasks can suddenly occur, requiring the robots to perform addi-
tional work, or existing environmental conditions can disappear and thus relieve the
robots of certain tasks. In either case, the motivations fluidly adapt to these situa-
tions, causing robots to respond appropriately to the current environmental circum-
stances. Refer to [40, 44] for more details of the ALLIANCE architecture, including
the formal mathematical model of ALLIANCE, proofs of correction which guarantee,
under certain conditions, that a mobile robot team will accomplish its missions under
the control of ALLIANCE, and results of robot implementations of the ALLIANCE

architecture.



4 MOTIVATION FOR EFFICIENCY
IMPROVEMENTS

As described in the previous section, the ALLIANCE architecture allows robots
to adapt to the ongoing activities and environmental feedback of their current mis-
sion. However, ALLIANCE does not address a number of efficiency issues that are
important for cooperative teams. These issues include the following:

o How do we ensure that robots attempt those tasks for which they are best suited?

In heterogeneous robot teams, there may often be more than one robot that
can accomplish a given task, but with different levels of performance. The
heterogeneous members of a robot team may also have different mixtures of
capabilities, such that the “best” action for a given robot may vary depending
upon which other robots belong to the team. Ideally, the robot individuals
optimize their action selections depending upon the other team members that
are present, and their capabilities. \

o Can we enable the robot team to increase its performance over time?

It is desirable that robot teams use knowledge learned from previous experience
to improve mission performance from trial to trial. This obviates the need for
attempting to hand-code the “optimal” team configuration in advance, thus
greatly reducing the programming burden.

o Does failure at one task imply total robot failure?

Ideally, a robot should recognize when it has failed at a given task, and continue
to another task for which it is better suited. Failure at one task should not
preclude the execution of another, unrelated, task.

e How do we minimize robot idle time?

As described in the previous section, the ALLIANCE architecture utilizes mo-
tivations to achieve appropriate action selection. However, as described, the
architecture does not address the issue of robot idle time while the motivations
are increasing. For practical applications, we must ensure an acceptably short
upper limit on the idle time.

The L-ALLIANCE enhancement to ALLIANCE addresses these issues of ef-
ficiency by incorporating a dynamic control parameter update mechanism into the
ALLIANCE architecture. This parameter update mechanism allows us to preserve
the fault tolerant features of ALLIANCE while improving the efficiency of the robot
team performance. A number of benefits result from providing robots with the ability
to automatically adjust their own control parameter settings, including the following:

1. Relieves humans of the parameter adjusting task:




As described earlier, ALLIANCE requires human programmer tuning of mo-
tivational behavior control parameters to achieve desired levels of robot per-
formance. The use of any architecture is much simpler to use if humans are
relieved of the responsibility of having to tune numerous parameters.

2. Improves the efficiency of the mission performance:

Related to the previous item is the issue of the efficiency of the robot team’s
performance of its mission. As human designers, it is often difficult to evaluate
a given robot team performance to determine how best to adjust parameters
to improve efficiency. However, if the robots were controlled by an automated
action selection strategy that has been shown to result in efficient group action
selection in practice, then the human designer can have confidence in the robot
team’s ability to accomplish the mission autonomously, and thus not feel the
need to adjust the parameters by hand.

3. Facilitates custom-designed robot teams:

Providing the ability for robot teams to carry over their learned experiences
from trial to trial would allow human designers to successfully construct unique
teams of interacting robots from a pool of heterogeneous robot types for any
given mission without the need for a great deal of preparatory work. Although
ALLIANCE allows newly constructed teams to work together acceptably the
first time they are grouped together, automated parameter adjusting mecha-
nisms would allow the team to improve its performance over time by having
each robot learn how the presence of other specific robots on the team affects
its own behavior.

Providing robot team members with the ability to automatically update their
own motivational behavior parameters requires solutions to two problems:

e How to give robots the ability to obtain knowledge about the quality of team
member performances

e How to use team member performance knowledge to select a task to pursue

Solutions to the first problem require a robot to learn not only about the abilities
of its teammates, but also about its own abilities. Although each robot “knows” the
set of behaviors that it has been pre-programmed to perform, it may perform poorly
at certain tasks relative to other robots on the team. Robots must thus learn about
these relative performance differences as a first step toward efficient mission execution.
However, learning these relative performance quality differences is only a first step in
improving efficiency. The next question is how robots use the performance knowledge
to efficiently select their own actions.
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5 THE EFFICIENCY PROBLEM

To understand the difficulty of this efficiency problem, we first look formally
at a simplified version of the problem, showing that even the simplified version is
NP-hard. This leads to the need for approximate solutions.

Let R = {r1,rs,...,7s} represent the finite set of » robots on a cooperative
team, and the finite set T = {task,, tasks, ..., taskn, } represent the m independent
tasks required in the current mission. Each robot in R has a number of high-level
task-achieving functions (or behavior sets) that it can perform, represented by the
finite set A; = {ai,ai,...}. Since different robots may have different ways of per-
forming the same task, we define the set of n functions H, where H : A; — T,
H = {hi(aik), h2(azx)y -+, hn(@nk)}, and h;(aix) returns the task, task;, that robot r;
is working on when it activates behavior set a.

We denote the metric evaluation function as g(a;;), which returns the “quality”
of the action a;; as measured by a given metric. Typically, we consider metrics
such as the average time or average energy required to complete a task, although
many other metrics could be used. Of course, robots unfamiliar with their own
abilities or the abilities of their teammates do not have access to this g(a;;) function.
Thus, an additional aspect to the robot’s learning problem is actually obtaining the
performance quality information required to make the appropriate action selection
choice.

Finally, we define the tasks a robot r; elects to perform during a mission as the
set U; = {a;j|robot r; performs task h;i(a;;) during the current mission}.

In the most general form of this problem, the following condition holds:
Condition 1 (Different Robots are Different): Different robots may have differ-
ent collections of capabilities; thus, we do not assume that Vi.Vj.(A; = A;). Further,
if different robots can perform the same task, they may perform that task with different
qualities; thus, we do not assume that if hi(aiz) = hj(ajy), then q(aiz) = q(ajy).

Let us assume, for the simplified case, that the performance measurements of
the robots performing the tasks for which they are capable are known in advance.
Then we define the formal efficiency problem under condition 1 as follows:

ALLIANCE Efficiency Problem (AEP):

For each robot r;:
Given T, A;, and h;(a:x), determine the set of actions U; such that

o Vi.U; C A;
o V7.3:.3k.((task; = hi(ai)) and (aix € Ui))

and the following is minimized, according to the time performance metric:

mazi( Y q(aw))

aix€U;
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The first two constraints of the efficiency problem ensure that each task in the
mission is assigned to some robot that can actually accomplish that task. The final
constraint ensures that the total time required to complete the mission is minimized.
Since robot team members will usually perform their actions in parallel during a
mission, the total mission completion time is the time at which the last robot finishes
its final task. Thus, when the performance metric is time, the maximum amount of
time any robot takes to perform its set of actions should be minimized.

Under the assumption that the robots have accurate and complete information
on their own abilities and the abilities of their teammates, how realistic is it to require
the robots to derive the optimal action selection policy? It can be easily shown that
the efficiency problem, AEP, is NP-hard by restriction to the well-known NP-complete
problem PARTITION [25]. The PARTITION problem is as follows: given a finite
set W and a “size” s(w) € Z* for each w € W, determine whether there is a subset
W' C W such that 3 ew $(w) = Lyew-w: s(w). We then have the following:

Theorem 1 The ALLIANCE efficiency problem (AEP) is NP-hard in the number
of tasks required by the mission.

Proof: By restriction to PARTITION:

Allow only instances of AEP where n = 2, A; = A; = W, VeVj.(hy(a;) =
task;), and Vj.(g(a1;) = g(asz;) = s(w;)), for w; € W. Then since PARTITION is a
special case of AEP, AEP must be NP-hard. O

Since the PARTITION problem is stated in terms of finding two equally-sized
subsets of tasks W and W, the proof of this theorem restricts AEP to those instances
involving two robots with identical capabilities and qualities of capabilities. Further-
more, each robot has the same one-to-one mapping of behavior sets to tasks, meaning
that all robots use the same behavior set to accomplish the same task, and all behavior
sets are needed to accomplish the mission. These AEP instances are then instances
of PARTITION, so that, if we could solve AEP, we could solve PARTITION.

Thus, since this efficiency problem is NP-hard, we cannot expect the robot
teams to be able to derive an optimal action selection policy in a reasonable length
of time. Thus, we look instead to heuristic approximations to the problem that work
well in practice.
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6 OVERVIEW OF THE L-ALLIANCE
MECHANISM

This section provides an overview of the L-ALLIANCE approach to the dy-
namic update of cooperative team control parameters. This approach was developed
primarily to provide an infrastructure that affords a robot team with a high degree
of fault tolerance and efficiency when working on missions composed of independent,
discrete tasks. The assumptions made in the development of this approach are de-
scribed, followed by a description of the overall framework under which L-ALLIANCE

operates.

6.1 ASSUMPTIONS MADE IN L-ALLIANCE
Two key assumptions are made in the development of L-ALLIANCE, as follows:

o A robot’s average performance in executing a specific task over a few recent trials
is a reasonable indicator of that robot’s expected performance of the same or
related tasks in the future.

e If robot r; is monitoring environmental conditions C to assess the performance of
another robot 7%, and the conditions C change, then the changes are attributable
to robot r¢.

Without the first assumption, it is quite difficult for robots to learn anything
at all about their own expected performance, or the performance of their teammates,
since past behavior would provide no clues to the expected behavior in the future. The
challenge, of course, is determining which aspects of a robot’s performance are good
predictors of future performance. It is crucial that the chosen quality be observable by
robots on the team, since each robot must assess the performance of its teammates
in order to detect improvements in performance or robot failures, and thus alter
its action selection accordingly. However, robots do indeed experience failures or
changes in capabilities during a mission, or across missions; thus the measure of
past performance cannot be guaranteed to predict future performance. Robots must
therefore use their knowledge about previous performance only as a guideline, and not
as an absolute determinant of the abilities of robot team members. In L-ALLIANCE,
we have used the simple measure of the time of task completion, which has served to
be a good indicator of future performance.

The second assumption deals with the well-known credit assignment problem,
which is concerned with determining which process receives credit (or punishment)
for the successful (or unsuccessful) outcome of an action. The assumption made in
L-ALLIANCE is that the only agents which affect the properties of the world that a
robot 7; is interested in are the robots that r; is monitoring. Thus, if a robot r; declares
it is performing some task, and that task becomes complete, then the monitoring robot
assumes that r; caused those effects. This assumption is certainly not always true,
since external agents really can intrude on the robots’ world. However, since this issue
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even causes problems for biological systems, which often have difficulty in correctly
assigning credit, we accept this oversimplification here.

6.2 PERFORMANCE MONITORS

Figure 2 illustrates the L-ALLIANCE extensions to the ALLIANCE architecture.
These extensions incorporate the use of performance monitors for each motivational
behavior within each robot. Each monitor is responsible for observing, evaluating,
and cataloging the performance of any robot team member (including itself) when-
ever it performs the task corresponding to that monitor’s respective behavior set.
Formally, robot r;, programmed with the b behavior sets A = {ai1, aiz, ..., @i}, 2lso
has b monitors MON; = {mon;;, mon;, ..., mon;}, such that monitor mon;; observes
the performance of any robot performing task h;(ai;), keeping track of the time of
task completion (or other appropriate performance quality measure) of that robot.
As mentioned earlier, since passive action observation is quite difficult to accom-
plish, the robots use the broadcast communication mechanism in L-ALLIANCE to
inform teammates of their current actions, from which robots can derive task comple-
tion times. Monitor mon;; then uses the mechanism described below to update the
control parameters of behavior set a;; based upon this learned knowledge. If is im-
portant to note here that a robot r; does not keep track of the task completion times
for capabilities of other robots that r; does not share. This allows the L-ALLIANCE
architecture to scale favorably as the mission size increases.

6.3 TWO L-ALLIANCE CONTROL PHASES

The ability of robots to monitor, evaluate, and catalog the performance of team mem-
bers in executing certain tasks is of central importance to L-ALLIANCE. Without
this ability, a robot must rely on human-supplied performance measurements of robot
team members. Once these performance measurements are obtained, the robot team
members have a basis for determining the preferential activation of one behavior set
over any other either for the sake of efficiency, or due to the occurrence of a robot
failure.

The degree to which robot team members can obtain knowledge concerning
team member abilities depends on the type of mission in which they are engaged.
If they are on a training mission, whose sole purpose is to allow robots to become
familiar with themselves and with their teammates, then the robots can explore their
capabilities without concern for possibly not completing the mission. On the other
hand, if the robots are on a live mission, then the team has to ensure that the mission
is completed as efficiently as possible. Even so, as they perform the mission, the
robots take advantage of the opportunity to find out what they can about the robot
capabilities that are demonstrated.

Thus, one of two high-level control phases are utilized for robot team members
under L-ALLIANCE, depending upon the type of the team’s mission. During training
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The L-ALLIANCE Architecture
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Figure 2: The L-ALLIANCE architecture. The changes from the ALLIANCE architec-
ture are shown in bold. These changes add a monitor corresponding to each motivational
behavior within each robot. These monitors are responsible for observing and recording
the performance of robot team members, and of adapting the control parameters of the
respective motivational behaviors accordingly. The “S” inside a circle indicates that the
output of a higher level behavior is suppressed as needed by lower level behaviors (e.g. to
avoid an obstacle).
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missions, the robots enter the active learning phase, whereas during live missions, they
enter the adaptive learning phase.

6.3.1 Active Learning Phase

Clearly, the only way robots can independently learn about their own abilities and
the abilities of their teammates is for the robots to activate as many of their behavior
sets as possible during a mission, and to monitor their own progress and the progress
of team members during task execution. Of course, on any given mission not all
of the available behavior sets may be appropriate, so it is usually not possible to
learn complete information about robot capabilities from just one mission scenario.
However, the active learning phase allows the team to obtain as much information as
possible through the active exploration of robot abilities. In this phase, the robots’
motivational behaviors interact to cause each robot to select its next action randomly
from those actions that are: (1) currently incomplete, as determined from the sensory




feedback, and (2) currently not being executed by any other robot, as determined from
the broadcast communication messages.

While they perform their tasks, the robots are maximally patient and minimally
acquiescent, meaning that a robot neither tries to preempt another robot’s ongoing
task, nor does it acquiesce its own current action to another robot. Since robots at the
beginning stages of learning do not yet know how long it may take them to perform
their tasks, this maximal patience/minimal acquiescence feature allows them to try
as long as needed to accomplish their tasks. Of course, if a robot has the ability to
detect failure with certainty, then it can give up failed tasks to another team member.

During the active learning phase, each monitor mon;; in each robot r; monitors
the performance of all robots r; that are performing task h:(a;;). Monitor mon;;
observing robot r; then catalogues the average time plus one standard deviation re-
quired by robot 7 to perform task h;(a;;), maintaining this information over only
the previous p trials of r’s performance of h;(a;;). This running average plus one
standard deviation is called task_time;(k, j,1). In the case of robot failure, the actual
time attributed to the failed robot is some penalty factor (greater than 1) multiplied
by the actual attempted time. The standard deviation is added to the task time
to account for environmental variations and sensory and effector noise that will un-
doubtably cause performance to differ across task executions. Determining how many
trials, g, over which to maintain this data depends upon the desired characteristics of
the robot team [46]. Maintaining an average over too many trials results in a slow re-
sponse to changes in robot performance. On the other hand, maintaining an average
over too few trials does not provide a reasonable predictor of future performance. The
experiments reported in this article have shown than an average over about 5 trials
results in good predictive capability, while still allowing the robots to be responsive
to failures.

6.3.2 Adaptive Learning Phase

When a robot team is applied to a “live” mission, it cannot afford to allow members
to attempt to accomplish tasks for long periods of time with little or no demonstrable
progress. The team members must accomplish the mission with available knowledge
about team member abilities, and must not tolerate long episodes of robot actions
that do not have the desired effect on the world. Thus, in the adaptive learning phase,
the robots acquiesce (give up tasks) and become impatient (take over tasks) according
to their learned knowledge and the control strategies described in the remainder of
this article, rather than being maximally patient and minimally acquiescent as they
are in the active learning phase. However, the monitors within each robot continue to
monitor and catalog robot performances during this phase, and update the average
task completion times and standard deviations for the most recent p trials.
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7 EMPIRICAL INVESTIGATIONS OF
DYNAMIC PARAMETER UPDATE
MECHANISMS

Once the quality measurements have been obtained, they are input to a control mecha-
nism that allows the robot team to improve its efficiency over time while not sacrificing
the fault tolerant characteristics demonstrated through the ALLIANCE architecture.
Since, in the context of L-ALLIANCE, we are interested in the fault tolerant and
efficient execution of a mission composed of loosely-coupled subtasks, this control
problem translates into two related issues: (1) how an individual robot determines
whether to interrupt the task currently being performed by another robot (i.e. be-
come impatient), or whether it should acquiesce its own current task (either to some
other team member, or to attempt some other task), and (2) how an individual robot
selects from among a number of incomplete tasks that no other team member is
currently performing.

The answers to these action selection questions largely determine the efficiency
with which the robot team can perform its mission. The ideal is for the motivational
behaviors to interact to cause each robot to select its tasks in such a way that the
team as a whole minimizes the time required to accomplish its mission. However,
each robot is working with incomplete global information, since it at best knows
solely about its own abilities to perform certain tasks and the quality with which
its teammates perform those same tasks. In addition, each robot has a restricted
view of the scope of the mission, since it can only sense the need for those actions
that it is able to perform; robots are completely ignorant of any other tasks required
by the mission that teammates may have to execute. However, as we have already
noted, this efficiency problem is NP-hard, and thus we cannot expect the robots to
be able to derive an optimal selection of actions even if they did possess complete
global information. Thus, we investigated a number of greedy approaches to this
problem to find those approaches that work well in practice. The investigation of
potential control approaches considered a number of factors that affect performance.
The following subsections describe the approaches we investigated as a function of
the task coverage, the relative mission size, the degree of heterogeneity across robots,
the number of robots, and a condition we call Progress When Working.

In this context, we define task coverage as the measure of the number of capa-
bilities on the robot team that may allow some team member to achieve a given task,
given by: )

task_coverage(tasky) = ;;{ (1] fﬂg};&:{;g tashy) }
The relative mission size is given by the ratio of the total number of tasks required
by the mission to the size of the robot team. In this context, robot team members
can be heterogeneous in two ways: (1) they can have different behavior sets that
give them the ability to perform different tasks, and (2) they can share the ability
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to perform the same task, but demonstrate different qualities of performance of that
task (e.g. the time required to complete the task may vary). For this study, the first
type of heterogeneity is included in the task coverage of the team. Thus, the “degree
of heterogeneity” in this section refers to the degree of difference in the qualities of
performance of the same task by those robots which can perform that task.

Finally, we define a condition that holds in many multi-robotic applications:

Condition 2 (Progress when Working): Let z be the finite amount of work re-
maining to complete a task w. Then whenever robot r; activates a behavior set corre-
sponding to task w, either (1) r; remains active for a sufficient, finite length of time
€ such that z is reduced by a finite amount which is at least some constant § greater
than 0, or (2) r; experiences a failure with respect to task w. Additionally, if z ever
increases, the increase is due to an influence external to the robot team.

Condition 2 ensures that even if robots do not carry a task through to comple-
tion before acquiescing, they still make some progress toward completing that task
whenever the corresponding behavior set is activated for some time period at least
equal to e. One exception, however, is if a robot failure has occurred that prevents
robot r; from accomplishing task w, even if r; has been designed to achieve task w.
This condition also implies that if more than one robot is attempting to perform the
same task at the same time, the robots do not interfere with each others’ progress so
badly that no progress towards completion of the task is made. The rate of progress
may be slowed somewhat, or even considerably, but some progress is made neverthe-
less. Finally, Condition 2 implies that the amount of work required to complete the
mission never increases as a result of robot actions. Thus, even though robots may
not be any help towards completing the mission, at least they are not making mat-
ters worse. Although this may not always hold true, in a wide variety of applications
this is a valid assumption. Of course, this does not preclude dynamic environmental
changes from increasing the workload of the robot team. As we shall see, the relative
performances of the various control strategies vary depending upon whether or not
this condition is true in a given situation.

Although we investigated the various dynamic parameter update strategies as
functions of these factors, our goal was to find a single automated technique that
could be incorporated into each robot on the team such that, regardless of the spe-
cific situation in which the robots find themselves, the robots could select the most
appropriate control strategy for their situation. Ideally, the selection criteria should
be as simple as possible, so that robots do not have to deliberate extensively to
ascertain the proper parameter update technique.

7.1 THREE IMPATIENCE/ACQUIESCENCE UPDATE
STRATEGIES

As described in section , the motivational behaviors are the foundation of the adaptive
action selection facilitated by ALLIANCE. The primary motivations incorporated into
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Three Impatience/Acquiescence Update Strategies

Strategy Impatience (¢:;(k,1)) Acquiescence (¢;;(t))
I own time own time
I own time minimum time of team
I11 time of robot performing the task own time

Table 2: Basis for setting the impatience and acquiescence parameters for a given
task within a given robot, for each of three strategies.

ALLIANCE are the impatience and acquiescence motivations, which allow robot team
members to dynamically reallocate their actions based upon the effect the robots have
on the world. Since these motivations are incorporated into the team members as
control parameters, we must address how the appropriate parameter settings of these
motivations are obtained. Colloquially, this problem can be stated as “knowing when
to give up”, either on one’s own performance, or on the performance of other team
members. Specifically, a robot must determine when it should become impatient
with other robot performances, and when it should acquiesce its own current action.
This issue affects not only the robot team’s response to failures and difficulties in
the environment, but also the efficiency of the action selection. If these impatience
and acquiescence factors are set too low, then the robot team thrashes between tasks,
perhaps seriously degrading the team efficiency. On the other hand, if these factors
are set too high, then the robot team wastes time, and perhaps energy, waiting on a
failed robot to complete a task.

Three primary parameters in L-ALLIANCE determine robot r;’s response to
robot r}’s performance of task h;(a;;) at time #: ¢;;(k,t) (robot impatience), 1;;(t)
(robot acquiescence to another robot), and A;;(2) (robot acquiescence to try another
task). The first two parameters concern a robot’s response to the actions of its
teammates, whereas the third (A;;(¢)) affects a robot’s response to its own performance
in the absence of impatient team members. A number of different strategies for
setting these impatience and acquiescence rates can be used, all of which are based
upon the knowledge each robot gains about its own abilities and/or the abilities of
its teammates. We studied three impatience/acquiescence update control strategies,
which are discussed in the following paragraphs. Table 2 summarizes the parameter
settings for these strategies.

7.1.1 Strategy I: Distrust Performance Knowledge about Teammates

The first impatience/acquiescence parameter update strategy takes a minimalist ap-
proach to the problem by requiring the robot to use only the knowledge it learns
about its own performance; robots are not required to know anything about the ca-
pabilities of their teammates. This strategy is the one most likely to be used when
a robot team is first formed, before the team members have had an opportunity to
learn about their teammates’ capabilities. This strategy can also be used when robots
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have little confidence in the knowledge that they have learried about other robots,
perhaps due to significant environmental changes that have rendered earlier quality
measurements invalid.

Under strategy I, a robot holds other robots to the same standard by which it
measures itself. Thus, if a robot r; knows that it should be able to complete a certain
task h;(a;;) in a certain period of time ¢, then it becomes impatient with any other
robot r; that does not complete h;(a;;) in that same period of time. Of course, since
r; is holding itself to its own standards, then it is willing to acquiesce its task after
working on it for a period of time ¢ without task completion.

The expected group behavior resulting from strategy I is for better robots to
begin execution of tasks being pursued by worse robots, but only after the worse
robots have attempted their tasks for a period of time determined by the better
robots’ own expected performance time. However, a worse robot is not willing to give
up its task until it feels it has had a fair chance to complete the task according to its
own performance expectations.

7.1.2 Strategy II: Let the Best Robot Win

The second strategy for setting the impatience and acquiescence factors endows the
robot team with the character of “striving for the best”. Under this strategy, a robot
holds itself to the performance standard of the best robot it knows about in the group,
for each task to be accomplished. Thus, if a robot r; has learned that the quickest
expected completion time required by a robot team member for a task hi(as;) is ¢,
then r; will acquiesce task h;(a;;) to another robot if r; has attempted h;(a;;) for a
time longer than ¢. On the other hand, robot r; will become impatient with a robot
rx which is performing task h;(a;;) only after r, has attempted the task for a longer
period of time than r; believes that it, itself, needs to accomplish A;(a;;).

Implicit in this strategy is the assumption by an acquiescing robot that other
robots know their own performance levels better than does the acquiescing robot.
Their behavior can be informally summarized with the statement: “If I think I’'m
not doing very well, and you think you can do better, then I'll give up.” In this
strategy, the acquiescing robot r; does not compare its own expected performance
with its knowledge about the expected performance of the impatient robot, r;. If it
did, 7 might at times find that it expects r; to actually perform the task worse than
7 could. However, since r; assumes that r; has better knowledge about r;’s abilities
than r; does, 7 gives up its task.

The expected group behavior resulting from strategy II, then, is for better
robots to take over tasks from worse robots, with the worse robots giving up their
tasks when they feel that both (1) they are not successful, and (2) that another robot
on the team can do a better job.
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7.1.3 Strategy III: Give Robots a Fighting Chance

The third strategy for updating the impatience and acquiescence factors results in
a robot team that judges performances of robot team members based on each team
member’s own individual expected performance, rather than its comparison to other
team members’ performances. Under strategy III, a robot r; becomes impatient with
robot ry’s performance only after 7, begins performing worse than its (r4’s) normal
abilities. Otherwise, robot r; will not become impatient with rt, even if r; expects
that it could perform r;’s task much better. Likewise, each robot expects the same
courtesy, and is therefore unwilling to acquiesce its own action until it believes it has
had a fair chance to accomplish the task, according to its own expected performance
requirements.

Thus, the expected group behavior resulting from strategy III is for robots to
exhibit a first-come-first-served approach to action selection, not interrupting other
agents nor acquiescing to other agents until deteriorated functionality is demon-
strated.

7.2 THREE TASK ORDERING STRATEGIES

The second issue in the action selection problem is determining how each robot selects
from among a number of incomplete tasks that no other team member is currently
performing. We investigated a number of approaches to this task ordering problem.
A key concern in evaluating the alternative approaches is the degree of vulnerability
of the robot team to any type of component failure — either the failure of robots or
the failure of the communication system. If the robots are absolutely dependent upon
the communication system to perform anything useful, then efforts to create robust,
reliable, flexible, and coherent teams are lost with one component failure. Indeed,
communication failure is not a problem to be taken lightly, as applications performed
in the real-world offer many more challenges to the communication system than are
present in, say, multi-processor communication!. Thus, to assure a high level of fault
tolerance, robots cannot be required to wait to be “awarded a bid”, or to receive
permission from some other robot via a communicated message before starting on a
task, since a communication failure would cause the team to accomplish nothing.

We therefore investigated three approaches in which each robot’s next action
selection is either a greedy choice based upon the expected execution time of the
tasks it is able to perform, or is a random choice of actions. The following paragraphs
describe these three task ordering approaches, called Longest Task First, Modified

Shortest Task First, and Modified Random Task Selection.

! As anecdotal evidence of this problem, at a recent AAAI robot competition [16, pg. 39] held
in what most would consider to be a very controlled environment, communication failure due to
extreme RF noise from portable microphones, transmitters, two-way radios, and halogen lighting
dimmers and starters caused havoc for several of the competing robots.
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7.2.1 Longest Task First

In the multi-processor scheduling community, a centralized greedy approach called
Descending First Fit has been shown to result in mission completion times within
22% of optimal [25] for identical processors. In this approach, the tasks are assigned
to processors in order of non-increasing task length. Thus, we first attempted a
distributed version of Descending First Fit to determine its effectiveness for the multi-
robot application domain. The distributed version, which we call “Longest Task
First”, requires each robot to select as its next task that which is expected to take the
robot the longest length of time to complete. The mechanism utilized to implement
this approach is to have the fast and slow impatience parameters of each motivational
behavior (§_fast;;(t) and 6_slow;;(k,1)) to grow at a rate proportional to the expected
task completion time (i.e. larger task times imply faster rates of impatience). The
philosophy behind the Longest Task First approach is that the mission cannot be
completed any quicker than the time required to execute the longest task in the
mission. Thus, the team may as well start with the longest task and perform as many
of the shorter tasks in parallel with that task as possible.

7.2.2 Modified Shortest Task First

As a logical next step, we studied the dual of the Longest Task First approach —
Shortest Task First — in which the motivational behaviors interact to cause each
robot to select as its next action that which it expects to perform the quickest. The
centralized version of this greedy approach for identical multi-processors has been
shown to result in minimizing the mean flow of the mission; in other words, the
average completion time of the tasks in the mission is minimized [15]. However,
in our approach, the pure Shortest Task First technique is modified somewhat to
compensate for the fact that heterogeneous robots have different sets of tasks which
they are able to pursue. If a mission includes tasks that can only be accomplished by
one specific robot, then it makes sense for that robot to first select the actions which
it alone is able to accomplish. Extending this principle even further, we can require
a robot to first select from among those actions which it expects to perform better
than any other robot on the team, and only after these tasks are complete continue
on to select tasks which the robot expects other robots on the team could accomplish
quicker. In this second case, we prefer a robot to at least attempt tasks that it may
not perform as well as other robot team members rather than remaining idle while
the better robots are working on other tasks. Even with their inferior capabilities, the
slower robots may still be able to complete tasks during the time in which the better
robots are occupied with other tasks, thus reducing the overall mission completion
time.

Thus, the interaction of the motivational behaviors under the Modified Short-
est Task First approach effectively divides the tasks a robot can perform into two
categories:

1. Those tasks which robot r; expects to be able to perform quicker than all other
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robots present on the team.
2. All other tasks r; can perform.

This two-category mechanism is implemented via the learned_robot_influence function
defined in the formal L-ALLIANCE model in section 7.5, which initially “blinds” the
robot to those tasks in the second category. This causes the robot to first select
from among those actions that it feels it can perform quicker than any other robot
team member. If no tasks remain in the first category, the robot is initially satisfied
that the tasks will be accomplished by other team members. However, the robot
does not idle indefinitely just because other team members might possibly be able
to accomplish the tasks in the second category. Instead, each robot is motivated by
a boredom factor, which increases whenever the robot is doing nothing. Once the
boredom factor gets high enough, it causes the robot to “forget” that another robot
is present that can perform one of the actions in the second category, thus leading
the robot to select some pertinent action. The robot then continues task execution
in this manner until the mission is complete.

The selection of the shortest task within each category is accomplished by the
settings of two parameters in L-ALLIANCE: 6_slow;;(k,t) and §_fast;;(t). To cause a
robot to select the task it expects to perform the quickest, these rates of impatience
for each behavior set grow at a rate inversely proportional to the expected task
completion time. Section 7.5 discusses the details of how this is implemented.

7.2.3 Modified Random Task Selection

As a baseline against which to compare the other approaches, a random selection
of tasks was also studied. In this case, the motivational behaviors of the robots
effectively divide the tasks into the same two categories used in the Modified Shortest
Task First approach. However, in this case, the motivational behaviors work together
in such a way that tasks are randomly selected, initially from the first category, and
then from the second category of tasks.

7.3 EXPERIMENTAL RESULTS OF L-ALLIANCE CON-
TROL STRATEGIES

To determine the relative merits of the three strategies presented in the previous
section, we executed large number of test runs in simulation?, comparing the results
of the strategies in terms of the time required to complete the mission. In making
observations about the relative performances of the strategies, it is important to not
generalize conclusions based on too few examples, since the outcome of any specific

%In this study, simulation runs offered much more opportunity to study the effects of a large
number of factors on the performance of the three strategies than would be possible using our
laboratory’s limited number of physical robots with relatively fixed physical capabilities. We then
validated the results on physical robots, as described in section 8.8.
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example can often be quite different from the average performance of the strategies
over a range of similar mission scenarios. We thus collected the data by first varying
the number of robots on the team (n) from 2 to 20, the number of tasks the team
must perform (m) from 1 to 40, the task coverage from 1 to 10, and the degree
of heterogeneity from 0 percent to 3200 percent. For this study, the missions were
composed of completely independent subtasks involving no ordering constraints, the
capabilities were distributed uniformly across the robots based upon the given task
coverage, and the same task coverage was assumed for all tasks required by the
mission. Note that although this study did not address the issue of robot failure
explicitly, the strategies studied here do not distinguish between task failure in robots
and slower completion times in those robots. Thus, since task failure is treated
no differently from gross inefficiency, robot failures are implicitly included in the
heterogeneity difference across robots.

For ease of discussion in this subsection, we define a scenario as a 4-tuple (n,
m, task-coverage, heterogeneity) of a given run of the simulation. For each scenario
defining the number of robots, the size of the mission, the level of task coverage, and
the percent of heterogeneity, two hundred different test runs were executed, varying
the assignment of tasks to robots and the quality of their performance randomly
according to the given values of task coverage and heterogeneity. The average over
these 200 runs was then considered the characteristic performance of that scenario.

To clarify the discussion, we discuss separately the effects of the impa-
tience/acquiescence update strategy and the effects of the task ordering approach.
The following two subsections present and discuss the results of these studies.

7.3.1 Effect of Impat;ience/ Acquiescence Update Strategy

In order to separate the results of the impatience/acquiescence update strategy from
those of the task ordering approach, we assume in this subsection that the robot
team uses the Modified Shortest Task First approach to task ordering, and present
the comparison of the impatience/acquiescence results under this assumption. The
following subsection discusses the results when we relax this assumption.

We first note that the three impatience/acquiescence update strategies are
equivalent for teams in which the degree of heterogeneity is 0, regardless of any
other factors, because we have assumed a uniform distribution of tasks across robots
for a given task coverage. Thus, since any robot can perform any of its tasks as well
as any other robot, the action selection strategy does not matter as long as robots do
indeed select tasks to pursue. Since all of these strategies in L-ALLIANCE do cause
robots to pursue some incomplete task, we observe no differences when the degree of
heterogeneity is 0.

For all other robot teams, however, four distinct areas of relative strategy per-
formances are found in terms of time usage, as shown in figure 3: regions 1, 2, 3, and
4. Each of these regions are defined in terms of the ratio of task coverage to mission
size (m), as follows:
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Region 1: 1.0 < task_coverage/m

Region 2: 0.4 < task_coverage/m < 1.0
Region 3: 0.1 < task_coverage/m < 0.4
Region 4: 0.0 < task_coverage/m < 0.1

In figure 3, the strategy numbers (I, II, III) in large parentheses indicate the relative
performance of the three strategies in each of the regions, where the first row indicates
the best performer(s). As described in the previous section, strategy I (section 7.1.1)
is “Distrust Performance Knowledge about Teammates”, strategy II (section 7.1.2) is
“Let the Best Robot Win”, and strategy III (section 7.1.3) is “Give Robots a Fighting
Chance”. In figure 3, when more than one set of values is given (in regions 2 and
3), the relative performances depend upon the Progress When Working condition.
The four points noted with small black squares are exemplar missions of their cor-
responding regions, whose time usages are shown in later figures. The values in the
small parentheses by each of these four points describe the corresponding cooperative
scenario by giving the number of robots, the number of tasks, and the task coverage
used in the exemplar. ,

Intuitively, region 1 corresponds to those scenarios in which many robots are
available to perform a relatively low number of tasks. In this region, not enough
work is available to occupy all the robots; thus, the primary issue is determining
which robots perform tasks. As we progress to regions 2, 3, and 4, we encounter
scenarios in which progressively fewer robots on average are available to perform
any given task in the mission. As we shall see, the average number of robots that
compete to execute each task plays a large role in the relative performances of the
three impatience/acquiescence update strategies. Of course, the boundaries between
these regions are not crisp, as the transition from one region to the next is smooth.
Nevertheless, they do indicate general trends that are interesting to understand.

First, consider the relative performances of teams controlled by the three strate-
gies in region 1. Figure 4 illustrates a typical performance of the three strategies for
scenarios in this region, showing the time results of four robots performing two tasks,
in which 75% of the robots have the capability to perform each task. This combina-
tion of task coverage and mission size indicates that most of the robots on the team
are able to perform most of the tasks required by the mission. However, because
there are so few tasks to perform per robot, the overall group performance is very
much dependent upon the initial action selection choice of each robot, rather than the
method by which the robots elect to override the actions of teammates. Some robots
may elect to perform a task, while other robots may elect to remain idle due to the
presence of team members that are thought to be able to accomplish the tasks more
efficiently. Under strategy I all robots select the task which they expect to be able to
complete the quickest, without the use of knowledge about the capabilities of team-
mates. If more than one robot selects the same action, a fixed tie-breaking mechanism
determines which robot wins, regardless of their relative capabilities. Thus, each task
may not be executed by the robot which can perform that task the best. On the
other hand, under strategies II and III, robots select their actions with regard to
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Figure 3: Summary of time usage for three impatience/acquiescence strategies. In
this figure, the strategy numbers (I, II, III) in large parentheses indicate the relative
performance of the three strategies in each of the regions, where the first row indicates
the best performer(s). When more than one set of values are given (in regions 2
and 3), the relative performances depend upon the Progress When Working (PWW)
condition. The four points noted with small black squares are exemplar missions of
their corresponding regions, whose time usages are shown in later figures. The values
in the small parentheses by each of these four points describe the corresponding
cooperative scenario by giving the number of robots, the number of tasks, and the
task coverage used in the exemplar.
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Figure 4: An average time performance of the the three impatience/acquiescence
strategies in region 1. Each data point shown in this and in the next three figures is
an average value over two hundred runs of the corresponding scenario. Refer to the
text for more details.

the expected capabilities of their teammates. Thus, robots are initially motivated to
perform only those tasks that they should be able to complete quicker than any other
robot team member. Since so few tasks are to be performed relative to the size of the
team, it is quite likely that on average, each task is completed by the robot who can
perform that task most efficiently. Thus, strategies II and III perform much better
than strategy I in region 1 in terms of time.

As we move into region 2, an interesting phenomenon occurs with the relative
performances of the three strategies. Moving away from region 1 into region 2 means
that the relative performances of the strategies is affected not only by the initial action
selection choice which influenced the performance in region 1, but also by the mech-
anism by which robots override the performances of their teammates. The override
mechanism becomes more important in this region because there are fewer available
robots per task. This in turn means that at times idle robots will be watching to
override their teammates’ performances. We discover that the relative performances
of strategies II and III vary based upon the heterogeneity of the robots when they
share task capabilities, and the degree to which the Progress When Working condition
holds.

An example helps illustrate this point. Let us suppose that a cooperative team
is composed of two robots, r; and r,, both of which can perform the three tasks
required on the mission — ay, aq, and a3. Further suppose that r; performs its tasks
very efficiently, requiring 75 time units to perform each of its tasks, whereas robot
72 is less efficient, requiring 100 time units to perform each of its tasks. Initially, r,
selects the action it can perform the quickest, say a;, and r; sits idle for a while, since
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it knows that it cannot perform its tasks efficiently relative to the other robots on
the team. However, while 7, is idle, its environmental feedback indicates that tasks
still need to be performed; thus, 7, becomes bored, leading it to elect to perform one
of the tasks not yet underway — say a;. In the meantime, assume r; completes ay,
goes on to also complete as, and is now waiting on r; to complete task a,. Under
strategy II (“let the best robot win”), r; would become impatient with ry after ry
had attempted the task for 75 time units, at which point r, would acquiesce task
az. Similarly, under strategy I (“distrust performance knowledge”), r; would become
impatient with r, after 75 time units, although r; would not give up a3 until 100 time
units had passed, leading to both robots performing a;. Under strategy III (“give
robots a fighting chance”), r; would allow r; to continue its execution of a3 for 100
time units. What effect does this have on the relative time usage of the team in region
27 The answer depends on the degree to which the Progress When Working condition
holds. First, let us consider the relative performances of strategies II and III. When
the Progress When Working condition holds, a robot is able to fully sense the effect
of other robot’s actions through the world. Thus, strategy 1I outperforms strategy
III in terms of time for any degree of heterogeneity (except full homogeneity) because
a quicker robot takes over the task from a slower robot without having to duplicate
the slower robot’s actions. However, when the Progress When Working condition
does not hold, robots are not able to sense the effect of other robot’s actions through
the world until the task is complete. Thus, overriding the action of another robot
leads to the task being performed again in its entirety. This is actually useful when
robots are highly heterogeneous, since a more efficient robot is able to perform the
entire task in less time than the slower robot needs to complete the task. But it is
not useful when robots are only mildly heterogeneous, since the time required for the
faster robot to fully execute the task is longer than the remaining time required for
the slower robot to complete that task. Thus, strategy II outperforms strategy III
when the Progress When Working condition holds for any degree of heterogeneity, or
when the Progress When Working condition does not hold, but the team is composed
of highly heterogeneous robots. On the other hand, strategy III outperforms strategy
IT for mildly heterogeneous teams when the Progress When Working condition does
not hold. Figure 5 shows a typical performance of the strategies in region 2 when the
Progress When Working condition does not hold.

Now let us examine the performance of strategy I relative to that of strategies
IT and III in region 2. As noted earlier, the override strategy plays a critical role
in the relative performances of the three strategies in this region. Since strategy I
can often lead to more than one robot attempting the same task at the same time,
its relative performance depends upon the degree to which the robots interfere with
each other. If we assume no interference, then the strategy I override mechanism is
not harmful in terms of time because the two robots merely continue working until
one of them has completed the task, regardless of whether or not the Progress When
Working condition holds. Strategy I therefore matches the time performance of the
better of strategies II and III in region 2 for any given degree of robot heterogeneity.
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Figure 5: An average time performance of the three impatience/acquiescence strate-
gies in region 2 when the Progress When Working condition is not true.

Moving into region 3 results in scenarios involving a fairly low ratio of task
coverage to mission size. Figure 6 illustrates a typical performance for the three
strategies in this region. Here, missions involve plenty of work for each robot to
perform; thus, it does not make as much sense in this region for a robot to override
the performance of a teammate when there is a significant amount of unfinished
work remaining to be accomplished. However, since strategies I and II under the
Modified Shortest Task First approach do not make a distinction between tasks not
yet attempted and tasks being performed by poorer robots, we find that strategies I
and II tend to get bogged down trying to improve the performance of other robots
even when tasks are available that no robot is pursuing. This turns out not to be a
significant problem for the time metric when the Progress When Working condition
holds, since the overriding robot need not repeat the entire task. However, when the
Progress When Working condition is false, strategy II is somewhat penalized, because
the overriding robot has to repeat the entire task, whereas with strategy I, both robots
continue to work on the task until the quickest robot has completed the task. Strategy
I1I does not suffer from this problem because it does not cause a robot 7; to override
another robot just because r; thinks it (r;) can perform the task quicker. We note
that heterogeneity does not play much of a role in the relative strategy performances
in this region. Again, this is due to the increased amount of work available for each
robot to perform, which causes robots to be better off working on tasks that have not
yet been started, rather than worrying about efficiency override considerations due
to heterogeneity.

Finally, we consider region 4, which consists of those scenarios involving a very
low task coverage to mission size ratio. What we discover in this area is that the
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Figure 6: An average time performance of the three impatience/acquiescence strate-
gies in region 3, assuming the Progress When Working condition does not hold.

choice of impatience/acquiescence update strategy makes little difference to the team
performance because, in this region, either robots have virtually no overlap in their
abilities, or the mission is large enough that robots need not “compete” for tasks to
perform. Low overlap in abilities implies that only one allocation of tasks to robots
is possible, and thus the controlling strategy makes no difference. Figure 7 shows a
typical time performance of the strategies for scenarios in region 4.

In summary, we see that the performance of the three impatience/acquiescence
update strategies under the Modified Shortest Task First approach is dependent upon
a number of factors: the relative task coverage, the relative mission size, the degree of
robot heterogeneity, and the degree to which the Progress When Working condition
holds. Table 3 summarizes these results by giving the preferred strategy for each
combination of these factors. What we find is that all three strategies perform well
in certain scenarios, while they perform poorly in others. As could be expected, the
reasons why the strategies perform poorly in some scenarios are the same reasons
why they perform well in others. For example, strategy II performs well for highly
heterogeneous robot teams because it is quick to override. Yet, it also performs worse
in region 3 because it is too quick to override. Likewise, strategy III performs well
for mildly heterogeneous robot teams because it does not readily cause overrides.
However, when it performs poorly, it is because it causes robots to be too slow to
override.

7.3.2 Effect of Task Ordering Approach

As discussed in section 7.2, we investigated three approaches for allowing a robot to
determine which task to select from those tasks that are not already being attempted
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Preferred Strategy: Time as Metric

| Progress When Working? || Region [ Heterogeneity || Strategy |

Yes
Yes
Yes
Yes
No
No
No
No
No

Mild
High

T U R TN U RN

None

Il or III
Torll
L 10, or III
I, II, or III
II or III
TorIII
TorIl
IorIIl
I, II, or III
I, II, or III

Table 3: Summary of preferred impatience/acquiescence strategies for time as the
performance metric. The preferred strategy is a function of whether the Progress
When Working condition holds, the number of robots (r), the task coverage, the
number of tasks (m) and the degree of heterogeneity when robot capabilities overlap.
The values of High, Mild, and None for degree of heterogeneity stand roughly for the
following: High is greater than 600%, Mild is less than 300%, and None is 0%.
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by any robot — the Longest Task First approach, the Modified Shortest Task First
approach, and the Modified Random Task Selection approach. We quickly dismissed
the distributed Longest Task First approach, because it turned out to be disastrous
for heterogeneous cooperative teams in which robot failures can occur. Recall that
robots in the most general cooperative teams satisfy condition 1 (see section ), which
states that different robots are different, and thus may perform the same task with
quite different levels of performance. The result for these teams using the Longest
Task First approach was that, in general, each task in the mission was completed by
the robot team member with the worst ability to accomplish that task. Clearly, this
does not result in collectively efficient task execution.

We then compared the relative performance of the Modified Shortest Task First
approach with the Modified Random Task Selection approach. If a simple random
selection of the next task performs just as well as the shortest task first approach,
then the control strategy would be less dependent upon knowledge of other robot
capabilities.

To investigate these alternatives, we performed a similar set of simulation ex-
periments as discussed in the previous subsection, varying the number of robots, the
size of the mission, and the heterogeneity of the robots. In these experiments, we
studied the relative effects of the Modified Random Task Selection approach under
each of the three impatience/acquiescence strategies as compared to the results of
the the impatience/acquiescence update strategies under the Modified Shortest Task
First approach.

Figure 8 shows a typical outcome of this comparison in terms of time; this
example shows the percent change in mission completion time when using a random
task choice instead of shortest task first for a six-robot team with twelve tasks and
a task coverage of four. As this figure shows, although the Random Task Selection
approach does degrade the performance of teams controlled by strategies I and III, it
actually improves the performance of teams controlled with strategy II (Let the Best
Robot Win).

The reason for this performance improvement for strategy II concerns the theo-
retical advantages of using the Longest Task First selection strategy discussed earlier.
The Longest Task First approach theoretically results in shorter mission completion
times for homogeneous robot teams because the longer tasks are pursued first while
available robots perform the shorter tasks in parallel. However, we dismissed this
approach for heterogeneous robot teams which can perform the same tasks with dif-
ferent qualities, since it caused each task to be pursued by the robot with the longest
task completion time. However, if we allow robots to effectively divide their tasks
into two categories — (1) those which the robot expects to be able to perform quicker
than any other robot, and (2) all remaining tasks that robot can perform — and then
use a longest task first mechanism to select among the first category and a shortest
task first mechanism for selecting among the second category tasks, the problem of
heterogeneity is circumvented.

What we find is that the Random Task Selection approach for impa-
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Figure 8: Typical change in mission completion time when using random task selection
instead of shortest task first selection.

tience/acquiescence update strategy II actually moves the robot control toward a
Longest Task First approach, since any random selection of an action must result in
a longer task than that chosen with the Shortest Task First approach. However, since
the robot only uses the Longest Task First mechanism for tasks in category 1, we
do not run into problems due to heterogeneity. Thus, the performance of strategy II
actually improves with the Random Task Selection approach.

In fact, robots controlled with strategy IIT also experience improvement due
to this modified Longest Task First approach for the same reasoning. However, this
improvement is offset somewhat because robots in strategy III do not override the
performances of poorer robots that have selected tasks badly from category 2. Over-
all, robots controlled using strategy III display poorer performance when using the
Random Task Selection approach, compared to the Shortest Task First approach.

Strategy I, however, does not benefit from the move towards the Longest Task
First approach, because a robot using this strategy does not have the information
required to segment its tasks into the two categories. Although such a robot does
have the ability to override a bad action selection of a poorer robot, the override
mechanism is not sufficient to overcome the degradation in performance due to poor
task selections by all robot team members. Thus, strategy I suffers the worst from
the Random Task Selection approach.
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7.4 THE PREFERRED L-ALLIANCE DISTRIBUTED CON-
TROL STRATEGY FOR EFFICIENCY AND FAULT
TOLERANCE

The results of the control strategy investigations lead to a preferred strategy under
which each robot r; effectively does the following:

1. Divide the tasks into two categories:

(a) Those tasks which r; expects to be able to perform better than
any other team member, and which no other robot is currently
performing.

(b) All other tasks r; can perform.

2. Repeat the following until sensory feedback indicates that no more
tasks are left:

(a) Select tasks from the first category according to the longest task
first approach, unless no more tasks remain in the first category.

(b) Select tasks from the second category according to the shortest
task first approach.

If a robot has no learned knowledge about team mermber capabilities, all of its tasks
go into the second category.

Note here that the actual implementation of this control strategy in L-ALLIANCE
is distributed within each robot across the monitors and motivational behaviors. Al-
though the L-ALLIANCE approach could be implemented on each robot as a cen-
tralized controlling behavior, doing so would compromise the robustness and fault
tolerant design goals of the architecture. A centralized process responsible for ob-
taining all of the performance quality measurements of robot team members would
place the robot at risk of complete breakdown if the one controlling module were to
fail. In addition, a centralized decision-maker does not scale well for larger numbers
of tasks, since each additional task that could be performed must be considered in
light of the robot’s previous abilities and all other team member capabilities. Fairly
quickly, the centralized decision-maker would have too much work to do to effectively
control the robot, leading to the classical problems of centralized sense-plan-act robot
control architectures [8]. Distributing the control mechanism in ALLIANCE and L-
ALLIANCE makes it rather straightforward to handle increasingly complex robot
missions — one needs simply to provide additional processors over which the moti-
vational behaviors can be divided to allow arbitrarily large numbers of tasks to be
monitored and controlled. With ALLIANCE and L-ALLIANCE one thus eliminates
the control nightmare of a single software module growing arbitrarily large to handle
increased mission sizes. . .

Of course, distributing the knowledge across many motivational behaviors does
make the control problem much more difficult. How does one cause the motivational
behaviors to interact such that each robot selects the actions it is most suited for, and
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Figure 9: The data points shown correspond to scenarios for which the optimal result
could be computed. For each of these scenarios, we compared the time usage required
for recommended distributed action selection technique against the required time
usage for the optimal result. The data points correspond to a total of 496 scenarios.
The dashed lines indicate the same four regions as shown in figure 3.

so that all tasks become complete? The interaction of the motivational behaviors on
an individual robot must be designed to allow the collective interaction of the team
members’ actions to result in the most efficient execution of the mission possible. The
formal model providing the details of this distribution is described in section 7.5.

7.5 COMPARISON TO THE OPTIMAL SOLUTION

In future work, we plan to analytically study the preferred control strategy described
above to determine its best-case, worst-case, and average-case performance expecta-
tions relative to the theoretical optimal solution. However, we note that the emphasis
in this article is not on deriving the ultimate distributed task scheduler; rather, the
goal is the development of an infrastructure that allows distributed robots to demon-
strate a high level of fault tolerance while improving their collective efficiency, and to
illustrate an adaptive mechanism that achieves this aim. It should be clear that other
greedy approaches to dynamic control parameter updates could also be incorporated
into the L-ALLIANCE infrastructure if they are shown to be superior to the preferred
L-ALLIANCE approach developed above.

Nevertheless, it is important to confirm experimentally that the preferred up-
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date mechanism works well in practice when compared to the optimal result. Of
course, since the learning problem is NP-hard, it is very.difficult to compare the
performance of the L-ALLIANCE approach to the optimal result. The problem is
exponential in the number of tasks (O(n™), for n robots and m tasks), and thus the
optimal solution becomes impractical to calculate even for fairly small values of n
and m. However, the optimal result can be calculated for many small problems in
which the value of »™ is reasonable. We thus experimentally compared the results
of the preferred L-ALLIANCE control strategy with the optimal solution for those
problems in which we could derive the optimal result.

Figure 9 plots the mission scenarios for which we could calculate the optimal
solution; these scenarios are plotted according to their task_coverage/m ratio. A
large number of experimental runs were then executed in simulation using the same
technique as described in the previous section, computing the average percent worse
of the L-ALLIANCE solution over the optimal solution for each mission scenario.
Figure 10 shows the results, indicating the percent worse than the optimal result for
the scenarios in regions 1, 2, and 3. A total of 331 scenarios make up the region
1 average, 139 scenarios make up the region 2 average, and 26 scenarios make up
the region 3 average. These results indicate that L-ALLIANCE performs quite well
for these smaller scenarios — less than 20% worse than optimal for any region, with
much better performance in region 1.

The issue, of course, is how seriously we should expect the performance of
L-ALLIANCE to degrade as the size of the problem increases. The preferred L-
ALLIANCE strategy performs particularly well in region 1 because, although the
knowledge is distributed across motivational behaviors, the robots are essentially
using global knowledge in their action selection due to the high task coverage and
low mission size. However, as the relative number of tasks to perform increases, the
purely greedy approach cannot always result in near-optimal performances because it
will at times be more efficient to make several less-than-optimal local task selections
to arrive at a globally optimal result. As we mentioned earlier, quantifying how much
worse this preferred control strategy can be than the optimal is a primary topic of
future study.
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Figure 10: Comparison of the preferred control strategy performance with the optimal
performance. In region 1, the averages are over 331 scenarios, in region 2 the averages
are over 139 scenarios, and in region 3 the averages are over 26 scenarios. Since the
efficiency problem is exponential in the number of tasks, the optimal results could not
be readily derived for any scenarios in region 4. The error bars indicate one standard
deviation in the performance differences.
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8 L-ALLIANCE FORMAL MODEL

This section presents the formal model defining how the L-ALLIANCE dy-
namic parameter update mechanism is incorporated into the motivational behaviors
such that the fault tolerant characteristics of ALLIANCE are retained while adding
efficiency improvements. We first discuss the threshold of activation of the behav-
ior sets, followed by a discussion of the parameter settings pertinent to each of the
sources of input to a robot’s motivational béhavior: sensory feedback, inter-robot
communication, suppression from active behavior sets, learned robot influence, robot
impatience, and robot acquiescence. We conclude this section by showing how the
L-ALLIANCE inputs are combined to compute the motivational levels.

8.1 THRESHOLD OF ACTIVATION

A parameter of key importance to the efficiency of the robot team is the threshold of
activation, §. This parameter is used not only to determine the motivational level at
which a behavior set is activated, but, more importantly, as a way of calibrating the
impatience and acquiescence rates across motivational behaviors and across robots.
Recall from section 7.4 that the interaction of motivational behaviors must result
in a robot selecting either the task it can perform the quickest or the task that
requires the robot the longest time to accomplish, depending upon the task category.
Since the L-ALLIANCE mechanism is distributed across several parallel processes,
these orderings can be accomplished by setting the fast and slow impatience rates
(6_fast;;(t) and é._slow;;(k,t)) to values proportional to the expected completion times
of their corresponding tasks. However, these rates are meaningless if the behavior sets
activate at different levels, since a behavior set with a slower rate of impatience could
activate before one with a faster impatience rate if the first behavior set had a low
enough threshold of activation. Likewise, the robot team member that is superior
at a given task should “win” the ability to perform that task by activating it prior
to any of its teammates. Yet again, this cannot be accomplished if the robots have
different thresholds of activation. It is therefore important for the sake of efficiency
that the value of § to be uniform across robots and across the motivational behaviors
of each robot.

8.2 SENSORY FEEDBACK

The sensory feedback provides the motivational behavior with the information neces-
sary to determine whether its corresponding behavior set needs to be activated at a
given point during the current mission. Although this sensory feedback usually comes
from physical robot sensors, in realistic robot applications it is not always possible
to have a robot sense the applicability of tasks through its sensors. Often, tasks are
information—gathering types of activities whose need is indicated by the values of pro-
grammed state variables. The use of stored state in memory, therefore, can serve as
a type of virtual sensor which serves some of the same purposes as a physical sensor.

At times, it is quite possible that the sensory feedback provides erroneous in-
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formation to the robot (e.g. performing a task in inclement weather outdoors). This
erroneous information can lead the robot to assume that a task needs to be exe-
cuted when, in fact, it does not (false positive), or that a task does not need to be
performed when, in fact, it does (false negative). Although higher redundancy in
individual robot sensors can help reduce this problem, at some point the levels of
redundancy become exhausted, leading to robot failure. Thus, sensory failures as
well as mechanical locomotion errors can lead to the team’s failure to accomplish its
mission.

We define a simple function to capture the notion of sensory feedback as follows:

1 if the sensory feedback in robot r; at time ¢
sensory_feedback ;(t) = indicates that behavior set a;; is applicable
0 otherwise -

Note that this use of sensory feedback serves the same purpose as “precondition
lists” in traditional planning systems, such as STRIPS [22], or in situated agent
planning systems, such as Maes’ spreading activation networks [33]. In these planning
systems, the precondition lists are collections of symbolic state descriptions that must
hold true before a given action can be performed. One could impose a similar symbolic
description on the required sensory feedback of each motivational behavior in L-
ALLIANCE to make the environmental requirements of behavior set activation more
explicit.

8.3 INTER-ROBOT COMMUNICATION

The inter-robot broadcast communication mechanism utilized in L-ALLIANCE serves
‘a key role in allowing robots to determine the current actions of their teammates.
The broadcast messages in L-ALLIANCE substitute for more complex passive action
interpretation, or action recognition, which is quite difficult to achieve.

Two parameters are utilized in L-ALLIANCE to control the broadcast commu-
nication among robots: p; and 7;. The first parameter, p;, gives the rate at which robot
r; broadcasts its current activity. The second parameter, 7;, provides an additional
level of fault tolerance by giving the period of time robot r; allows to pass without
receiving a communication message from a specific teammate before deciding that
that teammate has ceased to function. While monitoring the communication mes-
sages, each monitor mon;; of robot r; must also note when a team member is pursuing
task hi(ai;). To refer to this type of monitoring in the formal model, the function
comm_received is defined as follows:

1 if robot 7; has received message from robot 7}
concerning task k;(a;;) in the time span
(tl,tg), where t <t

0 otherwise

comm_recetved (i, k, j, t1,12) =

The rate at which robots communicate their current actions to their teammates
is of central importance in L-ALLIANCE to the awareness robot team members have
of the actions of their teammates. This in turn affects the efficiency of the team’s
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selection of actions, since lack of awareness of the actions of teammates can lead to
replication of effort and decreased efficiency. (See [45] for a further discussion of this
issue.) Thus, to ensure maximal efficiency, the communication rates, p;, are frequent
relative to the time required to complete each task in the mission. Since the task
completion time is usually many orders of magnitude larger than the time required
to broadcast a message, it is likely that the communication system capacity easily
suffices to meet this requirement.

The second parameter dealing with inter-robot communication is 7;. This pa-
rameter is especially important for allowing a robot to know which other robots are
present and to some extent functioning on the team. Although robots should adapt
their own actions according to the current and expected actions of their teammates,
they should not continue to be influenced by a robot that was on the team, but at
some point has ceased to function. Thus, robots must at all times know which other
robots are present and functioning on the team. This is implemented in L-ALLIANCE
as follows: at the beginning of the mission, team members are unaware of any other
robot on the team. The first message a robot receives from another robot, however,
is sufficient to alert the receiving robot to the presence of that team member, since all
robot messages are tagged with the unique identification of the sender. The robots
then monitor the elapsed time from the most recent broadcast message of any type
from each robot team member. If a robot does not hear from a particular teammate
for a period of time 73, then it must assume that that teammate is no longer available
to perform tasks in the mission.

The proper value of 7; is dependent upon each robot team member’s p; settings.
If team members have different values for these parameters, then they cannot be sure
how long to wait on messages from other robots. However, the difficulty is minor
if the 7; values are set conservatively — say, to several times one’s own time delay
between messages. Even so, if a robot r; erroneously assumes a team member 7 is
no longer functional, the receipt of just one message from that team member at some
point in the future is sufficient to reactivate r;’s influence on r;’s activities.

To refer to the team members that a robot r; thinks are currently present on
the team, we define the following set:

robots_present(i,t) = {k|3j.(comm_received(i, k, j,t — 7;,t) = 1)}

The robots_present(i,t) set consists simply of those robots rx from which r; has
received some type of communication message in the last 7; time units.

8.4 SUPPRESSION FROM ACTIVE BEHAVIOR SETS

When a motivational behavior activates its behavior set, it simultaneously begins
inhibiting other motivational behaviors within the same robot from activating their
respective behavior sets. At this point, a robot has effectively “selected an action”.
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The first motivational behavior then continues to monitor the sensory feedback, the
communication from other robots, and the levels of impatience and acquiescence to
determine the continued need for the activated behavior set. At some point in time,
either the robot completes its task, thus causing the sensory feedback to no longer
indicate the need for that behavior set, or the robot acquiesces the task either to
another robot or because the robot is giving up on itself. In either case, the need
for this behavior set eventually goes away, causing the corresponding motivational
behavior to inactivate this behavior set. This, in turn, allows another motivational
behavior within that robot the opportunity to activate its behavior set.

One additional detail has to be handled here to avoid problems when two or
more motivational behaviors share exactly the same rate of impatience and which
activate at the same instant. Although this situation is unlikely, if it ever occurs it
can lead to the robot thrashing between the state in which multiple behavior sets
are active and the idle state®. To remedy this potential problem, a fixed priority
among behavior sets is established, with the higher-priority behavior set “winning”
in the case of simultaneous behavior set activations. We ignore this implementation
detail here, however, and simply refer to the cross-behavior set suppression with the
following function:

0 if another behavior set a; is active, k # 7, on
activity_suppression,;(t) = robot 7; at time ¢
1 otherwise

This function says that behavior set a;; is being suppressed at time ¢ on robot
r; if some other behavior set a;; is currently active on robot r; at time ¢.

8.5 LEARNED ROBOT INFLUENCE

When a robot is operating in the active learning phase, it selects its next task from
among those tasks that are not currently being attempted by any other robot. Thus, a
task hi(a;;) that robot r; considers selecting in the active learning phase is determined
by the following function:

0 if ( > comm_received (i, z,7,0,t)) #0
learning_impatience;;(t) = z€robots_present(it)
1 otherwise

This function says that a robot r; considers activating a task h;(a;;) in the
active learning mode only if r; has not received a communication message from some
robot 7, on the team indicating that r, is pursuing task %;(a;;). On the other hand,
when a robot is in the adaptive learning phase, it selects its actions based upon the

3The robot returns to the idle state after multiple simultaneous behavior set activations because
all the active behavior sets send suppression messages, thus causing all the behavior sets to be
deactivated.
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knowledge learned about its own and other robot capabilities by using the control
strategy described in section 7.4.

An additional role of the learned robot influence parameters, however, is to
overlook the previously demonstrated capabilities of team members if tasks remain
to be accomplished. This is implemented by causing the robot to be initially “blinded”
to category 1 tasks — i.e. those tasks that other robot team members should be able
to perform well — and thus not consider them for activation. However, if no tasks
remain in the first category, the robot is idle and begins to become bored. Once robot
7;’s boredom has crossed a threshold, it is no longer blinded to the tasks that other
robot team members should be able to perform, causing r; to select a task from the
second category.

The resulting group behavior, then, is for the robots which have exclusive capa-
bilities to perform certain tasks to select those tasks immediately. Additionally, for
those tasks with a task coverage greater than 1, the robot that is expected to perform
the task best across the available robots is more likely to select that task.

In terms of the formal model, we refer to this learned influence by the following
definitions. First, we define p to be the number of trials over which robot maintains
task performance averages and standard deviations. As stated earlier, the value of
u is fairly small; in these experiments, maintaining information over about 5 trials
provided good results. We then define the function:

task_time;(k,j,t) = The average time over the last p trials of robot r;’s
performance of task h;(a;;) plus one standard deviation,
as measured by robot r;

In the case of robot failure, the time attributed to the failed robot is some
penalty factor (greater than 1) times the actual attempted time. As we shall see in the
next subsection, this penalty factor in the case of task failure is important for allowing
a robot to overcome its failure to achieve one task and go on to perform some other
task at which it can succeed. The important point to note is that repeated failures
cause the expected completion time of the failed task to monotonically increase,
leading to slower rates of impatience for the failed task. If a robot continues to
select a task at which it repeatedly fails, the updates to the impatience parameters
eventually cause the robot to become more impatient to perform some other task at
which it can succeed. This, therefore, prevents the robot from getting stuck forever
performing a task at which it cannot succeed while it still has some task which it
could successfully complete. Of course, the larger the penalty factor, the less likely
the robot will repeatedly select a task at which it cannot succeed.

The tasks are divided into the two categories described in subsection 7.4 ac-
cording to the following function:

1 if (task_time;(3,5,t) = kerobotsrglgunt(i’t)task_tzme;(k, 7, t))
task_category;(t) = and (( > comm_received(i, z, j,t — 7;,t)) = 0)

zErobots_present(i,t)
2 otherwise
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This function says that task h;(a;;) belongs to the first category in robot r; at
time ¢ if robot r;’s expected task completion time for task h;(a;;) is the minimum of
the robot team members that r; knows about, and if ; has not received a message
from any other robot on the team, 7, in the last 7; time units which indicates that
5 is currently performing task h;(a;;). Otherwise, the task belongs to category 2.

Next, we define the function that indicates the level of boredom of robot r;.
Given a boredom threshold, boredom _threshold;, and a rate of boredom, boredom _rate;,
the boredom function is defined as follows:

0 fort=0
boredom;(t) = ¢ (II; activity_suppression;(t)) otherwise
x (boredom;(t — 1) + boredom _rate;)

This function says that robot r;’s level of boredom is 0 at time 0 and whenever
some behavior set a;; is active on r;. Otherwise, the level of boredom increments
linearly over time according to the rate boredom_rate;.

We now define the function that indicates which tasks a robot considers for
activation:

_ 0 if (boredom;(t) < boredom_threshoid;) and
learned_robot_influence;;(t) = (task_category,;(t) = 2)
1 otherwise

The function says that robot r; considers activating a task k;(a;;) at time ¢ only
if that task is in category 1, or if the robot is bored.

8.6 ROBOT IMPATIENCE

The primary robot impatience parameter is ¢;;(k, t), which gives the time that robot r;
is willing to allow 71’s communication message to affect the motivation of behavior set
a;;. This value in L-ALLIANCE varies during the mission based on the robot’s expe-
rience. The value of ¢;;(k,t) is set according to the selected impatience/acquiescence
update strategy. The results presented earlier indicate that the most efficient global -
action selections can be obtained by dynamically updating the value of ¢;;(k,t) as
follows:

e For mildly heterogeneous teams in which Condition 2 (Progress When Working)
does not hold, ¢;;(k,t) is set to task_time;(k, j,t) (i.e. the time r; expects robot
1 should need to complete task h;(a;;); this is impatience/acquiescence update
strategy III — “Give Robots a Fighting Chance”).

o Otherwise, ¢;;(k,t) should be set to task_time;(s,7,t) (i.e. r;’s own expected
time required to complete task h;(a;;); this is impatience/acquiescence update
strategy II — “Let the Best Robot Win”).
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Once the value for ¢;;(k,t) is determined, it is used to update the slow and
fast rates of impatience (6_slow;;(k,t) and §_fast;;(t)). The slow rate of impatience,
6_slow;(k, %), is the rate at which robot r; becomes impatient with task k:(a;;) not
becoming complete in the presence of robot ) performing that task, while the fast
rate of impatience, §_fast;;(t), is the rate at which r; becomes impatient with task
hi(ai;) not becoming complete either when no other robot is working on task hi(a:;), or
when another robot has worked for too long on task A;(a;;). These parameters are set
to cause the motivational behaviors to interact in such a way that each robot selects
tasks from the first task category (see again section 7.4) according to the longest task
first, and to select from the second task category according to the shortest task first.
Because of the definition of the two task categories, the §_slow;;(k,t) parameters only
affect tasks in the second category, which means that §_slow;;(k,t) grows faster than
6-slow;p(k, ) only if robot r; expects to perform task h;(a;;) faster than it expects to
perform task hi(aip). The 6_slow;;(k,t) parameter is therefore automatically updated
during the mission according to the following:

5_slow,-j(k, t) ol 0/¢,’j(k, t)

This setting ensures that the time required for the behavior set’s motivation to in-
crease from 0 until it exceeds the threshold of activation equals the time of r;’s pa-
tience with r. Since the motivation is reset to 0 when 7y first begins execution of task
hi(ai;), but never again, this ensures that r; does indeed give r an opportunity to
perform task ki(a;;). However, r; cannot be fooled by repeated unsuccessful attempts
by 7y to perform task h;(as;); thus r; will eventually take over this task if r does not
demonstrate its ability to accomplish it.

Now let us examine the §_fast;;(t) parameters; these parameters affect the se-
lection of tasks from either task category one or two, which means they must at times
cause tasks to be selected according to the shortest first, and at other times according
to the longest first. An additional detail concerning robot idle time between task ac-
tivations must now be addressed. Any §_fast;;(t) parameter corresponding to a task
in the second category could be set the same as §_slow;;(k, ) for some k. This would
indeed cause the tasks to be selected in ascending order according to the expected
task completion time. However, note that during the time in which the 6_fast;(t)
parameters are below the threshold 8, the robot is idle. Thus, setting a 6-fast;(1)
parameter the same as its corresponding 6_slow;;(k,t) parameter would cause the
robot to wait for a period of time ¢;;(k,t) before activating task hi(a:;), which in
turn means that the robot would remain idle nearly as long as it spends performing
tasks. This is clearly unacceptable for the sake of efficiency, so the 6_fast;;(t) param-
eter must be scaled in some way that reduces robot idle time while maintaining the
relative impatience rates across motivational behaviors.

One easy way of scaling the 6_fast;;(t) parameters is to multiply them by some
constant greater than 1. However, while this approach reduces the idle time and
maintains the relative ordering among the tasks, it does not place an upper bound
on how long a robot might remain idle during its mission. A preferred way of scaling
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the idle times is to map them to some acceptable range based upon expected task
completion time. To do this, we define the notion of a minimum allowable delay and a
mazimum allowable delay, which give the range of times a robot can remain idle while
waiting on its next behavior set to be activated. The actual values for these allowable
delays should be set by the human designer according to the application. The only
restriction is that the minimum delay should be greater than 0. The ideal method of
scaling the rates within this range requires the motivational behaviors to ascertain the
global minimum and maximum expected task completion times across all tasks of the
mission, since this allows the rates of impatience for a given task to remain calibrated
across robots. We approximate these global minimum and maximum task completion
times with the minimum and maximum task completion times known within a given
robot. With these values, the proper settings of the §_fast;;(t) parameters are given
as follows: _

Let:
min_delay = minimum allowed delay
maz_deley = maximum allowed delay
high = rrl%afxtask_time,-(k, 7 t)
’-7
low = nlrgli_ntask_tz'me,-(k,j,t)
7]
scale_factor = mam_de{ay—mzn_delay
high — low
Then:

8
_ min_delay+(task_time;(1,7,1)~low) X scale_factor
5_fast,-j(t) — { y+( z(eJ )—low) fa

maz._delay—(task-time;(i,5,t)—low) X scale_factor

if task_category;(t) = 2
otherwise

Thus, in the case of category 2 tasks, the fast impatience rates grow more
quickly for the shorter tasks, whereas category 1 task impatience rates grow more
quickly for longer tasks. In either case, the maximum delay before task activation is
maz_delay.

The specification of when the impatience rate for a behavior set a;; grows ac-
cording to the slow impatience rate and when it grows according to the fast impatience
rate is given by the following function:

ming(6-slow;;(k,t)) if (comm_received(s, k, j,t — 7;,t) = 1)

and o

(comm_received (i, k, j,0,t — ¢:;(k,t)) = 0)
6_fast;(t) otherwise

impatience;;(t) =

Thus, the impatience rate is the minimum slow rate, d_slow;;(k,t), if robot r; has
received communication indicating that robot r; is performing the task A;(a;;) in
the last 7; time units, but not for longer than ¢;;(%,t¢) time units. Otherwise, the
impatience rate is set to §_fast;;(t).
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The final detail to be addressed is to cause a robot’s motivation to activate
behavior set a;; to go to 0 the first time it hears about another robot performing task
hi(a:;). This is accomplished through the following:

0 if 3k.((comm_received(i, k, j,t — 6t,t) = 1)
and (comm_received(i, k, §,0,t — 6t) = 0)),
where 6t = time since last communication check
1 otherwise

impatience_reset;;(t) =

This reset function causes the motivation to be reset to 0 if robot r; has just received
its first message from robot r; indicating that ry is performing task h;(a;;). This
function allows the motivation to be reset no more than once for every robot team
member that attempts task &;(a;;). Allowing the motivation to be reset repeatedly by
the same robot would allow a persistent, yet failing robot to jeopardize the completion
of the mission.

8.7 ROBOT ACQUIESCENCE

The two robot acquiescence parameters are 9;;(tf) — the time before r; yields task
hi(a:;) to another robot — and \;;(t) — the time before robot r; gives up on itself to
try to find something more useful it can accomplish. As described in section 7.1, the
first of these parameters is updated according to the current impatience/acquiescence
parameter update strategy, as follows:

¢ For mildly heterogeneous teams in which condition 2 (Progress When Working)
does not hold, 1;;(t) is set to task_time;(<,4,%) (i-e. the time r; expects to need
to complete task h;(g;;); this is impatience/acquiescence update strategy III —
“Give Robots a Fighting Chance”).

e Otherwise, 1;;(t) is set to mingerosots_present(i,t) task-time;(k, j,t) (i.e. the min-
imum time r; expects any robot would need to perform task h;(a;;); this is
impatience/acquiescence update strategy II — “Let the Best Robot Win”).

The value of the A;;(t) parameter is based upon the time robot r; expects
it requires to perform task h;(a;;). This parameter should be conservatively set,
however, so that mild underestimates of expected task time do not cause a robot to
give up prematurely. Values for );;() set at two or three times the expected task
completion time seem to work well in practice.

The following acquiescence function indicates when a robot has decided to ac-
quiesce its task:

47




(0 if [(behavior set a;; of robot r; has been active for more
than t;;(¢) time units at time ¢) and

(3z.comm _received(i, z, j,t — 7;,t) = 1)]
acquiescence;;(t) = 4 or

(behavior set a;; of robot r; has been active for more
than A;(f) time units at time #)

. 1 otherwise

This function says that a robot r; does not acquiesce behavior set a;; until one
of the following conditions is met:

e r; has worked on task h;(aj;) for a length of time ;;(t) and some other robot
has taken over task k;(a;;)

® 7; has worked on task k;(a;;) for a length of time A;;(t)

8.8 MOTIVATION CALCULATION

All of the robot inputs are combined into a simple motivational behavior calculation.
During the active learning phase, the motivation of robot r; to perform behavior set
a;; at time ¢ is calculated as follows:

DURING ACTIVE LEARNING PHASE:

random_increment «— @ X (a random number between 0 and 1)
m;j(O) =0
mi(t) = [mij(t — 1) + random_increment]
X sensory_feedback;(t)
X activity_suppression;(t)
X learning-impatience;;(t)

The motivation to perform any given task thus increments at some random rate
until it crosses the threshold 6, unless the task becomes complete (sensory_feedback),
some other behavior set activates first (activity_suppression), or some other robot has
taken on that task (learning_impatience).

When the robots are working on a “live” mission, their motivations to perform
the tasks increment according to the robots’ learned information. The motivations
are thus calculated as follows:

DURING ADAPTIVE PHASE:

m,-j(O) =0
mij(t) = [mi;(t — 1) + impatience;;(t)]
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X sensory._feedback;(t)
X activity_suppression;;(t)
X impatience_reset,;(t)

X acquiescence ;(1)

xlearned_robot _influence;(t)

Robot r;’s motivation to perform any given task during the adaptive phase thus
increments at a fast or slow impatience rate (based upon the activities of other robots)
until it crosses the threshold 8, unless the task becomes complete (sensory._feedback),
some other behavior set activates first (activity_suppression), some other robot has
taken over that task (impatience_reset), the robot decides to acquiesce the task (ac-
quiescence), or some other robot is present that should be able to accomplish the task
better than r; (learned_robot_influence).

In either the active or the adaptive learning phases, when behavior set a;;
is operational in robot r;, the corresponding motivational behavior broadcasts r;’s
current activity to its teammates at a rate of p;. -
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9 IMPLEMENTATION ON MOBILE ROBOTS
The ALLIANCE and L-ALLIANCE architectures have been successfully imple-

mented in a variety of proof of concept applications on both physical and simulated
mobile robots. The applications implemented on physical robots include a mockup
hazardous waste cleanup mission and a cooperative box pushing demonstration. The
applications using simulated mobile robots include a janitorial service mission and
a bounding overwatch mission (reminiscent of military surveillance). In this article,
we present the results of the box pushing demonstration, which provides a very sim-
ple example of the adaptive, fault tolerant, and efficient characteristics that can be
achieved using the L-ALLIANCE architecture. Refer to [43, 41] for details on the
other applications.

All of these missions using the ALLIANCE and L-ALLIANCE architectures
have been well-tested. Over 50 logged physical robot runs of the hazardous waste
cleanup mission and over 30 physical robot runs of the box pushing demonstration
were completed to elucidate the important issues in heterogeneous robot cooperation.
Many runs of each of these physical robot applications are available on videotape (see
[42] for a sampling of these videotaped experiments). The missions implemented on
simulated robots encompass thousands of runs each, most of which were logged in
the study of the adaptive action selection mechanism (see section 7.3).

9.1 THE POOL OF HETEROGENEOUS ROBOTS

The proof of concept experiments on physical robots were conducted using the robots
shown in figure 11. This pool of heterogeneous robots consisted of two types of mobile
robots — three R-2s and one Genghis-IT — all of which were designed and built by
IS Robotics Corporation.

The R-2 robot has two drive wheels arranged as a differential pair, and a two-
degree-of-freedom gripper for grasping objects. Its sensor suite includes eight infrared
sensors and seven bump sensors evenly distributed around the front, sides, and back
of the robot. In addition, a break-beam infrared sensor between the gripper and a
bump sensor lining the inside of the fingers facilitate the grasping of small objects.
The second type of robot, Genghis-II, is a legged robot with six two-degree-of-freedom
legs. Its sensor suite includes two whiskers, force detectors on each leg, a passive array
of infrared heat sensors, three tactile sensors along the robot belly, four near-infrared
sensors, and an inclinometer for measuring the pitch of the robot.

A radio communication system [30] was used in our physical robot implemen-
tations to allow the robots to communicate their current actions to each other. This
system consists of a radio modem attached to each robot, plus a base station that
is responsible for preventing message interference by time-slicing the radio channel
among robots. The design of the radio system limits the frequency of messages be-
tween robots to only one message every three seconds. All of these implementations,
therefore, involve communication between robots at no more than about ; Hertz.
All of the robots used in these experiments were programmed using the Behavior
Language [10].
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Figure 11: The pool of heterogeneous robots — three R-2s and one Genghis-II.

9.2 THE BOX PUSHING DEMONSTRATION

The cooperative box pushing demonstration offers a simple and straight-forward il-
lustration of a key characteristic of the L-ALLIANCE architecture: fault. tolerant
and adaptive control due to dynamic changes in the robot team. This box pushing
demonstration requires a long box to be pushed across a room; the box is sufficiently
heavy and long that one robot cannot push in the middle of the box to move it across
the room. Thus, the box must be pushed at both ends in order to accomplish this
demonstration. To synchronize the pushing at the two ends, the demonstration is de-
fined in terms of two recurring tasks — (1) push a little on the left end, and (2) push
a little on the right end — neither of which can be activated (except for the first time)
unless the opposite side has just been pushed. This demonstration was implemented
using a heterogeneous robot team of two R-2s and Genghis-II, and illustrates how the
L-ALLIANCE architecture endows robot team members with fault tolerant action se-
lection due to the failure of robot team members, and with adaptive action selection
due to the heterogeneity of the robot team to increase team efficiency. Note that the
emphasis in these experiments is on issues of fault tolerant and efficient cooperation
rather than the design of the ultimate box pusher. Thus, we are not concerned at
present with issues such as robots pushing the box into a corner, obstacles interfering
with the robots, how robots detect box alignment, and so forth.

Cooperative box pushing is a popular task for multi-robot system researchers,
perhaps because of its minimal requirements for sensors and effectors. Donald et
al. [18] use a box pushing demonstration to investigate general issues of information
complexity and information invariants. They define three alternative control strate-
gies for two-robot cooperative box pushing which vary in the communication and
sensing requirements. Their third control strategy (which they call Protocol II) is of
particular interest to the goals of the box pushing demonstration defined here, since
it can accomplish one type of fault tolerant cooperation that IL-ALLIANCE allows
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below in experiment 1 — namely, the ability to recover from a failed team member?.
Protocol II uses no explicit communication, but rather assumes the presence of a
sensor that allows a robot to detect the orientation of the box with respect to itself.
By using orientation information, a robot can detect the effects of the actions of its
teammates, and adjust its own actions accordingly by moving either left or right along
the box. If a robot’s teammate fails, then that robot can adjust its position right or
left as it pushes to maintain alignment of the box. The Protocol II control strategy,
however, is specific to box pushing, and does not address the general fault tolerant
and efficient action selection problem that is addressed with L-ALLIANCE.

In [39], Noreils describes a cooperative box pushing experiment in which one
robot acts as the pusher to push a box against the wall, and a second robot acts as a
supervisor to ensure that the box actually reaches the wall. If an obstacle is in the way
which prevents this task from being completed, the two robots adjust their positions
so that they can push the obstacle out of the way, and then the original pushing task
is continued. The control architecture of these robots consists of a planner level (for
planning the task), a control level (for supervising and monitoring the execution),
and a functional level (for controlling the sensors and effectors). In general, recovery
from errors during cooperation is performed by “leader” robots, which are designed
to interact with other leader robots and “worker” robots to ensure consistency of a re-
planned solution. Although this research recognizes the need for fault tolerant control,
most issues of fault tolerance have not yet been well-studied for this architecture, as
mentioned by Noreils in [39]. For instance, it is unclear in their architecture (1) how
robots detect failed robots, (2) how the team recovers from the failure of a leader,
and (3) how the team handles communication failures.

Kube and Zhang [31] report on experiments in which robot teams utilize only
simple reflex behaviors and no explicit communication to gather around a box (sensed
as a bright light) and push it. Experiments are reported using both simulated and
physical robot teams. Under this approach, robots have only implicit knowledge
of the presence of other robot team members. Fault tolerance is achieved in their
architecture by ensuring the presence of an adequate number of robots that can push
anywhere along the box and still move the box. However, if the number of robots
were to fall below some critical threshold, the remaining robots would not have the
“know how” to compensate for the shortage, and would thus fail at their mission.

In [4], Asama et al. report on simulation experiments in which two robots work
to push objects to the sides of the room. Some of the objects can be pushed by
individual robots, while other objects require the cooperation of two robots because
of the weight of the object. When cooperation is required, one robot communicates
a request for cooperation, to which the second robot responds when it is available.
Their system also includes a path planning process to determine the desired path
over which the current object should be pushed. Issues of fault tolerant control and
efficiency are not addressed in their approach.

4This type of fault tolerance can only be obtained with the “uniform” version of Donald’s protocol
II, rather than the “almost uniform” version.
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In the next subsections, we describe the design of the R-2 and Genghis-II L-
ALLIANCE software for the box pushing demonstration. We then describe the ex-
periments using these robots and the results.

9.3 ROBOT SOFTWARE DESIGN

Since the capabilities of the R-2 and Genghis-II robots differ, the software design
of the box pushing demonstration for these robots varies somewhat. Thus, the L-
ALLIANCE box pushing software of these robots is discussed separately.

9.3.1 R-2 Control

Figure 12 shows the L-ALLIANCE implementation of the box pushing demonstration
for the R-2 robots. (For the sake of clarity, the monitors are not shown in this figure.)
As shown in this figure, the R-2 is controlled by two behavior sets — one for pushing
a little on the left end of the box (called push-left), and one for pushing a little on
the right end of the box (called push-right). As specified by the L-ALLIANCE archi-
tecture, the activation of each of these behavior sets is controlled by a motivational
behavior. :

The sensory feedback required before the push-left motivational behavior within
r; can activate its behavior set is an indication that the right end of the box has just
been pushed. This requirement is indicated in figure 12 by the pushed-at-right arrow
entering the push-left motivational behavior. The right end of the box can be pushed
either by some robot other than r;, or it can be pushed by r; itself. If ; is the robot
doing the pushing, then the pushed-at-right feedback comes from an internal message
from r;’s push-right motivational behavior. However, if some robot other than r; is
pushing, then r; must detect when that other robot has completed its push. Since
this detection is impossible for the R-2s with their current sensory suites, the robots
are provided with this capability by having the team members broadcast a message
after each push that indicates the completion of their current push. The pushing is
initiated at the beginning of the demonstration by programming the control code so
that each robot “thinks” that the opposite end of the box has just been pushed.

The push-right design is symmetric to that of push-left.

When the sensory feedback is satisfied, the push-left motivational behavior grows
impatient at either a rate §_fastp(t) (the R subscript stands for an R-2 robot) if no
other robot is performing the push-left task, or at a rate §_slowg(robot — id,t) when
robot robot-id is performing the push-left task. When the push-left motivation grows
above threshold, the push-left behavior set is activated. The push-left behavior set
involves first acquiring the left end of the box and then pushing a little on that
end. If the robot is already at the left end of the box, then no acquiring has to
take place. Otherwise, the R-2 assumes it is at the right end of the box, and moves
to the left end of the box by using the infrared sensors on its right side to follow
the box to the end, and then backing up and turning into the box. As we shall see
below, this ability to acquire the opposite end of the box during the demonstration
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R-2 Box Pushing Control
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Figure 12: The L-ALLIANCE design of the R-2 software for the box pushing demon-
stration. (The two L-ALLIANCE monitors are not shown here for the sake of clarity.)

is important in achieving fault tolerant cooperative control. At the beginning of the
demonstration, we would ideally like the R-2 to be able to locate one end of the
box on its own. However, since this is beyond the scope of these proof of concept
experiments, an implicit assumption is made in the R-2 control that at the beginning
of the demonstration, the R-2 is facing into a known end of the box.

As the R-2 pushes, it uses the infrared sensors at the ends of its gripper fingers
to remain in contact with the box. The current push is considered to be complete
when the R-2 has pushed for a prescribed period of time. After the push-left task is
completed, the motivation to perform that task temporarily returns to 0. However,
the motivation begins growing again as soon as the sensory feedback indicates the
task is needed.

9.3.2 Genghis-IT Control

Genghis-II and the R-2s differ in two primary ways. First, Genghis-II cannot acquire
the opposite end of the box, due to a lack of sensory capabilities, and second, Genghis-
IT cannot push the box as quickly as an R-2, due to less powerful effectors. The first
difference means that Genghis-II can only push at its current location. The second
difference with the R-2s implies that if an R-2 pushes with the same duration, speed,
and frequency when teamed with Genghis-II as it does when teamed with another
R-2, the robot team will have problems accomplishing its demonstration due to severe
box misalignment.

Figure 13 shows the organization of Genghis-II's box pushing software. (Again,
for the sake of clarity, the two monitors are not shown in this figure.) As this figure
shows, Genghis-II is controlled by two behavior sets, each of which is under the
control of a motivational behavior. Genghis-II’s pushing at its current location is
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Genghis-li Box Pushing Control
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Figure 13: The L-ALLIANCE design of the Genghis-IT software for the box pushing
demonstration. (The two L-ALLIANCE monitors are not shown here for the sake of
clarity.) ‘

controlled by the push behavior set. The only sensory feedback which satisfies the
push motivational behavior is that which indicates that some other robot is pushing
the opposite end of the box. This requirement is shown in figure 13 as the pushed-at-
left/right arrow going into the push motivational behavior. Once the sensory feedback
is satisfied, Genghis-II becomes impatient to perform the push behavior at a rate
6_fastgp (the G subscript refers to Genghis-II; the P subscript refers to the push
behavior set). Once the motivation crosses the threshold of activation, the push
behavior set is activated, causing Genghis-II to push the box by walking into it while
using its whiskers to maintain contact with the box. Once Genghis-II has pushed
a given length of time, the motivation to perform push returns to 0, growing again
whenever the sensory feedback is satisfied.

The sensory feedback required for the go-home behavior set to be activated is
the opposite of that required for the push behavior set — namely, that no other robot
is pushing at the opposite end of the box. When the sensory feedback for go-home
is satisfied, the motivation to activate go-home grows at the rate 6_fastqyy (the H
subscript refers to the go-home behavior set), with the behavior set being activated
as soon as the motivation crosses the threshold. The go-home behavior set causes
Genghis-II to walk away from the box.

9.4 ROBOT EXPERIMENTATION RESULTS

During the active learning phase of the box pushing demonstration, we allowed each
robot to “practice” pushing an end of the box with different teammates. Each R-2
robot was teamed either with one other R.2 robot, or with the Genghis-II robot.
The Genghis-II robot was teamed with each of two R-2 robots during separate trial
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Figure 14: The beginning of the box pushing demonstration. Two R-2s are pushing
the box across the room.

periods. During these active learning phases, each robot learned the period of time
required for its teammate to push its end of the box by monitoring the broadcast radio
communication messages, in which each robot announced when it began the “push a
little” task, and when it finished it. These task completion times were automatically
fed into the dynamic parameter tuning mechanism described in the previous section
to update the 6_slow(robot — id,t) parameters within each robot.

We then placed the robots in adaptive learning mode and undertook two basic
experiments to provide a simple illustration of the fault tolerant, adaptive nature
of the robot team under the L-ALLIANCE architecture. Both of these experiments
began with two R-2s pushing the box — one at each end of the box — as illustrated
in figure 14.

After the two R-2s push the box for a while, we dynamically altered the capa-
bilities of the robot team in two ways. In the first experiment, we altered the team by
seizing one of the R-2 robots during the demonstration and turning it off, mimicking
a robot failure; we then later added it back into the team. In the second experiment,
we again seized one of the R-2 robots, but this time we replaced it with Genghis-II,
thus making the team much more heterogeneous. We then later seized the remaining
R-2 robot, leaving Genghis-II as the sole team member. The following subsections
describe the results of these experiments.

9.4.1 Experiment 1: Robot “failure”

As emphasized earlier, a primary goal of the L-ALLIANCE architecture is to allow
robots to recover from failures of robot team members. Thus, by seizing an R-2 and
turning it off, we test the ability of the remaining R-2 to respond to that “failure”
and adapt its action selection accordingly. In this experiment, what we observe after
the seizure is that after a brief pause, the remaining R-2 begins acquiring the opposite
end of the box, as shown in figure 15, and then pushes at its new end of the box.
This R-2 continues its back and forth pushing, executing both tasks of pushing the
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Figure 15: Fault tolerant action selection. In this first experiment, one of the R-
2 robots is seized and turned off. This causes the remaining R-2 robot to have to
perform both tasks of the box pushing demonstration: pushing at the right end of
the box, and pushing at the left end of the box.

left end of the box and pushing the right end of the box as long as it fails to “hear”
through the broadcast communication mechanism that another robot is performing
the push at the opposite end of the box. When the second R-2 is returned to the
team, however, the still-working robot adapts its actions again, now just pushing one
side of the box, since it is satisfied that the other end of the box is also getting pushed.
Thus, the robot team demonstrates its ability to recover from the failure of a robot
team member.

9.4.2 Experiment 2: Increased heterogeneity

Another goal of the L-ALLIANCE architecture is to allow heterogeneous robot teams
to work together efficiently. Robots can be heterogeneous in two obvious ways. First,
robots may differ in which tasks they are able to accomplish, and second, robots may
differ in how well they perform the same task. In this experiment, we deal primarily
with the second type of heterogeneity, in which Genghis-II and the R-2 use quite
different mechanisms for pushing the box. By substituting robots during the middle
of a demonstration, we test the ability of the remaining team member to respond to
the dynamic change in the heterogeneity of the team.

What we observe in this experiment is that, due to the simple learning phase of
L-ALLIANCE, the remaining R-2 begins pushing much less frequently as soon as it
“hears” that Genghis-II, rather than an R-2, is the robot pushing the opposite end of
the box. Thus, the robots remain more or less aligned during their pushing. Figure 16
illustrates the R-2 and Genghis-II pushing together.

The reduced rate of pushing in the R-2 when Genghis-II is added is caused by
the following. First of all, the R-2’s learned é_slowg(R-2) and §_slowgr(Genghis-II)
parameters differ quite a bit since Genghis-II is much slower at pushing the box than
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Figure 16: Adaptivity due to heterogeneity. In this second experiment, we again seize
one of the R-2 robots, but this time we replace it with Genghis-II. Since Genghis-II
cannot push as powerfully as an R-2, the remaining R-2 robot adapts its actions by
pushing less frequently.

the R-2. These parameter differences were easily learned by these robots monitoring
the performance of their teammates. In this case, the R-2s learn parameters in which
§_slowp(Genghis-II) is less than §_slowr(R-2).

While the R-2 was pushing on the left of the box, Genghis-II was swapped into
the team on the right end of the box. Since Genghis-II takes longer to complete
its pushing than the old R-2 did, the sensory feedback of the remaining R-2’s push-
left motivational behavior is not satisfied as frequently, and thus the R-2’s push-
left behavior set cannot be activated as frequently. In the meantime, the push-right
motivational behavior of the remaining R-2 is becoming more impatient to activate the
push-right behavior set since it is not “hearing” that any other robot is accomplishing
that task. However, since the push-right motivation is now growing at a reduced
rate of impatience, §_slowpr(Genghis-II), the motivation to activate the push-right
behavior set does not cross the threshold of activation before Genghis-II announces
its completion of the task. This in turn prevents the remaining R-2 from taking over
the push of the right side of the box as long as Genghis-II continues to push. In
this manner, the R-2 demonstrates its ability to adapt to a dynamic change in team
heterogeneity.

We complete these experiments by removing the remaining R-2 from the team.
This causes Genghis-II to activate its go-home behavior, as shown in figure 17. Thus,
Genghis-II also demonstrates its adaptive action selection due to the actions and
failures of robot team members.
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Figure 17: Response to robot failure. At the end of the second experiment, we seize
the remaining R-2 robot, leaving Genghis-II alone to perform the demonstration.
Since Genghis-II cannot complete the demonstration on its own, it activates its go-
home behavior set.
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10 CONCLUSIONS

This article has presented the L-ALLIANCE adaptive cooperative control mech-
anism that provides the ability for a team of robots to dynamically update control
parameters during a mission to respond to changes in the environment or in the robot
team. We presented a brief overview of the ALLIANCE architecture upon which L-
ALLIANCE is built, along with the motivations for needing efficiency improvements
in cooperative team performance. After showing that the efficiency problem is in-
tractable, we discussed a number of alternative control approaches to the dynamic
update of control parameters, and discussed the results of a comparison of the strate-
gies in simulation. From these studies, we developed a preferred control strategy that
was shown to work well in practice. A formal model of this update strategy was
presented. We then presented the results of a simple proof of concept demonstration
of L-ALLIANCE using a team of two types of robots performing a box pushing task,
illustrating the ability of L-ALLIANCE to achieve efficient control while maintaining
the fault tolerant characteristics of ALLIANCE.

The L-ALLIANCE adaptive control parameter update mechanism is important
for a number of reasons: it alleviates the need for human tuning of robot control
parameters, it facilitates the use of custom-designed multi-robot teams for any given
application, it improves the efficiency of the mission performance, and it allows robots
to continually adapt their performance over time due to changes in the robot team
and/or the environment. In future work, we plan to analytically study the preferred
L-ALLIANCE control approach to determine its theoretical performance relative to
the optimum result.
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